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Abstract—Radial basis function neural networks have been
successfully applied to time series prediction in literature. Fre-
quently, methods to build and train these networks must be given
the past periods or lags to be used in order to create patterns and
forecast any time series. This paper introduces E-tsRBF, a meta-
evolutionary algorithm that evolves both the neural networks and
the set of lags needed to forecast time series at the same time.
Up to twenty-one time series are evaluated in this work, showing
the behavior of the new method.

Index Terms—Neural Network; evolutionary algorithms; time
series;

I. INTRODUCTION

Time series are present in many activities in a lot of fields
like engineering, biological, economic or social, since they
represent a chronological sequence of observed data. Time
series forecasting is the power to predict future values based
on past and present values through the time line in order to
achieve the information of the underlying model.

Diverse technologies have been arising, fundamentally from
the Mathematics and the Statistics fields, to shape, explain,
and predict the values of the time series. This way, in a
generic form, it can be distinguished three kind of techniques:
a) the descriptive traditional technologies, which are those
previous to the appearance of the Autoregressive Integrated
Moving Average (ARIMA, [1]) models; b) the ARIMA models
themselves, which supposed a qualitative jump in the study
of this kind of data, being widely used at present; and c) the
technologies arisen inside the area of data mining, which have
experienced a notable interest throughout last decade [9].

On the other hand, independently of the model carried out,
one of the main problems that emerge working with time series
is the choice of the time periods (or lags) that must be used in
order to forecast future values. In this way, the own selection
of the input variables for the model to build turns itself into
a problem that can be faced using data mining.

One of the most widely used methods in time series
forecasting is the model described by Box and Jenkins [1],
the univariant Box-Jenkins method combines moving average

and autoregressive models into one unified approach. This
approach is both simple and yields accurate results which
explains its wide use. However, when conditions are not favor-
able the Box and Jenkins’ methodology can lead to manage
forecasts out of reasonable limits, becoming indispensable
new previous transformations that guarantee the conditions to
perform the estimation of the model and the prediction of
future values. In this cases Artificial Neural Network are an
alternative more precise in order to predict the future behavior
of the time series.

Artificial Neural Networks (ANN) emphasize for their ca-
pacity of learning from the information provided [5]. This
makes obvious the need to do suppositions over the models and
relations of the time series [20], and allows them to calculate
forecasts of any time series without having to assure before the
conditions of stationary and invertible. After the publication
of some initial works related to the prediction of time series
( [3], [8]), the interest on the part of the scientific community
has been increasing throughout last decade.

In this work, an approach to automatically choose the
best lags in time series using an evolutionary algorithm and
artificial neural networks (namely, E-tsRBF) is proposed. The
method is based on EvRBF [12], [13], which was previously
developed to design asymmetric Radial Basis Function Net-
works (RBFNs) [2].

Radial Basis Function Networks are two-layer, fully-
connected, feed-forward networks, in which hidden neuron
activation functions are Radial Basis Functions (RBF), usually
Gaussian.

RBFNs output is given by eq. 1.

sj( ~xk) = λ0j +
p′∑

i=1

λijφi(~x, ~ci, ~~ri) (1)

where k = 1..p, j = 1..n′, sj ∈ R, ~xk ∈ Rn, and φi is the
RBF assigned to hidden neuron i; λ0j is a bias term; λij

represents the weight between hidden neuron i and output
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neuron j; ~ci and ~~ri are called, respectively, the center and radii
(or widths) of the RBF; n and n′ are the input and output space
dimensions, respectively; p′ is the number of hidden neurons,
and p is the number of patterns to which sj is going to be
applied.

RBFNs’ main advantage is that optimal biases and weights
(i.e, λ0j and λij) can be efficiently computed for a certain set
of desired output, once the number of hidden neurons, centers
and radii have been set. This is shown in eqs. 2 to 4.

 f11..f1n′

...
fp1..fpn′

 =

 1 A11.. A1p′

1
...

1 Ap1..App′


 λ01..λ0n′

...
λp′1..λp′n′

 (2)

which can also be expressed in matricial form as in eq. 3:

F = Aλ (3)

whose solution is given by eq. 4:

λ = A−1∗F (4)

where F is the set of desired outputs; A is the so-called design
matrix (where Aij represents the output of hidden neuron j
when input pattern i is applied to the net); λ is the set of
weights and biases (being λjk the weight of the connection
between hidden neuron j and output neuron k); and A−1∗

represents the pseudo-inverse of matrix A.
Biases and weights calculated using A−1∗ yield the mini-

mum mean square error (MSE). Using less hidden neurons
than values to be approximated (i.e., p′ << p), singular value
decomposition (SVD) [11] or any gradient descent method can
be used to compute A−1∗ .

