2009 Ninth International Conference on Intelligent Systems Design and Applications

EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation

Jonathan de Andrade Silva and Eduardo R. Hruschka
Computer Science Department

University of Sdo Paulo (USP) at Sdo Carlos, Brazil
{jandrade,erh} @icmc.usp.br

Abstract—We describe an imputation method (EACImpute)
that is based on an evolutionary algorithm for clustering. This
method relies on the assumption that clusters of (partially
unknown) data can provide useful information for imputation
purposes. Experimental results obtained in 5 data sets illustrate
different scenarios in which EACImpute performs similarly
to widely used imputation methods, thus becoming eligible to
join a pool of methods to be used in practical applications.
In particular, imputation methods have been traditionally
only assessed by some measures of their prediction capability.
Although this evaluation is useful, we here also discuss the
influence of imputed values in the classification task. Finally,
our empirical results suggest that better prediction results do
not necessarily imply in less classification bias.

Keywords-Missing values; classification; imputation;

I. INTRODUCTION

Missing values are common in real-world data sets and
they can occur for a number of reasons like, for instance,
malfunctioning measurement equipment. Such missing data
are usually problematic. Therefore, several approaches have
been proposed to deal with them [1], [2]. A simple approach
to deal with missing values involves ignoring instances
and/or attributes containing missing values, but the waste of
data may be considerable and incomplete data sets may lead
to biased statistical analyses. Alternatively, some approaches
for data analysis can be tolerant to missing values. Finally, a
significant number of data mining methods only work with
complete data sets. For these methods, approaches aimed at
filling in missing values are particularly relevant.

The task of filling in missing data is often referred to
as missing values substitution or imputation and it can
be performed in a number of ways like, for instance,
by the widely used mean/mode imputation. However, this
approach considerably underestimates the population vari-
ance and does not take into account the between-attribute
relationships, which are usually relevant to the process of
missing values replacement. Moreover, data mining methods
usually explore relationships between attributes and, thus, it
is critical to preserve them, as far as possible, when replacing
missing values [1]. In this sense, imputation is aimed at
carefully substituting missing values, trying to avoid the
insertion of bias in the data set. If imputation is performed
in a suitable way, higher quality data becomes available, and
the data mining outcomes can be improved.

978-0-7695-3872-3/09 $26.00 © 2009 IEEE
DOI 10.1109/ISDA.2009.86

1400

Recently, a number of algorithms capable of dealing
with missing values have been developed, including nearest-
neighbors based imputation algorithms like those described
in [3]-[5] and that have been shown very useful in
bioinformatics applications. Despite the encouraging results
achieved by such imputation algorithms, most of the ex-
perimental settings reported in the literature only assess
their prediction capabilities, obtained from the simulation
of missing entries for some attributes whose values are
actually known. From this standpoint, artificially generated
missing values are substituted and then compared to their
corresponding known values. Although this approach is valid
and widely adopted, the prediction results are not the most
important issue to be analyzed, mainly in classification
problems [6]. In reality, the substitution process should
generate values that least distorts the original characteristics
of the data set for the classification process. In this context,
the main contributions of this paper are twofold. First,
we provide a detailed description of an imputation algo-
rithm (named EACImpute, from Evolutionary Algorithm for
Clustering-based Imputation), which was briefly introduced
in [7]. Second, we present experimental results that suggest
that EACImpute performs similarly to five imputation meth-
ods (KNN [3], SKNN [4], IKNN [5], KMI [8], and Majority
Method [9]) thus becoming eligible to join a pool of methods
to be used in practical applications. As a complementary
contribution of our work, we report experimental results that
suggest that better prediction results may not necessarily
lead to less classification bias.

The remainder of this paper is organized as follows.
The next section describes EACImpute. Section III briefly
reviews a methodology [6] to estimate the bias inserted by
imputation methods in the context of classification problems.
Section IV reports experimental results obtained in five data
sets. Finally, Section V concludes this paper.

