
Structural Learning of Bayesian Networks by using Variable Neighbourhood
Search based on the Space of Orderings

Juan I. Alonso-Barba, Luis delaOssa and Jose M. Puerta
Laboratory of Intelligent Systems and Data Mining

Albacete Research Institute of Informatics
Computing Systems Department

University of Castilla-La Mancha, 02071 Albacete, Spain
{jialonso,ldelaossa,jpuerta}@dsi.uclm.es

Abstract

Structural Learning of Bayesian networks (BNs) is an
NP-hard problem generally addressed by means of heuristic
search algorithms. Although these techniques do not guar-
antee an optimal result, they allow obtaining good solutions
with a relatively low computational effort.

Many proposals are based on searching the space of Di-
rected Acyclic Graphs. However, there are alternatives con-
sisting of exploring the space of equivalence classes of BNs,
which yields more complex and difficult to implement algo-
rithms, or the space of the orderings among variables. In
practice, ordering-based methods allow reaching good re-
sults, but, they are costly in terms of computation.

In this paper, we prove the correctness of the method
used to evaluate each permutation when exploring the space
of orderings, and we propose two simple and efficient learn-
ing algorithms based on this approach. The first one is a
Hill climbing method which uses an improved neighbour-
hood definition, whereas the second algorithm is its nat-
ural extension based on the well-known Variable Neigh-
bourhood Search metaheuristic. The algorithms have been
tested over a set of different domains in order to study their
behaviour in practice.

1. Introduction

Learning Bayesian networks from data is a complex task
which receives a lot of attention from researchers in the
area. This problem has been stated as an NP-hard one [6],
therefore, it becomes necessary using heuristic and meta-
heuristic techniques to find quality solutions.

In most related works, the search of the network struc-
ture is carried out in the space of Directed Acyclic Graphs
(DAGs). In this sense, there are several proposals based

on greedy [3], local search [11], or population based algo-
rithms [13, 2]. A different approach, which generally im-
proves the aforementioned methods, consists of searching
the space of equivalence classes. One of the algorithms
based on that idea, the Greedy Equivalence Search (GES)
[4], is nowadays the reference in Bayesian Network learn-
ing. This method is asymptotically correct because, under
certain conditions, the final solution is guaranteed to be a
perfect-map of the target distribution. However its use is
limited due to the fact that it is hard to implement and un-
derstand.

There is an alternative to both approaches. Given a topo-
logical order among variables, it is possible to obtain a min-
imal I-map compatible with it [3, 8]. Based on that, some
methods assign to each order the score of the best Bayesian
network consistent with it, and then use search algorithms
which traverse the permutation space. Searching the space
of orderings presents two main advantages: (1) the dimen-
sion of the search space is reduced; (2) the need to perform
acyclicity checks on candidate successors is avoided. More-
over, each step in the search makes a more global modi-
fication of the current state, thereby better avoiding local
maxima. In practice, ordering-based methods reach good
results, but are very costly in terms of computation.

With this work, we propose an efficient method to eval-
uate each permutation and we prove its correctness. More-
over, we propose an efficient method which explores the
space of orderings by means of a Variable Neighbourhood
Search (VNS) [14] algorithm. This method is based on the
use of a particular neighbourhood operator which allows
reducing the calculations significantly. Experiments show
that the results obtained with this technique do not present
statistical difference with those obtained with GES, and im-
prove the Hill Climbing in the space of DAGs.

This paper is structured into four sections besides this in-
troduction. Section 2 introduces some aspects of Bayesian

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.157

1435

network learning through search in the space of orderings.
Then, in section 3 both the proposed algorithm and the
improvements used to increase its efficiency are explained
with detail, and an experimental evaluation is carried out in
section 4. Finally, conclusions and future works are briefly
described in section 5.

2. Learning Bayesian Networks: Space of Or-
derings

Bayesian Networks are graphical models that can ef-
ficiently represent n-dimensional probability distributions
[15]. This representation has two components that respec-
tively codify qualitative and quantitative knowledge:

• A graphical structure, or more precisely, a directed
acyclic graph (DAG), G = (V ,E), where the nodes in
V = {X1, X2, . . . , Xn} represent the random variables1

from the problem being modeling, and the topology of
the graph (the arcs in E ⊆ V × V) encodes condi-
tional (in)dependence relationships among the variables (by
means of the presence or absence of direct connections be-
tween pairs of variables).

