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Abstract—This paper deals with the problem of intracellular 
image segmentation. Our goal is to propose an algorithm 
selection framework that has the potential to be general 
enough to be used for a variety of intracellular image 
segmentation tasks. With this framework, an optimal 
algorithm suited to each segmentation task can be selected 
automatically by our proposed evaluation criteria derived 
from region similarity of image features and boundary shape. 
Furthermore, using our framework, we can rank different 
algorithms, as well as define each algorithm’s parameters. We 
tested our prototype framework on confocal microscope 
images and showed that application of these criteria gave 
highly accurate segmentation results without missing any 
biologically important image characteristics. 
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I.  INTRODUCTION 
 Image segmentation is a process that divides an image 

into multiple regions corresponding to the components 
pictured in the image. Segmented regions provide us with 
identification between the component of interest and the 
other components. In other words, the segmentation process 
is one of the first steps in analyzing the component of 
interest from acquired images. Numerous segmentation 
algorithms have been proposed [1-2], but most approaches 
have been developed for a specific application and cannot be 
generalized for other segmentation tasks and be effective at 
the level of human competence. Researchers have had to 
face the difficult duty of choosing the most suitable 
algorithm for a given task while at the same time facing 
increasing numbers of images that need to be analyzed.  

Recently, some segmentation methods based on 
algorithm selection have been proposed as cited in [3-5]. In 
most of these, an appropriate algorithm for each task is 
automatically selected according to a segmentation 
performance analysis so as to have a computer emulate 
human capabilities. That is, when a certain task is specified, 
a researcher is able to judge which algorithm is suitable to 
the task, at least to some degree. To emulate similar 
capabilities on a computer for numerous tasks, various 
evaluation measures have been proposed for selecting 
optimal algorithms [5-11]. 

Algorithm selection is needed in intracellular image processing 
Segmentation plays an important role in intracellular 

image processing because of recent advances in confocal 
microscopes and relevant imaging systems. These advances 
have led to the acquisition of an enormous number of high-
resolution digital images of living cells that need to be 
analyzed. It is nearly impossible for researchers in a wide 
variety of subject areas to analyze the vast quantity of 
accumulated images, and an ability to quantify the 
microstructural properties of intracellular components from 
the acquired images is desperately needed [12-13].  

Studies in intracellular image processing have only just 
begun, and advanced segmentation algorithms, such as those 
developed for medical image processing, have not generally 
been applied. In addition, the low signal-to-noise ratios that 
occur in microscopic imaging with ultra-high sensitivity 
have greatly hindered progress in intracellular image 
processing. The noise in the images makes it more difficult 
for researchers to identify the region of interest and try to 
obtain quantitative data on the organelles of great value to 
cell biologists, such as the volume, shape, and dynamics of 
intracellular structures.  

Although some automated techniques for segmentation 
of cell images have recently been published [14-17], their 
targets have been relatively simply shaped components, for 
example, nuclei, so that the segmentation goal is not so 
difficult. Moreover, recent significant improvements in 
image acquisition of living cells require the appropriate 
segmentation algorithm to be flexible enough to 
accommodate time-variable changes of targets. In fact, no 
single algorithm is considered to be good for all time-lapse 
images, and selecting an optimal algorithm for the variety of 
images is a tedious task for researchers in this field. Thus, 
computerized selection of the optimal algorithm should 
prove a useful and efficient solution to this problem. 
However, almost none of the previous work about the 
algorithm selection is general enough to be applied to the 
various tasks required for high-level image segmentation in 
realistic scientific studies. Therefore, a great deal of time 
and labor is still necessary to accurately segment 
intracellular images. 

The contributions of our paper 
We propose a new higher level evaluation function of 

algorithm selection on intracellular images that is based on 
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the combination of two criteria inspired by human judgment. 
Generally, one criterion (e.g., number of error pixels, feature 
similarity, and true/false or positive/negative rates between 
the segmented region and its ground-truth) is used as an 
evaluation measure (e.g. [5]). In each case, the segmented 
region is evaluated only computationally, and it is not clear 
whether the segmentation has actually satisfied its intended 
purpose.  

In contrast, our evaluation function consists of similarity 
measurement of the combination of intensity-based image 
features and boundary shape between the segmented region 
and the ground-truth, because cell biologists pay attention to 
these two features when evaluating a segmented region. 
Furthermore, previous studies have suggested that such a 
combination will improve the evaluation quality [7, 9-10]. 
Our evaluation function is also able to rank different kinds 
of algorithms, as well as to define each algorithm's 
parameters. 

