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Abstract

This paper presents a novel method to discover promis-

ing regions in a continuous search space. Using machine

learning techniques, the algorithm named Smart Sampling

was tested in hard known benchmark functions, and was

able to find promising regions with solutions very close to

the global optimum, significantly decreasing the number of

evaluations needed by a metaheuristic to finally find this

global optimum, when heuristically started inside a promis-

ing region. Results show favorable agreement with theories

which state the importance of an adequate starting popula-

tion. The results also present significant improvement in the

efficiency of the tested metaheuristic, without adding any

parameter, operator or strategy. Being a technique which

can be used by any populational metaheuristic, the work

presented here has profound implications for future studies

of global optimization and may help solve considerably dif-

ficult optimization problems.

1. Introduction

The combination of different approaches has been devel-

oped to improve the performance of metaheuristics or other

global optimization algorithms applied in difficult prob-

lems. Some of these approaches have two phases. The first

phase (exploration) is used to find promising regions in the

search space, where high-quality solutions can be found.

The second phase (exploitation) refines the high-quality so-

lutions, from the promising regions found, to find even bet-

ter solutions. A simple method for the second phase is a

local search from the best promising solutions found in the

first phase.

To perform the first phase, several approaches have been

developed. These approaches use, for example, complex

probabilistic models to determine regions of the search

space with higher probability of containing optimum solu-

tions. On the other hand, such strategies are, in general,

computationally less efficient in in problems with a large

number of variables, due to the complexity of the proba-

bilistic models employed.

We propose a novel algorithm for this first phase called

Smart Sampling (SS). This technique iteratively explores

the search space inside regions with promising solutions.

These regions become smaller at each iteration, in a simi-

lar way to the strategy proposed in [9]. A machine learning

(ML) technique is responsible for determining if new solu-

tions sampled by the SS can be considered promising solu-

tions or not. This process generates high-quality solutions

without gradients or hessian matrix. The promising solu-

tions are evaluated and the non-promising are discarded,

avoiding computational effort exploiting them. When fin-

ished, another ML technique divides the search space into

regions involving clusters of promising solutions, which are

considered as promising regions.

In this paper, we use the classical Differential Evolution

algorithm (DE) [14] as an algorithm for the second phase,

running inside each promising region. The DE has been

chosen because recent works have been presented showing

better performance of this algorithm over other well-known

metaheuristics like Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO), for instance [4]. The whole

approach is called SSDE and its performance is compared

to the classical DE in order to evaluate the SS contribution

in the optimization process.

It is important to say that the SS is not a global optimiza-

tion algorithm. It is applied to determine promising regions.

Based on this approach, a global optimization problem can

be converted into a more localized optimization problem.

The SS can be used together with any other population

based metaheuristic (GA and PSO, for instance), in con-

trast to other approaches developed to specific metaheuris-

tics as niching and speciation [7], and hybrid algorithms,
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which identify these promising regions during the optimiza-

tion process [5, 8].

This paper is presented as follows. Section 2 describes

the SS technique. Section 3, compares the performance

of DE and SSDE for hard global optimization benchmark

functions. Finally, Section 4 concludes the paper and pro-

poses future works.

2. Smart Sampling

This Section presents a novel approach to explore the

search space and determine promising regions. Instead of

elaborating complex probabilistic models or let a meta-

heuristic perform the exploration, an ML technique iden-

tifies promising solutions and separate them from non-

promising ones.

The proposed SS algorithm is synthesized in Figure 1.

In the beginning, the algorithm samples the search space to

identify the first large regions for exploration. The higher

is the dimensionality of the problem, the larger must be the

first sample. The main idea of the SS is to resample only in

areas considered promising regions.