• A set of numerical parameters (Θ), usually conditional
probability distributions drawn from the graph structure:
For each variable Xi ∈ V we have a conditional probabil-
ity distribution P (Xi|paG(Xi)), where paG(Xi) represents
any combination of the values of the variables in PaG(Xi),
and PaG(Xi) is the parent set of Xi in G. From these con-
ditional distributions we can recover the joint probability
distribution over V thanks to the Markov Condition [12]:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|PaG(Xi))

We denote that variables in X are conditionally inde-
pendent (through d-separation) of variables in Y given the
set Z, in a DAG G by 〈X,Y|Z〉G . The same sentence but
in a probability distribution p is denoted by Ip(X,Y|Z).
A DAG G is an I-map of a probability distribution p if
〈X,Y|Z〉G ⇒ Ip(X,Y|Z), and it is minimal if no arc can
be removed.

Furthermore, a distribution p is faithful if there exists
a graph, G, to which it is faithful. In a faithful BN
〈X,Y|Z〉G ⇔ Ip(X,Y|Z). It is always possible to build
a minimal I-map of any given probability distribution p,
but some distributions do not admit an isomorphic (faith-
ful) model [15].

The problem of learning the structure of a Bayesian net-
work can be stated as follows: Given a training dataset

1We use standard notation, that is, bold font to denote sets and
n-dimensional configurations, calligraphic font to denote mathematical
structures, upper case for variables or sets of random variables, and lower
case to denote states of variables or configurations of states (vectors).

D = {v1, . . . ,vm} of instances (configurations of values)
of V , find a DAG G∗ such that

G∗ = arg max
G∈Gn

f(G : D) (1)

where f(G : D) is a scoring metric which evaluates the
merit of any candidate DAG G with respect to the dataset
D, and Gn is the set containing all the DAGs with n nodes.

Efficient evaluation of neighbors DAGs in Local Search
algorithms, such as Hill-Climbing, is based on an important
property of scoring metrics: decomposability in the pres-
ence of full data. In the case of BNs, decomposable metrics
evaluate a given DAG as the sum of its node family score,
i.e., the subgraphs formed by a node and its parents in G.

2.1. Search Space of Orderings

Early algorithms for BN structure learning assumed that
a given order was known and then they searched for a net-
work consistent with such order. In this sense, the K2 [7]
algorithm is the most usual choice.

Given an ordering ≺, we can define the possible parent
sets for any given variable Xi: Ui,≺ = {U : U ≺ Xi},
where U ≺ Xi is defined to hold when all nodes in U
precede Xi in ≺. The optimal parent set for each node Xi

is simply:

Pa∗
G(Xi) = arg max

U∈Ui,≺
f(Xi|U : D) (2)

As the decisions for different nodes do not constrain each
other, this set of selected families provides the optimal net-
work G∗

≺ consistent with ≺. Without any restriction in the
number of parents for the variables, we note that any acyclic
(directed) graph is consistent with some ordering. Hence,
the optimal network is simply the network G∗

≺ given by:

≺∗= arg max≺ f(G∗
≺ : D) (3)

We can therefore find the optimal network by finding the
optimal ordering, where the score of an ordering is the score
of the best network consistent with it. However, we still
have the problem of finding the best parent set for the node
Xi. This problem is, in general, exponential. In this pa-
per we propose to carry out this search with the algorithm
K2 equipped with a delete operation apart from the usual
adding operation. At each step, the modified algorithm K2,
which we are going to name K2M , analyzes all the pos-
sible addition or deletion operations, and it can choose in-
dependently for each variable Xi, the one with the highest
positive difference with respect to f . This last algorithm has
been already used in other papers [2, 8], the first one with an
Estimation of Distribution Algorithm (EDA) and the second
with a local search algorithm. However, K2M has not been

1436

proven yet to be able to find the optimal subset of parents
for each variable. Next, the definition and results necessary
to do that are described [4].