The rest of the paper is structured as follows. In Section 
2, we describe the proposed framework for algorithm 
selection and its methodology. Experimental results and an 
evaluation of the proposed framework on confocal 
microscope images with ground-truth are presented in 
Section 3. Finally, a conclusion is offered in Section 4. 

II. ALGORITHM SELECTION FRAMEWORK 
Many possible solutions must be considered when 

establishing a segmentation algorithm for a specific 
application that satisfies a user's intention. In many cases, 
intracellular components are represented by unique image 
features and can be distinguished from each other, even 
from background. Here, we first focus on the segmentation 
techniques implemented by pattern classification technique 
that can classify image features. When performing 
segmentation, the computer first calculates N-dimensional 
intensity-based image features and classifies them into 
multiple classes in the N-dimensional feature space (see Fig. 
1). Each class is ideally associated with one component, 
such as an organelle inside the cellular images. In the case 
of supervised classification, the feature distribution of each 
class is specified by a user who has knowledge of the 
segmentation target, and the classification rule is generated 
by its distribution. The specified class is conducted by 
means of the user's manual segmentation. According to the 
classification rule, the computer is able to automatically 
classify the new inputs that are calculated from the 
unsegmented images. As a result, target segmentation can 
be achieved by selecting only the pixels that have the 
feature classified as the target class.  

However, the segmentation algorithm implemented by 
this classification technique is not general enough, because 
there will be large differences in segmentation results 
depending on the algorithm selected. That is, the results are 
greatly influenced by the type of feature used and the 
classification rules. Furthermore, suppose that the selected 
algorithm is optimal for one segmentation task but not for a 
different segmentation task. To solve this problem, we 
propose a new framework that can select an optimal 
algorithm that satisfies user's intention, taking the 

segmentation task into consideration. Here, "algorithm” 
means the set including the feature space constructed by the 
extracted image feature, the classification rule, and their 
parameter specification. Our framework selects the 
algorithm that can extract the target region with the highest 
level of accuracy by means of similarity measurement 
between the supervised region and the region extracted by 
some given algorithms. That selection is conducted by the 
following selection criterion. 

A. Selection Criterion 
The similarity between the user-supervised region and 

the automatically segmented regions generated by given 
algorithms is used as a criterion for selecting the optimal 
algorithm. The similarity is measured in the intensity-based 
image features and shape distances between the two regions. 
In our evaluation function, the algorithm that produces the 
minimum distance is considered optimal for a segmentation 
task. That is, the user can obtain the most accurate 
segmentation result by using the selected algorithm to 
segment a target that has similar characteristics to the 
supervised region. This is true because, if a highly accurate 
identification is achieved for a feature distribution with a 
certain classification function, the function is also applicable 
to a similar feature distribution. 

People generally focus on the characteristics of a region 
when evaluating a segmented region. We consider that 
image features derived from the pixel intensities and 
boundary shape of the segmented region are the most 
important characteristics noticed. We defined gS  as the 
user-supervised region and },{ AaSS a ∈=  as the 
segmented regions by given algorithms in a plane (or a 
space). The similarity AR  between those two regions can 
be calculated as follows: 
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where ),...,,( 21 Nxxx=X  represents the N-dimensional 
image features and ),...,,( 21 nppp=P , )( N

j Cp ∈ represents 
the spatially discrete shape features. That is, AR  is defined 

Figure 1.  A segmentation approach based on pattern classification theory. 
In this approach, the user specifies the region of the segmentation target. 
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as a linear combination of similarity measurement of 
),( A

gdist XX  and ),( A
gdist PP . We can define a selected 

algorithm ia  as follows: 

ia
ki

i Ra  max arg
0 ≤<

=  ,                            (2) 

where k is the number of given algorithms. The feature 
derived from pixel intensity, such as texture statistics or 
local correlation, is set to X . In our framework, we measure 

),( A
gdist XX   by using the Bhattacharyya distance, which 

is an approximate measurement between two statistical 
distributions. The shape feature P  and ),( A

gdist PP  are 
described in the next subsection. 