When the SS process finishes, the promising regions re-

lated to the final solutions must be identified. Some authors

propose the use of a clustering algorithm to do this proce-

dure [11, 12, 5]. However, there are some drawbacks in

this approach. The clustering result is dependent on the

seed, which makes this approach less robust. Moreover,

the number of clusters is a parameter that must be speci-

fied for the majority of clustering algorithms. However, this

parameter is not easily obtained. Fortunately, the unsuper-

vised k-windows clustering algorithm [18] does not requires

this parameter, and has been successfully used as an opera-

tor in a hybrid DE [16]. Nonetheless, the experiments with

this hybrid DE were conducted only on 4 benchmark func-

tions and mostly bi-dimensional ones, due to difficulties in

clustering higher dimensional points because of orthogonal

range search problems [2].

To overcome the drawbacks of the clustering algorithms,

another ML technique, called rule-based learner (RBL) can

be employed. The RBL can adequately represent an unde-

fined number of regions (clusters), being used the proposed

approach. The main characteristics of this SS are the fol-

lowing:

1. Given a sub-sample of the problem, called window,

the algorithm locates smaller windows of the search-

space, with a higher concentration of high-quality so-

lutions;

2. To find better solutions, there is no use of gradient or

hessian matrix.

3. To avoid over-fitting during the search for promis-

ing regions, the algorithm accepts exploration of the

search-space, not only exploitation;

4. The algorithm keeps the global optimum inside of one

promising region, or close to it;

5. The proposed SS determines promising regions with-

out a pre-specified number of regions (clusters) as a

parameter.

In order to achieve these objectives, SS employs a ma-

chine learning technique called Classifier, presented in Sub-

section 2.1.

2.1. Classifiers

Classification is a technique which consists in learning

from a previously labeled set of instances (a training set) to

generate a model capable of correctly label another set of

unknown or unseen instances. A set of known or unknown

instances is also called a sample. This technique has been

used, for example, in fraud detection, data mining, pattern

recognition, and drug discovery, among others [10]. The

most common classifiers are based on decision trees, neural

networks, or rules [10].

High-quality classifiers, such neural networks and sup-

port vector machines, can generate complex models of the

data achieving high-precision in the classification task. On

the other hand, these techniques may require a high amount

of time to be trained.

One of the main objectives of the proposed Smart Sam-

pling is to use simple but efficient techniques in order to

provide a good exploration of the search-space. In face of

this, we have chosen two of the simplest classifiers: the

k-Nearest Neighbor, to separate promising solutions from

non-promising ones, and another (more accurate) to iden-

tify and separate the final solutions into promising regions

(the RBL [10]). Both classifiers are present in the Weka1

open source machine learning package.

kNN

Instance-based classifiers such as the k-Nearest Neigh-

bor (kNN) algorithm are amongst the simplest of all ma-

chine learning algorithms. They classify unknown instances

by relating them to the known instances according to some

distance/similarity function. Putting it simple, two close in-

stances, based on an appropriate distance function, tend to

belong to the same class, while two distant instances tend

to belong to different classes.

An object is classified by a majority vote of its neigh-

bors, with the object being assigned to the class most com-

mon amongst its k nearest neighbors. k is a positive integer,

1www.cs.waikato.ac.nz/ml/weka/
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Generate large random 

sample and select the best 

half to be the population

Select promising 

solutions

Use kNN to learn

promising solutions

Sample new

promising solutions

Stop criterion 
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Execute an optimization algorithm for each 

promising region using the promising solutions 

inside the region as initial population

Evaluate the new 

solutions and insert

them into the population

Use RBL to separate

promising solutions

into promising regions

Figure 1. Flowchart synthesizing the proposed SS.

typically small. If k = 1, then the object is simply assigned

to the class of its nearest neighbor. The neighbors are from

the training set, represented by position vectors in a multi-

dimensional feature space. It is usual to use the Euclidean

distance and, in an optimization problem where the solu-

tions are points in a response surface, this distance function

is the most indicated. The proposed SS uses a instance-

based kNN learner called IBk [1].