A probability distribution p is contained in a DAG G
if there exists a set of parameter values Θ such that the
Bayesian network defined by (G,Θ) represents p exactly.
Of course, if two graphs are correct, then the sparser one
should receive more merit. It is the basis to define a cri-
terion score to be consistent. Locally Consistent scoring
criterion is defined as: let G be any DAG, and G′ the DAG
obtained by adding edge Xi → Xj to G. A scoring metric
is locally consistent if in the limit as data grows large the
following two conditions hold:

1. If ¬Ip(Xi, Xj |PaG(Xj)), then f(G : D) < f(G′ : D)

2. If Ip(Xi, Xj |PaG(Xj)), then f(G : D) > f(G′ : D)

Chickering [4] also proves that the BDe, BIC, MDL scor-
ing criteria are score equivalent, consistent and locally con-
sistent when we suppose that D constitutes a sample which
is isomorphic to a graph. The following proposition gives us
the way to evaluate correctly (asymptotically) a given order
by using the K2M algorithm:

Proposition 1 Let D be a dataset containing m iid sam-
ples from some distribution p. Let Ĝ be the DAG ob-
tained by running the K2M algorithm for each variable
Xi, Ĝ = K2M(≺, D). If the metric f used to evaluate
DAGs is consistent and locally consistent, then Ĝ is a min-
imal I-map of p in the limit as m grows large.

Proof. First we prove that Ĝ is an I-map of p. Let us
suppose the contrary, i.e., Ĝ is not an I-map of p. Then
there is at least one pair of variables Xi and Xj such that〈
Xi, Xj |PaĜ(Xi)

〉
Ĝ and ¬Ip(Xi, Xj |PaĜ(Xi)). Thus, Ĝ

cannot be a local optimum of f because the addition of arc
Xj → Xi has a positive difference.
Now we prove the minimal condition. Again let us suppose
the contrary, that is, there exists Xj ∈ PaĜ(Xi) such that

Ip(Xi, Xj |PaĜ(Xi) \ {Xj}). If so, Ĝ cannot be a local
optimum because there is (at least) one deletion operation
with a positive difference.

This is an important result since, given the correct order
among the variables it guarantees, under faithful conditions
as GES algorithm does, that K2M would obtain the correct
Bayesian network.

3. Local algorithms. HCbO and VNSbO

In this paper we are going to focus on two local methods
which use the K2M algorithm to transform an ordering into
a Bayesian Network. As mentioned, due to proposition 1,
they obtain a minimal I-map.

In order to define a local method, a neighbourhood
operation to transform one solution to another has to be
addressed. In this case, we have selected the insertion.
Insert(≺, i, j) is defined as follows: for different indexes
i and j, the insert operator modifies the ordering ≺ generat-
ing a new ordering ≺′ by moving the variable in position i
to the position j in the new ordering. If j > i the variables
in positions (i, j] are moved one position backward in the
ordering, else if j < i the variables in positions [j, i) are
moved one position fordward in the ordering.

Once a local operator, as the previous one, is de-
fined, a greedy Hill-Climbing algorithm based on Order-
ings (HCbO) can easily be implemented. On each iteration,
the algorithm moves from the ordering ≺k to the ordering
≺k+1 applying the neighbourhood operation with the high-
est positive difference with respect to ≺k. The algorithm
stops when there is not a neighbour ordering better than the
current one.

The evaluation of all the possible insert operations in an
iteration of the HCbO algorithm can be very expensive in
terms of computation. We propose three improvements that
speed up these operations significantly.

The first improvement, used in previous works, allow
the reduction of the number of computations of parent sets
in any insert operation, ≺′= Insert(≺, i, j), from n to
|i − j| + 1. Simply, the computation of the parent sets for
those variables that are not located between variables at po-
sitions i and j can be omitted, as the set of variables preced-
ing them is the same in ≺ and ≺′.

The second improvement speed up the computation of
some insert operations, Insert(≺, i, j), if it has already been
evaluated the insertion of the variable in position i at an-
other position. Figure 1 shows the insertion of a variable at
different positions. Let suppose that ≺′=Insert(≺k−1, 2, 6)
has already calculated and let us focus in the operation
≺′′=Insert(≺k−1, 2, 7). Taking into account the previous
improvement, it is only needed to recompute the parent set
of the variables between C and B. But, as we can see in
the figure, the ordering of the variables between A and F in
≺′ and ≺′′ is the same. So, it only needs to recompute two
different parent sets in this operation (G and B).