The rest of the paper is organized as follows: section
II briefly introduces some of the papers found in literature
closely related to this research; section III describes the
method developed for this work, while section IV presents
the experimentation carried out and the results obtained.

II. STATE OF THE ART

The ARIMA models are a result of the work of G.E.
Stall and G.M.Jenkins [1] realized in the decade of the 70,
known as models Box-Jenkins. The initial problem consisted
of determining the evolution of the pollution in the bay of
San Francisco, with the intention of improving it prediction
and control. The procedures used by both researchers had a
wide diffusion and it has spread to different branches of the
science.

However, the main disadvantage of the method is that it
gives simplistic models that only use several previous values
to forecast the future. The method is, therefore, unable to find
subtle patterns in the time series data.

On the other hand, many successful applications suggest that
Artificial Neural Networks (ANNs) can be a promising alter-
native tool for both forecasting researchers and practitioners.
Zhang et al. [20] presented a review of the current status in

applications of neural networks for forecasting. The popularity
of ANNs is derived from the fact that they are generalized
nonlinear forecasting models. Forecasting has been dominated
by linear statistical methods for several decades. Linear models
have many advantages in implementation and interpretation,
although they have serious limitations because they cannot
capture nonlinear associations in the data which are common
in many complex real world problems [7].

Inside the wide range of neural networks existing in the
literature, the Multilayer Perceptron (MLP) and Radial Basis
Function Networks (RBFNs) enhance. The use of Radial Basis
Functions (RBF) as functions of activation for neural networks
and its application to time series forecasting was realized by
the first time by Broomhead and Lowe in 1988 [2]. After
these, new works by Carse and Fogarty [4], and Whitehead
and Choate [17] focused on the prediction of time series. In
all these works, the time series used to evaluate the algorithms
were synthetic problems.

There also exist works in which time series taken from
the real world have been forecasted by means of genetic
algorithms and RBFNs. One of the best examples is Sheta and
De Jong’s work [16], where the data used described the rate of
exchange between British pounds and American dollars during
3 years, from 1980 to 1983. The same time-series would be
used later by Rivas et al. in [13].

Among the most recent papers found in literature, Rivera
et al. [14] achieved to build RBFNs by means of fuzzy-rule
tables. These tables indicate to the algorithm whether new
neurons had to be created or destroyed, and also the direction
to which the centers of the RBF should move.

III. DESCRIPTION OF THE METHOD

This section describes E-tsRBF, a meta-evolutionary algo-
rithm based on EvRBF [13], which is an evolutionary method
developed to automatically design asymmetric Radial Basis
Functions. The main goal of this new method is to forecast
the time series using RBFNs building at the same time the
neural network and the set of past values that must be used to
predict new ones.

Every individual in this evolutionary algorithm represents
a set of lags. Every chromosome is a binary string that
indicates whether the specific lag will be used or not. Thus,
a chromosome as 10010001 means that lags t, t − 3, t − 7
will be used to forecast the value in time t + horizon. By
default, horizon = 1, although this is one of the parameters
fixed by the user when running the algorithm. Both values of
the genes and length of the chromosomes can change along
the execution of the algorithm, using an adaptive probability
for the evolutionary operators it includes. This probability is
bigger at the begining and decreases as the number generations
grows, in order to get a trade-off between exploration (at first
generations) and explotation (at the end of the execution). As
in EvRBF, the maximum length of the individuals of the first
generation is computed as a percentage of the available values
used to train the nets.

The specific characteristics of E-tsRBF are:
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• Individual selection: E-tsRBF implements tournament
selection to choose the individuals which are going to
form the population.

• Evolutionary operators
– Crossover operator: the method uses a multipoint

crossover operator. Couples of points are randomly
generated and the fragment of chromosome between
them is exchanged among the two parents.

– Mutation operator: for every gene of the chromo-
some a random probability is generated, if this value
results lower than the probability of given mutation,
the value of the gene will mutate, in other case it
will remain equal.

– AdderDeleter operator: this operator is used in order
to vary the length of the chromosome through the
execution. An adaptive probability is used in order
to keep a balance between diversity and convergence.
This adaptive probability depends on the generation
number, thus first generations will try to increase
diversity, while the last ones try to converge to the
optimal solution. The probability is calculated using
eq. 5.

p(i, j) = 1− (gen(xi)/gen(xn)) ∗ Lj (5)

where gen(xi) represents the current generation
number, gen(xn) the total number of generation and
Lj the chromosome length of the current individual.
Independently, the length of chromosome has the
same possibility of increasing like of decreasing, for
that a random value is produced and it will decide
that the operator increases or decreases the length.