II. EACIMPUTE

EACImpute relies on the assumption that clusters of
(partially unknown) data can provide useful information
for imputation purposes. In particular, data clusters can be
viewed as information granules [10] that summarize the
spatial distribution of data. Such information granules can
provide a workable estimate to fulfill missing values that
least distorts the values that are actually present in the

IEEE
computer
® psouety

data set. Having this purpose in mind, several clustering
algorithms can be adapted for imputation. For instance, the
popular k-means would be a spontaneous choice for being
simple and scalable. However, it is sensitive to initialization
of prototypes and requires that the number of clusters k
be specified in advance. This can be restrictive in prac-
tice, leading us to alternatively consider the Evolutionary
Algorithm for Clustering (EAC) [11] - which is capable
of automatically estimating k from data - as part of our
framework. In a nutshell, EAC [11] has been designed
to evolve data partitions with variable k£ by eliminating,
splitting, and merging clusters that are systematically refined
by k-means. We refer the reader interested in further details
of EAC to [11]. In the following, we detail the main features
of EACImpute.

Let us first present an overview of the Evolutionary
Algorithm for Clustering-based Imputation. EACImpute has
a simple encoding scheme. In order to explain it, let us
consider a data set composed of N instances. A partition
is encoded as an integer string (genotype) of N positions.
Each string position corresponds to a data set instance, i.e.,
the ¢-th position represents the i-th instance of the data set.
Thus, each string component has a value over the possible
cluster labels {1,2,3,...,k}. For example, consider Fig I,
which illustrates a population formed by 6 genotypes that
encode different data partitions of a data set composed
by 12 instances (ID=0,1,...,11) described by 4 attributes
(x1, x2, 3, T4). The sixth genotype (from top to bottom)
encodes 2 clusters (for convenience the number of clusters,
k, is shown in the last position of the string). For every
string, an objective function value, which quantitatively
captures the goodness of the encoded data partition, is
computed. Such a value is actually a measure of a relative
clustering validity criterion (the simplified silhouette [11] is
here used). According to this clustering validity criterion,
the sixth genotype encodes the best clustering solution of
this population (i.e., it has the higher fitness function value
- 1.86) and, for this reason, will be used for imputation
purposes. Imputations are performed by means of the widely
known nearest neighbor principle used by other imputation
algorithms ([3]-[5]), considering all instances that have
known values for the attribute that has a missing value in a
given instance. To do so, we only take into account instances
of the same cluster. For the sake of illustration, consider the
substitution of the missing value for the second attribute (z5)
of the second instance (ID=1) of our pedagogical data set.
This missing value will be substituted by taking into account
only instances belonging to cluster 1 (i.e., instances whose
IDs are 0, 2, 3, 4 and 5). This approach leads to an automatic
determination of the number of neighbors (in this case, 5
neighbors), whose setting may be hard to be accomplished
in practice for other imputation tools. After imputation, the
evolutionary process (selection, mutation, etc.) is repeated.
Now that we have provided a rather informal overview of

1401

Population

s 1D X1 X2 Xz xs |Cluster

(data partitions):) o1 36 T4 0z T
[L,11,1,3,14,233,23,2]3] —>» [173] 1 498 el 14 a2z 1
[L 131132232444 —> [175] 2 46 31 15 0.2 1
[11,1,22211,2212]2] —> [179] 3 50 36 14 02 1
[£111,221332233) —> [180] —>[4 54 3.9 ? 2 1
[LLL 1422112212 —> [182] 5 57 14 16 | 04 1
L4414 14L2222222 —> [186] 5 57 31 | 471 15 2
7 63 23 | 44 | 13 2
T 8 56 | 30 | 41 | 13 2
o 9 55 25 | 40 | 13 2
Objective 10 B 26 | 44 | 12 2
Function 11 58 26 40 12 2

Value

l

—> 1[4, ?, 1.40.3] —>[49,36,1.4,0.2]
f—a1(5433 2.7 — [5.4,3.9,1.4,0.4]
=3 [5.0,3.6,1.4,0.2]

b—0[5.1,3.5 1.4, 0.2]

— 2[4631,1503]

b 5 [5.7, 4.4 15, 0.4]

1) Genotype selection;
2) Mutation;
New population;
3) Update data matrix (imputations);
4) k-means;
5) Fitness.