These two last improvements allow an efficient im-
plementation of the insert operation. It is possible to
compute only two parent sets in each insert operation
if they are computed in a correct order. That is, com-
puting Insert(≺, i, j − 1) before Insert(≺, i, j) if j > i + 1
and Insert(≺, i, j + 1) before Insert(≺, i, j) if j < i − 1.

The third improvement uses the computations done in
an iteration of the algorithm to skip some computations in
the next iteration. In order to clarify the explanation, we
explain this improvement individually, without considering
the previous improvements. Figure 1 shows an example of
the insert operation in two consecutive iterations. The al-

1437

gorithm has moved from ≺k−1 to ≺k using the operation
Insert(≺k−1, 3, 5). In iteration k, for instance, the algorithm
needs to compute the operator Insert(≺k, 2, 7) and note that
Insert(≺k−1, 2, 7) was already computed. If we observe the
figure, we note that variable A and the subset of variables
between F and H are the same in the operations in ≺k−1

and ≺. So, it only needs to compute the new parent set for
variables C, D and E, that is, the variables modified by
the current insertion but also by the previous accepted in-
sertion. As a direct consequence of this improvement, if the
intersection between the previous accepted insertion and the
current insertion is null the computation of the parent sets
for all the variables can be omitted.

≺k−1 = A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

Insert(≺k−1, 2, 7)
A

1

C

2

D

3

E

4

F

5

G

6

B

7

H

8

Insert(≺k−1, 2, 6)
A

1

C

2

D

3

E

4

F

5

B

6

G

7

H

8

Insert(≺, 3, 5)

≺k = A

1

B

2

D

3

E

4

C

5

F

6

G

7

H

8 Insert(≺k, 2, 7)
A

1

D

2

E

3

C

4

F

5

G

6

B

7

H

8

Figure 1. Example of the insert operation

Even considering the improvements presented, the com-
putation of the insertions could be very expensive. For
this reason, the algorithm uses a parameter (named maxi-
mum radius) that limits the possible operations. If a max-
imum radius rm is set, for each variable X in position i,
it only considers the insertion of this variable at positions
j ∈ [i − rm, i + rm]. This approach limits the neighbour-
hood of an ordering, but it is still possible to reach a larger
movement with two or more intermediate steps.

Given an ordering, the number of neighbour orderings is
directly proportional to the maximum radius. So, for big
values of the maximum radius, the number of neighbours
that the HCbO needs to evaluate in each iteration can still be
high. Therefore, it seems worth starting with a small value
for the maximum radius and increase it during the execution
of the algorithm.

The Variable Neighbour Search [14] algorithm works
with different neighbourhood definitions. In our case, called
VNSbO, each neighbourhood definition is determined by
the value of the maximum radius. At each iteration of the
algorithm, if none of the neighbours of the current ordering
improves it, the maximum radius r is increased in one unit.
Otherwise, the algorithm moves from the current ordering
to the best neighbour ordering and set r to 1. The algorithm
stops when r is bigger than the maximum radius previously
established. If we set rm equal to n − 1 (number of vari-
ables minus one) we say that we have a VNSbO without
radius restriction.

4. Experimental evaluation

4.1. Experimental Setup

In this section, the described algorithms are compared
with the standard Hill-Climbing in the space of DAGs (HC),
and the Greedy Equivalence Search Algorithm (GES) [4].

The actual implementation of all the algorithms was
coded in Java and interacts with the WEKA library [16] for
dataset management. Our algorithms are implemented in-
cluding all the improvements presented previously. The
implementation of HC is done including the common op-
timizations suggested in the literature. The implementation
of GES is based on the one included in Tetrad 4.3.9 2.
We added the optimizations suggested in [4] and modified
the scoring function to be exactly the same that we use in
the rest of the algorithms.

The score metric used in the algorithms is the Bayesian
Dirichlet equivalent in their uniform prior version BDeu
[11]. The equivalent sample size (N ′) used in the experi-
ments is 10 and the network priors are calculated as in [5]
where k = 1/(N ′ + 1). For HCbO and VNSbO we report
the execution of 30 independent runs of the algorithm with
30 random initial orderings respectively. For HC and GES
the initial DAG is the empty one as usual.

