2009 Ninth International Conference on Intelligent Systems Design and Applications

Binary Representation in Gene Expression Programming

Towards a Better Scalability

Jose G. Moreno-Torres*, Xavier Lloral and David E. Goldberg*

*Illinois Genetic Algorithms Lab (IlIliGAL)
University of Illinois at Urbana-Champaign

104 S. Mathews Ave, Urbana, IL 61801, USA

(josegmt, deg)@illinois.edu
tNational Center of Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign

1205 W. Clark Street, Urbana, IL 61801, USA

xllora@illinois.edu

Abstract—One of the main problems that arises when using
gene expression programming (GEP) conditions in learning
classifier systems is the increasing number of symbols present
as the problem size grows. When doing model-building LCS,
this issue limits the scalability of such a technique, due to the
cost required. This paper proposes a binary representation of
GEP chromosomes to palliate the computation requirements
needed. A theoretical reasoning behind the proposed represen-
tation is provided, along with empirical validation.

I. INTRODUCTION

There have been interesting results when attempting to use
GEP-based[1] conditions in learning classifier systems [2].
Despite its flexibility, when used in model-building LCS,
there is a scalability limitation [3]. This limitation comes
from the arity of the individuals growing linearly with the
problem size. Such a growth usually leads to the population
sizes requiring an exponential growth. This paper presents
a possible solution to this problem by using a different
representation of the GEP chromosome.

We begin presenting an alternative representation, fol-
lowed by a theoretical analysis of the advantages. Then,
we construct a set of experiments to test the proposed
representation and to confirm its merits. Finally, we analyze
the results from our experiments, and discuss their meaning
and relevance.

II. BACKGROUND

In 1998, Ryan et al. published the seminal paper on
Grammatical Evolution [4]. It introduced the idea of a sepa-
ration between genome and phenotype, where the phenotype
results from the translation of an underlying genome, a linear
chromosome, which is the object of selection and genetic
operators. It works with a user-defined BNF grammar where
the genome encodes the choices between the different pro-
duction rules in the grammar. Ferreira’s Gene Expression
Programming[5] extends this idea. In GEP, the information

978-0-7695-3872-3/09 $26.00 © 2009 IEEE
DOI 10.1109/ISDA.2009.33

1441

encoded in the genome is an expression tree similar to the
ones used in Genetic Programming [6].

In 2007, Wilson [2] suggested using GEP conditions in
Michigan LCSs (specifically, XCSF), successfully learning
regularities in small problems. He later presented some
extended results, where he included the use of constants.
It is remarkable that he used Ephemeral Random Constants
[6] instead of the method proposed by Ferreira. This paper
follows the same approach, treating variables and constants
the same way and distinguishing them from functions.

In the same year, Llora et al [3] showed a scalability prob-
lem when attempting to perform model-building in LCSs
using GEP conditions. In this work, a Pittsburgh learner
was presented; but the same issue appears in Michigan-
style models. The limitation showed is due to the population
size needed to perform model-building growing very quickly
as a function of the problem size. This issue is one of
the big obstacles for the use of GEP conditions in model-
building LCSs, and is tackled here. This paper proposes a
representation of the GEP chromosome as a binary string,
consequently fixing the arity of the representation.

III. DESIGN OF THE BINARY REPRESENTATION

The proposed representation provides:

1) A fixed arity x = 2.

2) A logarithmic increase of the population size encoding
requirements respect the number of symbols.

3) A Hamming distance bound between any
two functions’ representation: d(fi, f2) <=
loga(nFunctions)

This representation uses its first bit to distinguish between
functions and variables/constants. If the bit string starts with
a ’1’, this indicates a variable/constant, and the following
bits encode what variable or constant it is (constants follow
immediately after the last variable in the problem, as is
shown in the example). Otherwise, it is a function, and again
the following bits determine which one it is. It should be

IEEE
computer
® psouety

noted that a mechanism to deal with strings that do not
represent a valid function or terminal is necessary, for the
cases where their numbers are not exact powers of 2. In this
paper, no-ops were used for those cases. Non-coding bits
are ignored.

For the proposed representation, the number of bits
needed to encode a symbol can be calculated as

bPS = 1+ max([log,(nFunctions)],

[log,(nConstants + nVariables)]).
ey

For instance, let us assume a problem with nV ariables =
30 variables, and let the maximum number of constants
nConstants = 10, and to have nFunctions = 6 different
possible functions. Substituting in Equation 1,

bPS =1+ max([log,(7)], [log,(30 + 10)])

=14 max(3,6) =146="7.)

The representations of some different possible symbols in
this example are:

e 3rd function = 0010XXX (X represents a non-coding
bit).

¢ 23rd variable = 1010110.

e 4th constant = 1100001. (The 4th constant is the
equivalent to the nVariables + 4 variable, so it is the
34th variable).