—> 10[?,26 44,17 —> [6.0, 2.6, 44, 1.7]
f— 11 [5.6,2.6,40,1.2]
= 955,25 4013]
— 70513514012
— 8[5630,41,13]
— 6[67,31,4715)

Figure 1. Illustrative process of imputation.

EACImpute, let us focus on its algorithmic details.

More formally, the underlying idea behind EACImpute
is to repeatedly performing a clustering step followed by an
imputation step. More precisely, let each instance ¢ of a given
data set be described by both a vector of m attribute values
x! = [2%,2%,...,2%] and its corresponding class ¢;, which
can take any value from a set of values C' = {c1, ca, ..., ¢}
A data set can be represented by a matrix Xp formed
by a set of vectors x° (i 1,...,N), each one with an
associated ¢; € C. This matrix is formed by the values of
the attributes a; (I = 1,...,m) for each instance 4 and its
respective class. Thus, x} is the value of the [-th attribute
of the i-th instance in X p. In general, Xp is formed by
both complete instances (without any missing value) and by
instances with at least one missing value. Let X be the
subset of instances of X p that do not have any missing
value, and Xj; be the subset of instances of X p with at
least one missing value, i.e., Xp = X U Xjs. In this
context, imputation methods fill in the missing values of
X, originating a filled matrix Xr. Now we can focus
on the main steps of EACImpute summarized in Fig. 2.
In classification problems, EACImpute can be adapted for
supervised imputation, which involves applying it for the
instances of each class separately, as done in this work. A
number of EACImpute steps deserve further attention:

a)

In step 1, as well as in Step 2.1 for ¢ = 1, the
computation of the (Euclidean) dissimilarities be-
tween instances takes into account missing values.
In brief, only attributes a; (I = 1,...,m) without
missing values are used for computing dissimilari-
ties between two instances (or between an instance
and a centroid). Attributes a, (0 = 1,...,m)
containing missing values in any instance for which
a particular pair wise dissimilarity computation is

1. Initialize a set (population) of randomly generated data
partitions (represented by genotypes) using Xp.
XOph — Xp;
2.Fort=1,...,G do: // G is the number of generations //
2.1. Apply k-means to each genotype - using X~V p;
2.2. Assess genotypes (data partitions) and estimate values
to be imputed according to the best available genotype;
Store the estimated values in X(*) F for future
reference;
2.3. Select genotypes using the proportional selection;
2.4. In 50% of the selected genotypes, apply the mutation
operator 1, which eliminates some randomly selected
clusters, placing its instances into the nearest
remaining clusters. In the remaining genotypes,
apply the mutation operator 2, which splits some
randomly selected clusters, each of which into two
new clusters.
2.5. Replace the old genotypes by those just formed in
step 2.4;
2.6. Update the data matrix:
X(t>D — (Xc (@] X(t)F);
3. X’D — X<G>D;

Figure 2. Main Steps of EACImpute (further details in the text).

being performed are omitted in the distance func-
tion. To avoid falsely low distances for instances
with a lot of missing values, we average each
computed dissimilarity by the number of attributes
considered in the computation.

b) In Step 2.2, a filled matrix X® is derived from
estimating values for fulfilling missing entries of
Xs. We shall refer to such values as estimates
(or partial imputations) because they are likely
to vary for ¢ = 1,...,G. Thus, we consider that
values have been actually imputed when ¢ = G.
In what concerns such partial imputations, they
are performed by considering only the instances
of the cluster for which a given instance belongs
to (at a given t). In particular, a traditional k-NN
imputation method is applied by considering only
a subset of X(*) 1, given by instances of a specific
cluster. Similarly to KNN [3], the computation of
the values to be imputed are based on a weighted
(Euclidean) distance function for which the closer
the instance the more relevant it is for imputation
purposes.

c) Differently from the algorithm described in [7],
we here do not restrict EACImpute to use only
complete instances for imputation purposes. In-
stead, every instance belonging to a given cluster is
employed in the imputation process. This approach
allows using EACImpute here described even for
data sets in which every instance has missing
value(s). Such data sets are not uncommon in real-
world applications (e.g., in bioinformatics).