We have selected 8 networks to test the algorithms
with different sizes and characteristics and from dif-
ferent sources: 1. ALARM, 2. BARLEY, 3. CHILD,
4. HAILFINDER, 5. INSURANCE, 6. MILDEW,
7. MUNIN version1 and 8. PIGS, all of them com-
monly used in the literature. In these cases, we have easy
domains with few variables like ALARM and CHILD
and we have complex domains with hundred variables
like BARLEY, MUNIN or PIGS. For each one of these
networks we obtained a dataset by sampling the network
with 5000 instances.

4.2. Empirical results

In order to compare the algorithms described in the pre-
vious section, we considered two kinds of factors as perfor-
mance indicators: the quality of the network obtained by the
algorithm, given by the value of the score metric (BDeu) for
the resulting model; and the complexity of each algorithm,
given by the number of computations of the score metric.

Table 1 shows the results of the algorithms HC, GES and
the unconstrained versions (no radius restriction) of HCbO
and VNSbO.

For a more rigorous analysis of the BDeu results in Table
1, we performed a Friedman rank test [10] as suggested by

2http://www.phil.cmu.edu/projects/tetrad/

1438

BDeu Score computations
HC GES HCbO VNSbO HC GES HCbO VNSbO

1. -49313 -49163 -48706 -48696 3201 4888 14759 11155
2. -290677 -286309 -287209 -287696 4744 8067 11117 9883
3. -61896 -61761 -61775 -61823 901 1829 2361 1901
4. -253169 -253010 -253137 -253127 6541 14011 18728 15582
5. -68542 -68216 -68136 -68148 1894 3063 6541 5191
6. -259433 -259262 -259418 -259438 2305 3310 4211 3793
7. -236081 -231365 -223367 -223019 75766 127236 322563 235634
8. -1684333 -1681903 -1682400 -1682441 527089 552732 2459935 1832388

Table 1. BDeu score and computations of the metric

500000 1000000 1500000 2000000 2500000−
18

00
00

0
−

17
40

00
0

−
16

80
00

0 Pigs

Evaluations

S
co

re

1
2

3

4

5
6

7

8 1. HCbO
2. HCbO rm = n/2
3. HCbO rm = n/3
4. HCbO rm = n/5
5. VNSbO
6. VNSbO rm = n/2
7. VNSbO rm = n/3
8. VNSbO rm = n/5

Figure 2. BDeu score versus score computations

Demšar [9] to compare the relative performances of multi-
ple algorithms across multiple data sets. With a 95% confi-
dence level, we can reject the hypothesis that all algorithms
are equivalent for all eight scenarios. We also performed a
post-hoc analysis using the Bergmann-Hommels procedure
[1], and we can conclude that there are only statistical dif-
ferences between HC and all other algorithms.

With respect to the number of computations of the met-
ric, HC is the one that performs less computations followed
by GES, then VNSbO and the one that performs more com-
putations is HCbO.

We also performed an analysis of how the maximum ra-
dius affect both accuracy and speed of the algorithms. The
maximum radius is set proportionally to the number of vari-
ables in the dataset using factors 1/5, 1/3 and 1/2. The re-
sults are shown in Figure 2 where we plot the BDeu score
versus the total number of score computations at each it-
eration of the HCbO and VNSbO algorithm for the PIGS
dataset. We show the graph for the PIGS dataset as exam-
ple, but it is important pointing out that, for all the datasets,
the graph shows the same behaviour. From these experi-
ments, we can reach the following conclusions:

• As expected, the final score increases as the maximum
radius increases and the number of computations de-

creases as the maximum radius decreases.

• HCbO performs a large number of computations in the
first iteration. Smaller values of the radius ease this sit-
uation. By contrast VNSbO does not have this problem
because of the use of small radius in the initial steps.

• Constraining the radius in VNSbO determines when
the algorithm finishes. However, the unconstrained
version of VNSbO outperforms the constrained ver-
sions for any given number of score computations.

• Comparing any version of HCbO with the uncon-
strained version of VNSbO, we see that HCbO only
reach the accuracy of VNSbO at the end of its execu-
tion, so if we want to use a good any-time algorithm
the recommendation is clearly VNSbO algorithm. In
fact, if we set a limited number of statistical computa-
tion we can observe in figure 2 that there is always a
version of VNSbO algorithm that outperforms the best
HCbO algorithm at this point.