Here is an example of a full tree’s representation, assum-
ing the same setup presented above, and assuming the order
of the functions is (+, —, *, /, sin, cos). The tree to encode
is the following:

+

/\

SN

VO V6 (C2 *
N

Cl V16

Where V; corresponds to the ith variable, and C; corre-
sponds to the ith constant. The encoding for this tree, in
depth-first order, is:

0000XXX 0010XXX 1000000 1000110 0001XXX
1011111 0010XXX 1011110 1001111.

IV. THEORETICAL ANALYSIS

This section analyzes the expected performance of the
proposed representation as opposed to the commonly used
x-ary one, focusing on the population size needed to perform
Building Block (BB) signaling through model-building. It
starts with a narrow example where the effectiveness of the
new representation is high, and then presents a more general
analysis.

1442

Goldberg [7] gives a theoretical bound for the population
size needed for BB signal:

s = O(mlog(m) - x¥), 3)

where s is the population size, m is the number of building
blocks, x is the arity of the alphabet in our representation
and k is the size of the building block.

It is easy to see that, for the x-ary representation scheme,
when working with the chromosome x; and x; (where
x; could be any variable), we have m = 2, y = N (where
N = dimensionality of the problem, in the worst case
nVariables + nConstants + nFunctions), k = 2 (and
and x;x; are the building blocks). Substituting these values
in Equation 3, we obtain obtain

s =O(N?), 4)

so the population size grows quadratically with the problem
size.

For the proposed binary representation, however, the pop-
ulation size grows much more slowly. The reason for this is
that the arity is fixed (xy = 2); as is the maximum size of
a building block (k = 2), due to each of the first variable
bits’ value depending only on the corresponding bit of the
second variable; leaving only the number of building blocks
to grow. Since this growth is logarithmic (m = logy(N)),
the population size follows

s = O(log(N) log(log(N))). (5)

In a more general case, a building block of size two means
a population size of s = O(N?) for the x-ary representation
(this is Equation 4 again, since the analysis presented earlier
holds for the general case). With a binary representation,
the building block size depends on the Hamming distance
between the symbols present in the example: k£ = 2(d +
1), where d is the Hamming distance. Substituting in the
population size formula presented above (Equation 3), we
get

s = O(log(N) log(log(N)) % 22(4+1)), (6)

Since there is an upper bound for the Hamming distance
(d = log,(N)), we can solve Equation 6 to get

s = O(log() log(log(N)) 224()

= O(log(N)log(log(N)) * N?). @)

Since we chose to separate functions and terminals, we
can bound the maximum Hamming distance when working
with functions to d <= logy(nFunctions); and since
nFunctions is constant, we can solve (6) to get a new
theoretical prediction for the binary representation:

s = O(log(N) log(log(N)))- (®)

We have been able to replicate Equation 5 when working
with functions in general. Since functions usually make up

the most interesting building blocks, this is an improvement
compared to y-ary representations, even if we do not im-
prove the cases where we use variables.

V. EXPERIMENT DESIGN

The aim of the paper was to study how the population
size required for model building grows as a function of
the problem size. The tests were run using ECGA’s model-
building algorithm [8], probing the population size needed
to extract the correct building blocks as the problem size
increases. In order to consider a population size to be
successful, it has to extract either all the correct building
blocks or all of them but one in 19 out of 20 runs. To
perform the testing, an artificial population of the desired
size was built to apply the model building to.

We performed three independent experiments. The first
one tests the same narrow case the theoretical analysis
started on, working with the specific case (x; and z;),
for a given i. The second experiment seeks confirmation
for the hypothesis stating that the Hamming distance is the
real measure of difficulty when trying to model a building
block composed by two symbols, doing it with variables:
(x; and w;), with ¢ # j. For this experiment, in the
binary case, we did a worst-case study, by fixing x; and
x; to be as far away from each other as possible, in terms
of Hamming distance (for example, a population size of 128
actually means hDistance = log,(128) = 7).

The last experiment was designed to probe the effec-
tiveness of the designed representation when dealing with
functions only. In this experiment, we ignored the ter-
minals that would need to be present in order to have
a legal expression, and focused only on the BB formed
by the functions. What this means is that, for an expres-
sion like ((z; or ;) and mnot), this experiment
would only focus on the functions (or)and(not), ignoring
the variables.

and and and
xI; €T; XT; X or not
€T, Xj T
Experiment 1 Experiment 2 Experiment 3

Figure 1. Tree representation of the expressions learned on each of the
three experiments. For experiment 3, the whole tree is represented even
though the terminals are ignored in the experiment.

According to the theoretical analysis presented previously,
equivalent results for all three tests are to be expected
when using a y-ary representation, following Equation 4;

1443

while using the binary one should provide results following
Equation 7 for the second experiment; and Equation 5 for
the first and third ones, showing a significant improvement
over the x-ary representation in these two.