1402

III. BTAS IN CLASSIFICATION

Recall from Section II that imputation methods fill in the
missing values of Xj;, originating a filled matrix Xp. We
assume that the class value is known for every instance. In
an ideal situation, the imputation method fills in the missing
values, originating filled values, without inserting any bias in
the data set. In a more realistic view, imputation methods are
aimed at decreasing the amount of inserted bias to acceptable
levels, in such a way that a data set X'p = X¢ U Xp,
probably containing more information than X, can be used
for data mining (e.g., considering issues such as attribute
selection, combining multiple models, and so on). From
this standpoint, it is particularly important to emphasize
that we are assuming that the known values in X, may
contain important information for the modeling process. This
information would be (partially) lost if the instances and/or
attributes with missing values were ignored.

Two general approaches have been used in the literature to
evaluate the bias inserted by imputations. We shall refer to
them as prediction and modeling approaches. In a prediction
approach, missing values are simulated, i.e., some known
values are removed and then imputed. For instance, some
known values from X could be artificially eliminated,
simulating missing entries. In this way, it is possible to
evaluate how similar the imputed values are to the real,
a priori known values. The underlying assumption behind
this approach is that the more similar the imputed value
is to the real value, the better the imputation method
is. Although the prediction approach is valid and widely
adopted, the prediction results are not the most important
issue to be analyzed as discussed, for instance, in [6]. In
brief, the prediction approach does not allow estimating the
inserted bias from a modeling perspective. More precisely,
the substitution process must generate values that least
distorts the original characteristics of X p, which can be
assumed to be the between-attribute relationships, for the
modeling process. These relationships are often explored by
classification algorithms. For the sake of argument, let us
consider the pedagogical example depicted in Fig 3. This
example is inspired in the widely known Iris data set, which
contains instances formed by 4 attributes (SL, SW, PL, and
PW) and the class label. Consider that the instance whose
ID is 151 has a missing value for attribute PW. This instance
is identical to instance 44, except for the missing value. In
other words, instance 151 could be viewed as a result of
a procedure for missing value simulation widely used in
the literature. In this context, an imputation method should
estimate a value as close as possible to 0.6, which is the
known value artificially excluded from the instance 44. Let
us now assume that 2 imputation methods (A and B) are
available to substitute such a missing value. Also, consider
that method A substitutes the missing value by 0.2, whereas
method B substitutes it by 0.601. Clearly method B is better

ID SL | SW | PL | PW |CLASSE
44 5 35| 1,6 | 0,6 | Setosa
151 5 35| 1,6 ? Setosa

Imputation Method A == [5.
Imputation Method B => [5.0 3.5 1.6 0.601]

[Virginica |

‘Versicnlor|

Figure 3. Pedagogical example of insertion bias on classification.

than method A from the prediction point of view. However,
consider now that the tree depicted in Fig 3 is a perfect
classifier. According to this classifier, imputation method
B would make instance 151 to be incorrectly classified,
whereas imputation method A, which is not as good as B
from the prediction point of view, would lead to the correct
classification of the considered instance.

Several authors (e.g., see [6] for a review) have also
argued that it is more important to take into account the
influence of imputed values in the modeling process (e.g.,
preserving the relationships between attributes) than to get
more accurate predictions. Roughly speaking, although the
imputed values are predictions, it is not the accuracy of
these predictions that is of most importance when replacing
missing values. It is more important that such predictions
produce a workable estimate that least distorts the values that
are actually present in the data set. In other words, the main
purpose of imputation is not to use the values themselves,
but to make available to the modeling tools the information
contained in the other variables’ values that are present. For
all these reasons, we have focused on the inserted biases
in terms of classification results, which somehow allow
evaluating to what extent the relationships between attributes
are being maintained after imputation. Finally, one must
acknowledge that in real-world applications the imputed
values cannot be compared with any value.