5. Conclusions and future work

In this paper we have presented a correct way to eval-
uate a given ordering when using the space of orderings

1439

for structural learning of Bayesian Networks, which con-
sists of a modified version of the well-known K2 algorithm
equipped with a deletion operation. Moreover, we have
introduced a new neighbourhood operator based of inser-
tion as an alternative of the classical swapping operation.
This last choice allows improvements in the neighbourhood
computation presented also in this paper, saving a lot of par-
ent set computations. Finally we have presented two local
methods based on the previous operator, one is the classi-
cal Hill-Climbing search and the second is a VNS method.
This last method can be viewed as a natural extension of the
use of the parameter radius in the search that automatically
is able to adapt this parameter during the search.

From the experiments, we can conclude that HCbO and
VNSbO improve the classical HC based on search the
DAGs space in terms of accuracy, but HC is, in general,
faster. Constraining the radius can be a good choice to speed
up the algorithms in exchange of getting a little worse re-
sults. However, using VNSbO that automatically tunes the
radius appears to be better option than using HCbO.

In relation with GES algorithm, considered the reference
algorithm for BN learning, results obtained with the pro-
posed algorithms do not present significant difference with
those obtained with this algorithm. However, if comparing
from a practitional point of view, they are significantly eas-
ier to implement.

In a future we plan to study how to save more computa-
tions in order to speed up the algorithms, this objective can
be done by searching more restricted neighbourhoods, but
assuring that the behaviour of the algorithms is the same.
Also we can use the structure of the BN for a given order-
ing to characterize the minimal number of operations to be
evaluated in the next step of the local algorithm.

References

[1] G. Bergmann and G. Hommel. Improvements of gen-
eral multiple test procedures for redundant systems of
hypotheses. In P. Bauer, G. Hommel, and E. Son-
nemann, editors, Proc. Symp. on Multiple Hypotheses
Testing, pages 110–115, Berlin, 1988. Springer.

[2] R. Blanco, I. Inza, and P. Larrañaga. Learning
Bayesian networks in the space of structures by esti-
mation of distribution algorithms. International Jour-
nal of Intelligent Systems, 18(2):205–220, 2003.

[3] W. Buntime. Theory refinement on bayesian networks.
In Proceedings of the seventh conference (1991) on
Uncertainty in Artificial Intelligence (UAI’91), pages
52–60, Los Angeles, California, United States, 1991.
Morgan Kaufmann Publishers Inc.

[4] D. Chickering. Optimal structure identification with
greedy search. Journal of Machine Learning Re-
search, 3:507–554, 2002.

[5] D. Chickering, D. Geiger, and D. Heckerman. Learn-
ing bayesian networks: Search methods and experi-
mental results. In Proceedings of the Fifth Conference
on Artificial Intelligence and Statistics, pages 112–
128, 1995.

[6] D. M. Chickering. Learning bayesian networks is
np-complete learning from data. In Artificial Intel-
ligence and Statistics V, pages 121–130. Springer-
Verlag, fisher, d. & lenz, h. j edition, 1996.

[7] G. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Ma-
chine Learning, 9:309–347, 1992.

[8] L. de Campos and J. Puerta. Stochastic local algo-
rithms for learning belief networks: Searching in the
space of the orderings. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, number
2143 in Lecture Notes in Artificial Intelligence, pages
228–239. Springer Verlag, 2001.

[9] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Re-
search, 7:1–30, 2006.

[10] M. Friedman. A comparison of alternative tests of sig-
nificance for the problem of m rankings. Annals of
Mathematical Statistics, 11(1):86–92, 1940.

[11] D. Heckerman, D. Geiger, and D. Chickering.
Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning,
20(3):197–243, 1995.

[12] F. Jensen and T. Nielsen. Bayesian networks and de-
cision graphs. Springer, 2007.

[13] P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, and
C. Kuijpers. Structure learning of bayesian networks
by genetic algorithms: A performance analysis of con-
trol parameters. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 18(9):912–926, 1996.

[14] N. Mladenović and P. Hansen. Variable neighborhood
search. Comps. in Opns. Res., 24:1097–1100, 1997.

[15] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, San Mateo, 1988.

[16] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann, San Francisco, 2005.

1440