RBL

An RBL uses a set of IF-THEN rules to determine the

classes of training instances based on the information gain

criterion, which measures how well a given attribute sepa-

rates the training instances into targeted classes. The rules

can be extracted from the training data using a sequential

covering algorithm, where the rules are learned one at a

time. Each rule for a given class should cover many tu-

ples of that class, and possibly none of other classes. An

IF-THEN rule is a logical expression of the form:

∙ IF condition THEN conclusion.

The rule’s conclusion contains a class prediction. In the pre-

sented case, the class is the quality of a solution (promising

or non-promising). By using this kind of structure, it is pos-

sible to parse the ruleset and get the set of instances that

triggers each rule, thus, splitting them into different regions.

The rule-based learner used in this work was the JRip,

the Weka’s implementation of the RIPPER (Repeated In-

cremental Pruning to Produce Error Reduction) [6].

2.2. The proposed SS Algorithm

The basic steps of the proposed SS algorithm, as pre-

sented in Figure 1, are explained in more detail as follows.

∙ Generate initial random population: in this step, a

large sample is randomly generated inside the prob-

lem’s bounds. The best half of this large sample is

selected to be the real population of the algorithm;

∙ Stop if any criterion is met. Three stop criteria have

been employed: the number of re-samples (trials),

number of trials with no improvement in the best value

found (stagnation), and minimum window size;

∙ Select promising solutions: a fraction of the best so-

lutions is chosen as promising. A small fraction can

lead to local optima very quickly. A high fraction will

probably produce the opposite, since low-quality so-

lutions will be treated as promising ones. We use a

conservative fraction of 0.5. The remaining solutions

are labeled as non-promising.

∙ Use kNN to learn the difference between solutions la-

beled as promising and non-promising;

∙ Sample new promising solutions: generate new solu-

tions using the re-sampling operator presented in Al-

gorithm 1 and classify them using the kNN. Select

the solutions classified as promising and discard the

others. Repeat this process until a desired number of

promising solutions is generated. When finished, eval-

uate them;

Algorithm 1 Resampling Operator.

1. Let PSN,D be a matrix with the promising solutions

from the population (where N is the number of promis-

ing solutions and D is the number of dimensions of the

problem);

2. Generate NOISEN,D, a noise matrix generated using a

random uniform distribution between −1 and 1;

3. The new solutions will be PSN,D + (NOISEN,D ∗

PSN,D);

4. Assert that the new solutions are inside the region

given by the problem’s bounds. If a coordinate is out-

side the region, replace its value with the value of the

nearest bound.
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∙ Insert the new promising solutions into the population

removing the worse ones to keep the population’s size

constant;

∙ Finally, use RBL to separate promising solutions into

promising regions. For each promising region found,

use the promising solutions inside them as initial pop-

ulation for the execution of an optimization algorithm.

In the next Section, experiments employed to evaluate the

performance of the SS are presented.

3. Experiments

In this work, we present results on the reduction of the

search space and its effects in global optimization problems

using the classical Differential Evolution algorithm (DE).

The results using DE are compared to the results using

SSDE, which corresponds to the approach using DE inside

the regions found by the SS.

3.1. Test Benchmark Functions

In this work we use a set of well-known 15 hard bench-

mark functions (see [17]) in the experimental analysis of the

Smart Sampling’s performance.

The functions from f1 to f15 are, respectively: First De

Jong, Axis parallel hyper-ellipsoid, Schwefel’s Problem 1.2,

Rastrigin’s function, Griewangk’s function, Sum of differ-

ent power, Ackley’s problem, Levy function 13, Michalewicz

function, Zakharov function, Schwefel’s Problem 2.22, Step

function, Alpine function, Exponential problem, and Sa-

lomon problem.

These functions, being 7 unimodal and 8 multimodal, are

tested in two different dimensions (D and 2*D) to increase

the problem’s difficult, with D ranging from 10 to 60, de-

pending on the test function. Therefore, the SSDE is com-

pared to a classical DE on 30 minimization problems, which

is randomly started in the problem’s bounds.