The bias inserted by imputation can be defined as [6]
“the magnitude of the change in the between-attribute rela-
tionships caused by patterns introduced by an imputation
process”. The problem is that the relationships between
attributes are hardly known a priori (before data mining
is performed). Therefore, usually the inserted bias cannot
be directly measured, but it can be estimated. In classifica-
tion problems, the underlying assumption is that between-
attribute relationships are induced by a particular classifier.
Consequently, the quality of such discovered relationships
can be indirectly estimated by classification measures like
the Average Correct Classification Rate (ACCR). In this
sense, we adopt a methodology to estimate the inserted bias

1403

1) Evaluate the classifier’s ACCR by cross-validation in X,
obtaining ACCRc;

2) Evaluate the classifier’s ACCR in X (here viewed as a
test set) considering that X¢ is the training set.
In other words, this step involves building the classifier in
X and then testing it in the instances of X,
thus obtaining ACCREF.

3) The bias (b) inserted by the performed imputations is
estimated from the difference between the results achieved

in steps 2) and 1): b =ACCRF— ACCRC.

Figure 4. Estimating the inserted bias on classification.

detailed in [6] and addressed in the sequel.

In data mining applications, different classifiers are often
assessed for a given data set, in such a way that the
best available classifier is then chosen according to some
criterion of model quality (e.g., the ACCR). Our underlying
assumption is that the best classifier (BC) - in relation to
X and to the available classifiers - provides a suitable
model for classifying instances after imputations have been
performed. Thus, it is important to assess if the imputed
values adjust themselves to the BC model. It is a common
practice to evaluate classifier performance in a test set.
The same concept can be adapted to evaluate imputations,
considering X as the training set and Xy as the test
set. Then, inserted bias can be estimated by means of the
procedure in Fig. 4. According to this procedure, a positive
bias is achieved when the ACCR in X (step 2) is greater
than in the cross-validation process in X (step 1). In this
case, the imputed values are likely to improve the classifier’s
ACCR in X’p. Accordingly, a negative bias is inserted
when the imputed values are likely to worsen the classifier’s
ACCR in X'p. Finally, no bias is likely inserted when the
classifier’s accuracies in Xy and in the cross-validation
process in X are equal. Assuming that the imputation
process should not introduce artificial patterns into the data,
this is the ideal situation. Indeed, these artificial patterns, not
present in the known values, may be later discovered during
the data mining process in X'p. Therefore, the inclusion of
such artificial patterns, which are simply an artifact of the
imputation process, should be avoided. According to our
elaboration, not only a negative bias but also a positive bias
is not desirable, as both imply that artificial patterns have
been likely incorporated into the data set.

IV. ILLUSTRATIVE EXPERIMENTAL RESULTS

In our experiments, we used 5 data sets from the ucH
Machine Learning Repository, namely: Iris, Glass, Yeast,
Segmentation, and Pen-digits, whose main features are
summarized in Table I. Following the Rubin’s typology,
we simulated missing values according to the distribution
of missingness known as “missing completely at random”

TA. Asuncion and D. Newman, 2007. Available:

http://www.ics.uci.edu/mlearn/MLRepository.html

DESCRIPTION OF DATA SETS USED.

Table 1

Data sets # Instances | # Attributes | # Classes
Iris 150 4 3
Glass 214 9 6
Yeast 1484 8 10
Segmentation 2310 19 7
Pen-digits 10992 16 10

(MCAR). In particular, in each simulation we removed
values from the real attributes according to different rates,
viz. 10%, 30%, 50%, and 70% in a supervised way (i.e.,
conditioned on the class values). For each of these missing
rates, 30 imputation simulations were performed for different
quantities of attributes (1, 2,..., m/2), where m is the number
of attributes (see third column of Table I), resulting in 720,
2880, 4800, 7560 and 9600 data sets with missing values
respectively to Iris, Glass, Yeast, Segmentation and Pen-
digits. Since we are using Euclidean distance to compute
dissimilarities, only the real attributes were considered for
imputation.

For EACImpute, we arbitrarily adopted the following
parameters: populations formed by 5 genotypes and G = 20.
Sensitivity analysis on these parameters can be the subject
of future work, but we shall note that the population size
and the number of generations are inversely interdependent
on each other, since increasing the size of the evolutionary
population typically reduces the number of generations
needed for convergence and vice-versa. In what concerns
the number of iterations of k-means, empirical evidence
suggests that 5 or less repetitions ordinarily will suffice
[12]. So, EACImpute runs 5 iterations of k-means for each
genotype. We believe that such parameters are not critical if
computational efficiency is not of paramount importance.