VI. RESULTS

This section presents the results obtained by performing
the experiments detailed above. Figure 2 presents the results
from the first experiment, where the binary representation
clearly outclasses the y-ary one. This result supports the
theoretical analysis presented, since the experimental values
obtained follow very closely those predicted by Equations
4 and 5. As it was to be expected, the population size
grows quadratically in the x-ary representation. For the
binary one, the theory says it should grow according to
s = O(log(N)loglog(N)); but the empirical results show
a constant value. This is probably just due to the problem
being too easy. However, it is remarkable that the proposed
representation is much better equipped to take advantage of
the problem’s simplicity than the x-ary one.

- | @X-ary - Theory
@ X-ary - Empirical
#Binary - Theory

#Binary - Empirical

—_
(=)

Population size

@«

PPN

s

v _‘ '
10 Problem size

10

2 3

10

Figure 2. Population size as a function of problem size for binary vs
X-ary representations when learning (z; and x;)

In Figure 3, we present the data from a more general case,
working with two arbitrary variables. In the binary case, the
population size represents 2¢, where d is the Hamming dis-
tance (for example, a population size of 128 actually means
hDistance = log,(128) = 7). For this experiment, the x-
ary and binary representation result in similar performances.
Again, they support the theory presented in Equations 4 and
7, so there is a slight advantage for the y-ary representation.

Figure 4 corresponds to the third experiment, where we
do model-building on building blocks composed exclusively
of functions. Results, once again, accurately match the
theoretical model proposed. This a key result of this study,
since it shows a real improvement in the population size
needed for model building when dealing with relationships
between functions. As can be seen in the figure, the quadratic

10+ o
#X-ary - Empirical
#Binary - Empirical
0
XN
(7
[
010 - ,
-
3
)
Q
0
o
107 1
L L L L L \2
i :
10 Problem size 10
Figure 3. Population size as a function of problem size for binary vs

X-ary representations when learning (z and y). Empirical results only.

10
OX_ary - Theory
[#X-ary - Empirical
.! .'Binary_Theory
m i e e
e10'l #Binary - Empirical
2
& = g
3 P
2 T
Q
&
F |IIIIIIIIW
.'nululan-un-m
10 " | ‘. o
10 Problem size ”
Figure 4. Population size as a function of problem size for binary vs

x-ary representations when learning (or)and(not)

growth present when using a y-ary representation is reduced
to a logarithmic growth for the binary representation.

VII. DISCUSSION AND CONCLUSIONS

This paper proposes a binary representation to improve
the scalability of GEP conditions in model-building LCSs
in terms of the number of variables in a problem. This is a
new idea, and the presented results are encouraging enough
to warrant further study.

We have designed a new representation for LCS using
GEP that, in theory, can outperform the commonly used x-
ary representation when working with functions. However,
the binary representation has a slightly worse performance
than the x-ary one when dealing with relationships between
variables/constants.

The performance improvement is the first step towards
solving the scalability limitations to effectively using GEP
conditions model-building LCS. The empirical data matches
remarkably closely the one predicted by the equations de-

rived from theory, which gives us confidence that we can
develop solutions based on this theory.

Also, it is important to mention that size is only part of the
difficulty of the problem. The complexity of the conditions
necessary to accurately represent problem regularities gets
reflected in the building block size, which by Equation 3
induces exponential growth in the population size. This issue
will be addressed in future research.

Acknowledgments

The authors would like to acknowledge the technical
support provided by Thyago Duque. They would also like to
thank Obra Social “la Caixa” for its financial support. They
are also grateful for NCSA’s support for this research.

REFERENCES

[1] C. Ferreira, Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence. Germany: Springer-
Verlag, 2006.

[2] S. W. Wilson, “Classifier conditions using gene expression
programming,” in IWLCS, 2007, pp. 206-217.

[3] X. Llora, K. Sastry, C. E Lima, F. G. Lobo, and D. E.
Goldberg, “Linkage learning, rule representation, and the x-
ary extended compact classifier system,” in IWLCS, 2007, pp.
189-205.

[4] C.Ryan, J. Collins, and M. O. Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,” in Lecture
Notes in Computer Science 1391, Proceedings of the First

European Workshop on Genetic Programming. Springer-
Verlag, 1998, pp. 83-95.
[5] C. Ferreira, “Gene expression programming: a new

adaptive algorithm for solving problems,” Complex Systems,
vol. 13, no. 2, pp. 87-129, 2001. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0102027

[6] J. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press, 1992.

[7]1 D. E. Goldberg, The Design of Innovation: Lessons from and
for competent genetic algorithms. Boston, MA: Kluwer
Academic publishers, 2002.

[8] G. R. Harik, F. G. Lobo, and K. Sastry, “Linkage learning
via probabilistic modeling in the extended compact genetic
algorithm (ecga),” Scalable Optimization via Probabilistic
Modeling, pp. 39-61, 2006.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[10] K. Sastry and D. E. Goldberg, “Probabilistic model building
and competent genetic programming,” in Genetic Program-
ming Theory and Practise, chapter 13. Kluwer Academic
Publishers, 2003, pp. 205-220.

1444