As 13 of the 15 benchmark functions have a global op-

timum in the center of the search space, a consecutive se-

ries of reduction without loosing the center will never lose

the global optimum, making these problems easy for SS.

Thus, the problem’s domain is shifted to make it asym-

metric. The global optimum is moved from the center as

follows: if the original parameter bound is −α ≤ xi ≤ α

and fmin = f (0, ...,0) = 0, then the shifted parameter bound

(S.P.B.) is −α+ α

2
≤ xi ≤ α+ α

2
. However, it is important to

notice that the global optimum’s position remains the same.

Table 1. Configuration of the SS.
Initial sample size: the best half of D * 100, resulting in D * 50

solutions;

Number of promising solutions: the best 50% of the population;

Maximum iterations: 100;

Maximum iterations without improvement: 10;

Minimum window size: 0.1 for each D;

The code was developed in the R language (www.r-project.org).

Table 2. Configuration of the DE.
Population size: N = 100;

Differential amplification factor: F =0.5;

Crossover probability constant: C =0.9;

Maximum number of function calls: MAXNFC = 106;

Value to reach: V T R = o∗+10−8;

We used the DEoptim package available in R [3].

3.2. Comparison Strategies and Measure-
ments

To compare the results of the algorithms, 50 trials are run

with DE and SSDE for each benchmark function and three

metrics are used: number of function calls (NFC), success

rate (SR), and success performance (SP).

The lower is the NFC, the higher is the convergence

speed. The stop criterion of the algorithms is to reach the

MAXNFC (the maximum number of function calls allowed)

or the VTR (the value-to-reach, the value of the global opti-

mum). The NFC is averaged over the number of successful

trials.

The SR value represents the percentage of times the al-

gorithm succeeds to reach the VTR:

SR = number o f timesreachedV T R
total number o f trials

.

Suganthan et. al. [15] introduced a metric called SP,

which combines both NFC and SR:

SP = mean(NFC f or success f ul runs)
SR

.

3.3. Configuration of the Algorithms

Parameter settings of the SS for all conducted experi-

ments are defined as in Table 1. Parameter settings for the

DE for all conducted experiments are defined as in Table 2,

as presented in [13]. The code was developed in the R lan-

guage2. For the DE algorithm, we used the DEoptim pack-

age available in R [3].

The DE is run for each promising region found by the

SS, until the VTR is achieved. The VTR is the value of

2www.r-project.org
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the global optimum (o∗) plus a maximum error allowed of

10−8. The SS returns a set of solutions separated in promis-

ing regions. The order of the promising regions is deter-

mined by sorting the best values found at each promising

region. The region which contains the best solution is opti-

mized first by the DE. If the best solution is the same during

300 iterations (stagnation), and it is not the VTR, then the

optimization of this region is stopped. This number was

determined based on experimental analysis.

The population of the DE is generated as follows: 25%

are the best points of a promising region and the other 75%

are randomly generated inside the problem’s bounds. If the

promising region has less than 25 points, we replicate the

points adding some noise to them in order to complete 25

solutions.

3.4. Results

Table 3 shows the results obtained applying DE and

SSDE to solve 30 test problems (15 test problems with two

different dimensions, see Subsection 3.1). D: dimension,

NFC: number of function calls (average over 50 trials), SR:

success rate, SP: success performance. The last row of the

table presents the averages of SR and SP. The best SP for

each case is highlighted in boldface. DE is unable to solve

the problems f9 with D = 20, f10 with D = 60, and f15 with

D = 10 and 20. SSDE does not solve the problem f9 with D

= 20. The best SP for each case is highlighted in boldface.

As can be seen in Table 3, SSDE achieved the best

SP results on 27 of the 30 functions. On the one

hand, the NFCSSDE values are substantially lower on func-

tions f3, f4, f6, f10, f12, f13, and f14 presenting a reduction

of more than 50% in some cases. This results indicate

that the DE wastes too much time in non-promising re-

gions, or get trapped in local optima for too many itera-

tions. With SS, this behaviors tends to be minimized, since

SS focus on promising regions of the search space, avoiding

not only excessive exploration but also competition among

high-quality solutions (far from each other, or in local op-

tima).