The results obtained by EACImpute were compared to
those achieved by 5 algorithms for imputation. Three of them
are considered state of the art algorithms, namely: KNN [3],
SKNN [4], IKNN [5]. We run these algorithms by setting
their parameters as suggested by the original references.
In particular, for KNN, SKNN, and IKNN, the number of
neighbors was set to 10. In addition, the number of iterations
was set to 2 for IKNN. Besides comparing the performance
of EACImpute to those state of the art algorithms, we also
report the results achieved by the widely known Majority
Method (MM) [9], which substitutes missing entries by the
mean (or mode) of the known values for a given attribute,
conditioned on the class. Finally, we also included in our
experimental setting the k-means imputation (KMI) algo-
rithm [8], for that, similarly to EACImpute, it also performs
clustering based imputation. For KMI, we set the number of
clusters and neighbors to 2 and 1, respectively.

For illustration purposes, let us initially consider the re-
sults obtained from a prediction point of view. The accuracy
of predictions was evaluated by calculating the error between

1404

AVERAGE CORRECT CLASSIFICATION RATES (ACCR) FOR THE

Table 1T

EMPLOYED CLASSIFIERS - BEST RESULTS IN BOLD.

Data set J48 KNN MLP NB
Iris 94.73% 95.2% 96.93% | 95.53%
Glass 67.63% | 70.02% | 67.32% | 49.45%
Yeast 56.42% | 54.35% | 58.86% | 57.99%
Segmentation | 96.41% | 99.35% | 94.64% | 85.79%
Pen-digits 96.82% | 96.10% | 96.05% | 80.31%

actual (known) values and the respective imputed values.
To do so, we employed the widely known Normalized
Root Mean Squared Error (NRMSE). The obtained results
(averaged over 30 simulations for each pair of <missing rate,
number of attributes with missing values>) are illustrated in
Fig. 5. One can observe from this Fig that IKNN showed
the best results in most of the performed experiments.

Let us now concentrate on the inserted bias on classi-
fication - by means of the procedure detailed in Section
III. To do so, it would be desirable to employ a classifier
as accurate as possible for each of the data sets in hand.
Therefore, in order to estimate the bias inserted by the
performed imputations, 4 classifiers that are popular in the
data mining community were used: Decision tree J4.8, K-
Nearest Neighbors (KNN), Multilayer Perceptron (MLP),
and Naive Bayes (NB). These classifiers make part of
the WEKA System [13], which was used to perform our
experiments using its default parameters. For each data set,
the best classifier is used for estimating the classification
bias inserted from imputations. Classifiers were previously
assessed in a 10-fold cross validation process, and ranked
according to their ACCR’s (See Table II). For instance, J.48
is used to estimate the classification bias for Pen-digits. Due
to space restrictions and aimed at facilitating the illustration
of the achieved results, in Fig. 6 we report only the average
absolute values of the classification bias. KNN and IKNN
showed the best results in most of the experiments.

In order to provide some reassurance about the validity
and non-randomness of the obtained results, we present
the results of statistical tests by following the approach
proposed by Demsar [14]. In brief, this approach is aimed
at comparing multiple algorithms on multiple data sets, and
it is based on the use of the well known Friedman test
with a corresponding post-hoc test. The Friedman test is
a non-parametric statistic test equivalent to the repeated-
measures ANOVA. If the null hypothesis, which states that
the algorithms under study have similar performances, is
rejected, then we proceed with the Nemenyi post-hoc test for
pair-wise comparisons between algorithms. Table III shows
the average ranks obtained for performing the Friedman test
(the lower the rank the better the algorithm), summarizing
the achieved results for both prediction (P) and classification
bias (B). It is interesting to observe from Table III that better
prediction results do not necessarily lead to less inserted