B. Discrete description of boundary shape 
We use the set of boundary points obtained by sampling 

a sequential boundary to describe the shape of the boundary. 
A complex autoregressive model [18] is applied to these 
boundary points, and this leads to a stable description 
invariant to translation, rotation, and scale of patterns. Each 
boundary point is represented by a complex number 

jjj yixz +=  (see Fig. 2). Thus, we have a sequence of 
complex numbers that is defined by a linear combination of 
boundary points. For this sequence, the complex 
autoregressive model of order m is defined as follows: 

kj

m

k
kj zbz −

=
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ˆ ,                                  (3) 

where m
kkb 1}{ =  is defined by minimizing the mean squared 

error of 22 ˆ)( jjj zzEm −=ε . We calculate the distance 
between the two boundaries })2,1{(,)( ∈∈ nCz Nn  as 
follows: 
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That is, the distances represented in (4) are defined as a 
Euclidean distance of each coefficient kb  represented in (3). 

According to these equations, for example, the distance 
between boundary shape 0S  and its deformed shape 1S  is 
52.99 and that between 0S  and its deformed shape 2S  is 
36.78 (see Fig. 3). The difference between 0S  and 2S  is 
less than that between 0S  and 1S , so we can tell that the 
boundary shape of 2S  is more similar to the shape of 0S  
than is the boundary shape of 1S . We use this similarity 
measure to evaluate whether the automatically segmented 
region is similar to the supervised region. 

 

III. VALIDATION ON CONFOCAL MICROSCOPE IMAGES 
We implemented our selection framework and tested it 

on intracellular images. The target of segmentation was to 
extract only the Golgi apparatus region from botanical yeast 
images. Fig. 4a shows the image used (taken under a 
confocal microscope), and Fig. 4b shows the user-specified 
target region. In this validation, we evaluated whether the 
selected algorithm was able to extract the target region with 
a high degree of similarity from the viewpoint of the above-
mentioned selection criterion.  

The test segmentation was first conducted for the entire 
group of given multiple algorithms; therefore, there was the 
same number of segmentation results as algorithms. Next, 
for all the segmentation results, we calculated the intensity-
based image features inside the segmented region and 
described the region's boundary shape numerically by the 
previously mentioned methods. At the same time, we 
calculated the intensity-based image features inside the 
supervised region and described the boundary of the 
supervised region. Finally, we computed the similarity 
between the supervised region and each automatically 
segmented region by (1).  

Although there are numerous intensity-based image 
features, we used the two types of image features associated 
with each pixel as a prototype in this validation: normalized 
pixel intensity and texture-statistics inside the localized 
region in which each pixel is centrally positioned. The latter 
is calculated by (5): 

( )∑∑= nmfnmX qp
pq , ,                       (5) 

where m and n are the x-y coordinates inside the image, and 
( )nmf ,  is the localized region consisting of a 55×  set of 

pixels. These calculated features are equivalent to moments, 
and in this experiment we calculated the normalized 
moment of order 2 around (m, n) as the second image 

0S                        1S                           2S

Figure 3.  Examples of a boundary shape ( 0S ) and two deformed shapes 

( 1S  and 2S ). Figure 2.   Schematic diagram of the boundary shape description.
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feature.  
The Support Vector Machine (SVM) [19] and 

Approximate Nearest Neighbor (ANN) [20] were defined as 
classification rules in this validation, and a parameter had to 
be set for each classification rule. We defined three types of 
parameter settings (P1-P3) related only to the kernel 
functions in SVM and two types of parameter settings (P4 
and P5) related only to the number of nearest neighbors in 
ANN. The combination of features, classification rules, and 
their parameters produced the 10 segmentation algorithms 
shown in Table 1. In the table, F1 shows the feature derived 
from pixel intensity, F2 shows the feature derived from 
texture-statistics, M1 is SVM, and M2 is ANN. 

Fig. 5a shows the feature distribution distance between 
the supervised region and each segmented region for each 
algorithm. Similarly, Fig. 5b shows the shape distance 
between them. The similarities computed by equation (1) 
and the performance ranking of each algorithm are shown in 
Table 2. These results indicate that the segmented region of 
A4 was most similar to the supervised region. Therefore, we 
regard A4 as the optimal segmentation algorithm, not only 
for this task but also for a similar task.  