On the other hand, the NFC of SSDE is considerably

higher for functions f8 and f9. In these cases, the promising

regions determined by the SS did not contain the global op-

tima. Therefore, the SSDE had to search outside the regions

to reach the global optimum, which required a considerable

larger amount of NFCs.

The SRavg and SPavg measures, shown in the last two rows

of Table 3, are respectively the average of the SR and the

average of the SP. The SSDE increased the SRavg in practi-

cally 9% and reduced the SPavg in approximately 66%, which

corresponds to an improvement in the efficacy and a sig-

nificant reduction in the computational effort to solve the

benchmark functions. Thus, it is clear that the proposed

Table 3. Comparison of DE versus SSDE.
DE SSDE

F D NFC SR SP NFC SR SP

f1 30 78210 1 78210 41180 1 41180

60 140070 1 140070 83740 1 83740

f2 30 86730 1 86730 51980 1 51980

60 159300 1 159300 100760 1 100760

f3 20 161660 1 161660 86680 1 86680

40 746430 1 746430 363080 1 363080

f4 10 275430 1 275430 16020 1 16020

20 642800 0.1 6428000 37940 1 37940

f5 30 103280 1 103280 66080 1 66080

60 177250 1 177250 119980 1 119980

f6 30 17160 1 17160 7900 1 7900

60 28980 1 28980 18020 1 18020

f7 30 150670 1 150670 114360 1 114360

60 268800 0.7 384000 201000 1 201000

f8 30 87160 1 87160 94460 1 94460

60 155844,4 0.9 173160.4 614500 1 614500

f9 10 183775 0.4 459437.5 240400 0.4 601000

20 - 0 - - 0 -

f10 30 359640 1 359640 135190 1 135190

60 - 0 - 542070 1 542070

f11 30 164890 1 164890 115700 1 115700

60 287910 1 287910 204900 1 204900

f12 30 39760 1 39760 10000 1 10000

60 75070 1 75070 23740 1 23740

f13 30 383070 1 383070 100800 1 100800

60 403610 1 403610 185420 1 185420

f14 10 16820 1 16820 5560 1 5560

20 39940 1 39940 14580 1 14580

f15 10 - 0 - 60480 0.2 112500

20 - 0 - 171320 0.2 264000

SRavg 0.803 0.893

SPavg 380921.27 144438.0

SS technique to locate promising regions can improve the

performance of the classical DE and, possibly, other popu-

lational optimization algorithms.

4. Conclusions

In this work, we presented an approach named Smart

Sampling using machine learning techniques to, starting

from an initial sample from the search space, find promis-

ing regions where the algorithm detects that there is a high

chance of finding the global optimum.

As the proposed technique is a pre-optimization process,

the objective of this paper is to show how to increase the

efficiency of a metaheuristic by discovering promising re-

gions.
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Experimental results, conducted on 30 test hard bench-

mark problems and compared to results of the classical DE,

clearly show that our approach is able to outperform the

DE based on the number of function calls, success rate, and

success performance.

Analyzing the presented results, one can conclude that

the proposed approach definitely shows relevant results for

the tested benchmark functions. The fact that the SSDE ap-

proach presented considerably better results than the classi-

cal DE is because the promising regions found by the Smart

Sampling contain solutions considerably close to the global

optimum, requiring few DE iterations to reach the VTR.

This result indicates the significant efficacy of the SS ap-

proach.

For future works, we will test the SS with other meta-

heuristics, as the Genetic Algorithm and Particle Swarm

Optimization. Also, one of the key points to the success

of the SS algorithm is the resampling operator. The op-

erator presented in this work is a very simple one. Better

approaches can lead to even better results.
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