0,23
0,22
LK - % -MM
0,21 ==t —— —
™= .- —E— KNN
0,20 S S
N e —4— SKNN
0,12 [RPTTTIL
. —— IKNN
o ,’___,—-F“mqf. e KMI
0.17 L = — — @ = EACImpute
0,16
0,15
10 30 50 70
(a) NRMSE-Iris.
035
0 X‘
0,30 .
D -4 -MM
0,25 S
- —@— KNN
0,20 -
- —4— SKNN
0,15 - .
010 ~ " —— IKNN
e T P
0,05 — Hees KM
0,00 = @ - EACImpute
10 30 50 70
(b) NRMSE-Glass.
0,54
0,51 G -. I
R o
" !'
0,48 e KRN
Syt —— SKNN
” r/__.,’—l
045 —5¢— IKNN
042 KM
— @ - EACImpute
0,39
10 30 50 70
(c) NRMSE-Yeast.
0,55 "
050)K,_‘.‘..‘-‘-)Ku..‘..‘,_*_...-- .
e e e ——— i —
045 -— —@— KNN
0,40 Y 2 @---====® N
0,35 = [KNN
0,30 cefiens KMI
0,25 = @ = EACImpute
10 30 50 70
(d) NRMSE-Segmentation.
0,74
. T cesadaaennennes K
0,68 X * .
0,62 - MM
0.56 [i i i e
g'ig —i— SKNN
038 &-------- il @-------- d —— IKNN
0,32 - KM
0,26 —lﬁ:
0,20 — @ = EACImpute
10 30 50 70
(e) NRMSE-Pen-digits.
Figure 5. Results of predictions with NRMSE error on 10%, 30%, 50%

and 70% of missing values.

4,40

4,00
- & =MM
3,60 —8— KNN
3,20 —i— SKNN
2,80 —— [KNN
2,40 ceesfeees KM
2,00 =—&--EACImpute
10 30 50 70
(a) BIAS - Iris.
9,50
8,50 - =M
7,50 —@— KNN
—a— SKNN
6,50
—é— IKNNI
5,50 seaifiens KM
4,50 -—8--EACImpute
10 30 50 70
(b) BIAS - Glass.
6,50
6,25 - * =MM
6,00 —E— KNN
5,75 —— SKNN
5,50 —— IKNN
5,25 cee KM
5,00 - ® —EACImpute
10 30 50 70
(c) BIAS - Yeast.
13,90
12,40 e =M
10,50 - —E— KNN
-- / -
9,40 - - < —a— SKNN
790 - = —sé— IKNN
————g---
5,40 —¢— KMI
4,90 —-8--EACImpute
10 30 50 70
(d) BIAS - Segmentation.
3,00
2,50 e =M
2,00 —&— KNN
150 —r— SKNN
1,00 ——— = —— IKNN
-—— . - —
0,50 - % ﬂ sl KM
0,00 — & —EACImpute
10 30 50 70
(e) BIAS - Pen-digits.
Figure 6. Results of classification bias on 10%, 30%, 50% and 70% of

missing values.

1405

Table III
STATISTICAL ANALYSIS - PREDICTION (P) AND CLASSIFICATION BIAS
(B) FOR DIFFERENT MISSING VALUES (MV) RATES.

Average ranks used to perform the Friedman test
g;:; MM | KNN | SKNN | IKNN | KMI | EACImpute
L0% P | 48 3.0 22 1.6 5.8 3.6
° B | 42 26 26 32 40 44
0% P | 43 3.0 2.6 1.0 5.8 38
v B | 48 24 24 32 3.6 16
P | 46 2.6 24 1.8 5.8 38
30% B | 50 2.0 238 34 44 34
P | 42 32 2.8 14 6.0 34
¥
0% B354 | 20 76 36 | 46 78

bias. The statistical procedure used here (o« = 0.05) suggests
that we cannot reject the null hypothesis of equal prediction
capabilities for most of assessed algorithms. Actually, sig-
nificant differences in pair-wise comparisons were observed
between the following pairs of algorithms: <SKNN, KMI>
for all missing rates, <IKNN, KMI> for all missing rates,
<IKNN, MM> for 10% and 30% of missing entries, and
<KNN, KMI> for 50% of missing entries. Considering the
classification bias, the null hypothesis of equal biases was
only rejected for data sets with 70% of missing entries. In
particular, significant differences in pair-wise comparisons
were observed between KNN and MM.