Fig. 6 shows the target regions segmented automatically 
by using each algorithm; it is clear that several results 
include isolated regions other than the target region. In that 
case, we calculated the distance on the basis of only the 
largest region. For comparison, we also show a binarization 
result provided by the Otsu method [21] as A11. Because 
the original image was extremely noisy, the binarization 
result contained false positive errors. Algorithm A4, 

however, was not affected by the noise and achieved a 
highly accurate segmentation. 

If we had used only the criterion derived from image 
features, A4, A5, A6, A9, and A10 could have been selected 
as the optimal algorithm. If we had used only the criterion 
derived from boundary shape, A4 or A10 could have been 
selected. However, as can clearly be seen in Fig. 6, over-
segmentation occurs in A9 and A10. Because we used 
combination criteria in the evaluation function in equation 
(1), we avoided the risk of choosing a suboptimal algorithm. 

In addition, although A4-A6 appear to be similar to each 
other in Fig. 6, there is a large difference between the 

Algorithm number 

Figure 5.  (a) Distance between the results of Ai and the supervised region 
for the image features. (b) Distance between the results of Ai and the 
supervised region for boundary shape. 

(a)

(b)

(a) Original Image               (b) User-specified Image 

Figure 4. Experimental images. The gray region in (b) is the supervised 
segmentation target. 

Algorithm number 

TABLE I.  EXPERIMENTAL ALGORITHMS, A1-A10 TABLE II.  PERFORMANCE RANKING OF THE ALGORITHMS
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boundary shape of A4 and those of A5 and A6 (see Fig. 5b). 
In the segmented images of A4-A6, the center-left of each 
segmented region clearly has a larger boundary change than 
the other regions. Although false-negative error occurs in 
that region in A5 and A6, A4 achieved an accurate 
segmentation reflecting the boundary of the supervised 
region (see Fig. 6). Our evaluation function did not miss the 
difference between these results, which appears to be 
biologically important. Even if the differences were trivial, 
however, the evaluation framework was able to select the 
optimal algorithm to reflect the user's intention. 

Our segmentation framework assumes that images 
having similar characteristics will show similar good 
segmentation results. To validate this concept, we conducted 
a follow-up experiment. Fig. 7 shows six sequential images 
(in depth) taken by a confocal microscope of the marked 
Golgi apparatus from botanical yeast. In fact, the image 
shown in Fig. 4 was cropped from this set of images. 
Therefore, the segmentation target inside these six images 
should be similar to that of the previous experiment. We 
implemented an automatic segmentation of these six images 
by using algorithm A4, which had been selected as the 
optimal algorithm. As can clearly be seen in Fig. 8, the 
target region (that is, the Golgi apparatus) was correctly 
segmented from these very noisy images. The cell biologist 
who provided the supervised region evaluated these results 
and determined that they were correct.   

IV. CONCLUSION 
We proposed a novel framework for intracellular image 

segmentation based on effective algorithm selection. 
Selection is conducted by measurement both of similarities 
of intensity-based image features and of boundary shape 
between the user-supervised region and the automatically 

Figure 6. Segmentation results for all the algorithms. The result of A4 was 
determined to be the optimal algorithm. 

Figure 8. Living cell images of botanical yeast with marked regions of 
Golgi apparatus (above). The automatic segmented region as a Golgi 
apparatus (below). These figures were visualized by the volume-rendering 
method. 

Figure 7. Living cell images of botanical yeast with marked regions of 
Golgi apparatus. z indicates the depth position of each image.  
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segmented regions generated by the given pattern 
classification techniques. Our framework assumes that the 
algorithm, which has powerful segmentation ability for a 
test image, will show good segmentation results for other 
similar images. That is, our framework can select an optimal 
algorithm to segment a region that has similar 
characteristics to the user-supervised region, even from 
many images. Furthermore, as shown in the experiment, our 
framework can rank different algorithms and define the 
parameters of each algorithm. 

The evaluation function presented here is versatile, but 
further investigation may reveal other functions that are 
better able to reflect a user's intention. In addition, our 
framework needs to be expanded to be able to better 
represent image features and boundary shape, and it should 
include more classification rules and a greater variety of 
parameters. We tested only two types of features and two 
types of classification rules as a prototype framework. These 
types of improvements will lead to segmentation that will 
have the necessary generality to conduct the various 
segmentation tasks required by researchers. As a result, we 
believe that researchers will be released from a labor-
intensive and troublesome task and able to concentrate on 
the accumulation of valuable data. 
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