• Function evaluation: in order to set the fitness of an
individual the chromosome is decoded into the lags
it represents. Then, the set of selected lags are used
build a training file with which to completely run the
EvRBF method. The inverse of the root mean square
error computed by EvRBF will be set as the fitness of
the individual.

IV. EXPERIMENTATION AND RESULTS

Seventeen different data sets1 are used in this work to test
the effectiveness of E-tsRBF. These time series come from
different areas and have different statistical characteristics.
Next, a brief description of every one is given:

• Double map: We consider this time series as a sorted
sequence of the equation represented in eq. 6.

xn+1 = 2xn(modulo1) (6)

The time series is taken from the Lowe y Broomhead’s
work [2]. Data are composed of 500 observations, 250 of
which are used to train and 250 for test.

1Data can be accessed at https://sites.google.com/site/presetemp/datos

• Quadratic map: This time series is considered as a orga-
nized sequence of the equation showed in eq. 7

xn+1 = 4xn(1− xn) (7)

The information is taken from the Lowe y Broomhead’s
work [2]. The time series is composed of 500 observa-
tions, from which 250 were used to train and 250 for
test.

• Exchange: This time-series is composed of real data
representing the exchange rates between British pound
and US dollar during the period going from 31 De-
cember 1979 to 26 December 1983, available from
http://pacific.commerce.ubc.ca/xr/data.html, thanks to the
work done by Prof. Werner Antweiler, from the Univer-
sity of British Columbia, Vancouver, Canada. Data are
composed of 208 observations, 156 for training and 52
for test.

• MackeyGlass: This represents the time series created by
Mackey and Glass. The terms of this problem are descri-
bed in [10] and it has been employed in a lot of works
by Whitehead y Choate [17], Carse y Fogarty [4], and
Gonzalez [6] among others. The graphic representation
of this time series is show in eq. 8.

dx(t)
dt

= −bx(t) + a
x(t− T )

1 + x(t− T )10
(8)

Data are composed of 1170 observations, 585 for training
and 585 for test.

• Accidents: It represents the accident number during a
working day. The observations express the average of
accidents over a month and they cover from January 1979
until December 1998. The data are taken from the statistic
national institute. Data are composed of 240 observations,
180 of which are used to train and 60 for test.

• Airline: It represents the airplane passengers of inter-
national flies. The data are the average of a month
between January 1949 and December 1960. The time
series have been got from Time series analysis forecasting
and control, Box and Jenkins [1]. Data are composed of
144 observations, 108 for training and 32 for test.

• WorldMarket: It represents the month values about seven
different world markets. The observations were extracted
from January 1988 until December 2000. The source of
the information is Eurostat. The seven world markets are
the following:

1) Paris, CAC 40 Index, France
2) Frankfort, DAx-EXtra, Germany
3) Milan, Italian Commercial Banc Index, Italy
4) London, FT-SE 100 Index, United Kingdom
5) New York, Dow Jones, United States of America
6) Tokyo, Nikkei 225 Index, Japan
7) Madrid, General Index, Spain

Every time series are composed of 156 observations, 117
to train and 39 for test.

• CrestColgate: These are four time series of the market
quota of toothpaste Crest and Colgate, and price of both.
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The data are taken weekly among January 1958 and
April 1963. The source is Assessing the impact of market
disturbances using intervention analysis [18]. The four
time series are the following:

1) Colgtems
2) Colgtepr
3) Crestms
4) Crestpr

Every time series are composed of 276 observations, 207
for training and 69 to test.

Both EvRBF and E-tsRBF models have been applied to
these data sets in order to compare. The value to be forecasted
was t+1 in all the examples but MackeyGlass, in which t+85
is used (according to previous works). The lags to be used for
EvRBF were estimated computing the partial autocorrelation
function, while E-tsRBF estimates the lags to be used by itself.

Any of the considered problems have been forecasted 30
times, using the same training and test sets in any execution.
Table I shows the results yielded by both E-tsRBF and EvRBF
methods. In that table, three kinds of results are showed:
the mean squared error (MSE) obtained when forecasting the
test file, the number of nodes composing the best net found
by every method, and the time (in seconds) needed by each
algorithm to get the results. Best results, i.e., lower MSE,
number of nodes and seconds, are in bold.

Table I shows that the results yielded by E-tsRBF are com-
parable (in many cases better) than those obtained by EvRFB
using only the lags provided by the partial autocorrelation
function. In this sense, E-tsRBF makes easier the forecasting
of the time series since no ”a priori” knowledge has to be
extracted from them.