V. CONCLUSION

We described an imputation method (EACImpute) that is
based on an evolutionary algorithm for clustering. EACIm-
pute was empirically assessed by means of a significant
number of experiments performed in 5 different data sets. In
particular, missing values substitution has been traditionally
assessed by some measures of the prediction capability of
imputation methods. Although this evaluation is useful, it
does not allow inferring the influence of imputed values
in the ultimate modeling task (e.g., in classification as
discussed in this paper). In this sense, alternative approaches
to the so called prediction capability evaluation are needed.
Therefore, we here also assessed the influence of imputed
values in the classification task. The results achieved by
EACImpute were compared to those obtained by 5 impu-
tation algorithms (Majority Method [9], KNN [3], SKNN
[4], IKNN [5], and KMI [8]). In order to provide some
reassurance about the validity and non-randomness of the
obtained results, we presented the results of statistical tests,
which suggest that EACImpute performs similarly to widely
used imputation methods, thus becoming eligible to join a
pool of methods to be used in practical applications. Finally,
our empirical results suggest that better prediction results
do not necessarily imply in less classification bias. Our
future work will concentrate on performing a comparative
study of imputation methods with respect to another well
known distribution of missingness, namely: MAR (missing
at random).

1406

ACKNOWLEDGMENTS

The authors acknowledge the Brazilian Research Agen-
cies CAPES, CNPq, and FAPESP for their financial support.

REFERENCES

[1] D. Pyle, Data Preparation for Data Mining (The Morgan
Kaufimann Series in Data Management Systems). Morgan
Kaufmann, 1999.

[2] J. L. Schafer, Analysis of Incomplete Multivariate Data.

CRC, 2000.

[3] O. G. Troyanskaya, M. Cantor, G. Sherlock, P. O. Brown,

T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman,

“Missing value estimation methods for dna microarrays.”

Bioinformatics, vol. 17, no. 6, pp. 520-525, 2001.

[4] K.-Y. Kim, B.-J. Kim, and G.-S. Yi, “Reuse of imputed data

in microarray analysis increases imputation efficiency,” BMC

Bioinformatics, vol. 5, p. 160, 2004.

[5] L. P. Bras and J. C. Menezes, “Improving cluster-based miss-

ing value estimation of dna microarray data,” Biomolecular

Engineering, vol. 24, pp. 273-282, 2007.

[6] E. R. Hruschka, A. J. T. Garcia, E. R. H. Jr., and N. FE F.

Ebecken, “On the influence of imputation in classification:

practical issues,” Journal of Experimental and Theoretical

Artificial Intelligence, vol. 21, pp. 43-58, 2009.

[7

—

J. de Andrade Silva and E. R. Hruschka, “An evolutionary
algorithm for missing values substitution in classification
tasks,” in 4th International Conference on Hybrid Artificial
Intelligence Systems (HAIS-09), ser. Lecture Notes in Artifi-
cial Intelligence, vol. 5572. Berlin: Springer-Verlag, 2009,
pp. 237-247.

[8] E. R. Hruschka, E. R. H. Junior, and N. F. F. Ebecken, “To-
wards efficient imputation by nearest-neighbors: A clustering
based approach,” in 17th Australian Joint Conference on
Artificial Intelligence (A1'04), ser. Lecture Notes in Artificial
Intelligence, vol. 3339. Berlin: Springer-Verlag, 2004, pp.
513-525.

[9

—

I. Kononenko and I. B. E. Roskar, “Experiments in automatic
learning of medical diagnostic rules.” Jozef Stefan Institute,
Tech. Rep., 1984.

[10] W. Pedrycz, Knowledge-Based Clustering: From Data to
Information Granules. Wiley-Interscience, 2005.

[11] E. R. Hruschka, R. J. G. B. Campello, and L. N. de Cas-
tro, “Evolving clusters in gene-expression data,” Information
Sciences, vol. 176, no. 13, pp. 1898-1927, 2006.

[12]

M. R. Anderberg, Cluster Analysis for Applications. New

York: Academic Press, Inc., 1973.
[13] 1. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. Morgan Kaufmann,
2005.
[14] J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” Journal Machine Learning Research, vol. 7, pp. 1—-
30, 2006.