The figure 1 can help to show in which problems every
method outperforms the other. Nevertheless, in order to study
the statistical significance of the results obtained, two kind
of statistical test have been carried out. First one is ANOVA
[15], which has been computed per every problem, showing
that in 6 cases (Accidents, BM-Franforct, BM-Madrid, BM-
Tokio, and CC-Crestpr) E-stRBF improves the results obtained
by EvRBF, in 1 case (CC-Crestms) EvRBF is better than the
new algorithm, and in the others the results are statistically
equivalents.

The Wilcoxon test [19] has also been used in two ways.
Firstly, every problem has been considered independently,
as above. In this case, E-stRBF shows better results than
EvRBF for 9 problems (the same than ANOVA, and also
Exchange, BM-Milan y CC-ColgTems); once more, in CC-
Crestms EvRBF turns to yield better results than E-stRBF, and
there exist no significant differences for the others 7 problems.

Finally, the Wilcoxon test has been used to estimate the
differences between both algorithms computing the mean of
every algorithm on every problem, and then carrying out the
test. In this case, the resulting value shows that currently it
is not possible to state that E-stRBF definitively outperforms
EvRBF

Thus, future work will focus on improving the new algo-
rithm, mainly reducing the number of times the evolutionary

algorithm has to run the underlying EvRBF algorithm to set
the fitness of the individuals. New experiments are also being
designed to study the effect of the horizon of the forecasting.
Currently, the horizon is set to 1 and, in most cases, the partial
autocorrelation function showed that the most important lag to
be used was just t−1. For this reason, we shall study the way
the forecasting degrades as the horizon grows.
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TABLE I
RESULTS OF E-TSRBF AND EVRBF. COLUMNS SHOW THE MSE OVER THE TEST SET, THE NUMBER OF NODES AND TIME TOOK TO YIELD THE RESULTS.

Data set EvRBF E-tsRBF
MSE Nodes Time (secs.) MSE Nodes Time (secs.)

Double map 3.05E-5 ±6.81E-5 25.43±10.17 5.73±0.88 2.53E-6±4.82E-6 20.3±9.24 23.09±13.41

Quadratic map 3.94E-6±2.61-6 19.23±8.12 5.26±0.66 1.58E-4±3.35E-4 20.14±11.59 22.86±0.88

Exchange 3.07E-3±1.80E-3 5.57±3.39 1.34±0.16 6.72E-3±1.20E-2 6.59±3.02 8.85±4.64

MackeyGlass 2.29E-3±6.61E-4 57.6±22.81 24.64±4.53 1.48E-3±1.22E-4 31.8±16.79 215.57±116.71

Accidents 1.36E8±8.87E7 11.87±3.97 2.77±0.24 1.61E8±5.55E7 11.83±3.2 15.76±0.34

Airline 3.52E3±4.61E3 5.03±1.96 1.39±0.08 4.61E3±1.02E3 6.6±2.3 9.89±5.33

Wm-Frankfort 1.94E4±7.58E3 6.27±2.53 1.62±0.10 8.18E2±1.10E3 5.87±3.49 11.34±5.46

Wm-London 1.00E3±8.49E2 5.1±2.98 1.83±0.12 4.64E3±4.21E3 5.23±2.62 11.64±5.97

Wm-Madrid 6.88E3±2.71E3 3.4±1.89 1.59±0.15 3.30E3±3.27E3 4.9±3.01 10.73±5.79

Wm-Milan 7.36E3±4.63E3 4.8±2.47 1.67±0.14 1.14E4±8.25E3 4.47±2.5 11.70±6.22

Wm-NewYork 1.35E2±1.29E2 7.67±3.33 1.87±0.18 7.62E1±6.61E1 7.0±4.88 10.76±5.99

Wm-Paris 2.17E3±2.04E3 4.13±1.76 1.53±0.12 4.91E3±5.26E3 6.1±3.44 10.87±5.38

Wm-Tokyo 3.97E1±7.55E0 6.73±2.24 1.80±0.09 2.63E1±6.36E1 8.0±3.14 11.31±4.97

Cc-colgtems 1.49E-3±7.16E-5 3.67±2.17 2.75±0.10 1.44E-3±7.94E-5 11.1±6.19 20.93±0.50

Cc-colgtepr 3.88E-3±2.50E-3 5.23±3.45 2.70±0.18 1.87E-3±1.50E-3 7.17±6.42 20.65±0.55

Cc-crestms 1.59E-3±1.38E-4 7.6±6.2 2.66±0.38 2.66E-3±7.03E-4 10.87±3.85 20.08±0.31

Cc-crestpr 5.12E-3±1.98E-3 5.67±2.47 2.69±0.19 4.24E-3±1.15E-3 10.27±5.64 20.82±0.47

Fig. 1. Simulation Results
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