
Efficient Computation Methods for the Kleene Star in Max-Plus Linear Systems

Hiroyuki Goto
Department of Management and Information Systems Science

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan
e-mail: hgoto@kjs.nagaokaut.ac.jp

Munenori Kasahara
Faculty of Management and Information Systems Engineering

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan

e-mail: s063349@ics.nagaokaut.ac.jp

Abstract—This research proposes efficient calculation meth-
ods for the transition matrices in discrete event systems, where
the adjacency matrices are represented by directed acyclic
graphs. The essence of the research focuses on obtaining the
Kleene Star of an adjacency matrix. Previous studies have
proposed methods for calculating the longest paths focusing
on destination nodes. However, in these methods the chosen
algorithm depends on whether the adjacency matrix is sparse
or dense. In contrast, this research calculates the longest paths
focusing on source nodes. The proposed methods are more
efficient than the previous ones, and are attractive in that the
efficiency is not affected by the density of the adjacency matrix.

Keywords-max-plus algebra; state-space representation; ad-
jacency matrix; directed acyclic graph; Kleene star;

I. INTRODUCTION

This research proposes two efficient computation methods
for the representation matrix of the state equation, frequently
used as an approach in scheduling problems for a certain
class of discrete event system. The focused systems have
the following features: (1) parallel execution of multiple
processes, (2) synchronization of multiple processes, and
(3) no concurrency in internal resources. We focus on
discrete event systems in which the execution sequences of
processes can be represented by Directed Acyclic Graphs
(DAG). The state changes in this kind of system can be
represented by simple linear equations, referred to as the
state equation in max-plus algebra [1], [2]. It is often used
in solvers for scheduling problems in manufacturing systems
[3], transportation systems [4], project management [5], etc.

The bottleneck in these systems and other relevant re-
search is in computing the representation matrix referred
to as the transition matrix in the state equation. The matrix
represents the event propagation times in the system, and can
be calculated by applying the ‘Kleene Star’ to the adjacency
matrix that regulates the execution sequences and the times
of the processes. Let there be n nodes in a graph describing
the execution sequences of processes. If we use the naı̈ve
definition, the time complexity is O(n4). Accordingly, if n
is large, a great deal of time is required to compute the
transition matrix and state equation. In the light of this, we
previously proposed efficient algorithms for computing the
transition matrix [6] using the concept of a topological sort

[7]. Denoting the number of nodes and arcs by n and m,
respectively, these methods have time complexities of (a)
O(n3) and (b) O(n · (n + m)). The former method is based
on an adjacency matrix, and is suitable for cases where the
adjacency matrix is dense. In contrast, method (b) is based
on an adjacency list, and is efficient if the adjacency matrix
is sparse. However, the criterion for evaluating the density
of the matrix is vague, and it is often difficult to estimate it
in advance.

This research, therefore, proposes two new methods for
efficiently calculating the Kleene Star regardless of the
density of the adjacency matrix. Hereafter, we refer to
these as methods (c) and (d), respectively. In method (c),
operations akin to the elementary transformation of a matrix
are performed from topologically upstream nodes towards
downstream nodes. In method (d), the nodes for the adja-
cency matrix are first sorted in topological order, and then,
a calculation similar to that in method (c) is carried out.

Both methods (c) and (d) have the same theoretical time
complexity, O(n · (n + m)), which is the same as method
(b). However, since the resulting matrix can be obtained only
through elementary transformations, the new methods have
the following attractive properties in practice:
• Since the algorithms consist only of simple vector

operations, faster computation can be achieved by using
a computer and language suited to vector and matrix
calculations.

• Block splitting according to columns can be done in
a straightforward manner. Thus the algorithms can
be ported to systems that have parallel computation
capabilities.

II. MATHEMATICAL BACKGROUND

A. Max-Plus Algebra

Denoting the real field by R, we define a field D =
R∪ {−∞}. Then for x, y ∈ D, the following operators are
defined: x ⊕ y = max(x, y), x ⊗ y = x + y, x⊗y = x · y.
Let the unit elements for operators ⊕ and ⊗ be ε (= −∞)
and e (= 0), respectively. If m ≤ n,

n⊕
k=m

xk = max(xm, xm+1, · · · , xn).

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.17

1388

With respect to matrices, [X]ij denotes the (i, j)th element
of matrix X . If X, Y ∈ Dm×n and Z ∈ Dn×l,

[X⊕Y]ij = [X]ij⊕ [Y]ij , [X⊗Z]ij =
n⊕

k=1

[X]ik⊗ [Z]kj .

Let the unit matrices for ⊕ and ⊗ be ε and e, respectively. ε
is a matrix, all elements of which are ε, while e is a matrix,
the diagonal elements of which are e and the off-diagonal
elements are ε. The priority of operator ⊗ is higher than ⊕,
and it is often omitted when no confusion is likely to arise.

B. State Equation and Kleene Star

Here we review briefly the state-equation in a max-plus
algebraic system and its transition matrix. In the remainder
of the paper, terms applicable to manufacturing systems are
used.

Let the number of facilities be n, the collection of
preceding facilities of the ith (1 ≤ i ≤ n) facility be P(i),
and the job number be k. For the kth job, we denote the
processing times by d(k), the processing completion times
by x(k), and their minimum values by u(k). Then, the
earliest processing completion times of the corresponding
job xE(k) are [5]:

xE(k) = Ak ⊗ [x(k − 1)⊕ u(k)], (1)

where

Ak = P kX∗
k, P k = diag[d(k)], Xk = F 0P k,

if j ∈ P(i), [Xk]ij = [d(k)]j and [F 0]ij = e,

if j /∈ P(i), [Xk]ij = [F 0]ij = ε.

Equation (1) is known as the state-equation, with Ak de-
noting the transition or system matrix, F 0 the adjacency
matrix, and Xk the weighted adjacency matrix. Hereafter,
we simply denote Xk by X . Operator * is called the Kleene
Star, which holds the property given below with respect to
X:

X∗ =
s−1⊕
l=0

X l = e⊕X ⊕ · · · ⊕Xs−1, (2)

where Xs−1 �= ε, Xs = ε (1 ≤ s ≤ n). s depends on
the precedence relationships of the system. Equation (2) is
an expression, the precedence constraints of which can be
represented by a DAG, whereas its general form is defined
by summation of an infinite series. It should be noted that
each element of X∗ in (2) satisfies the following properties
[2]:

[X∗]ij =

⎧⎪⎪⎨
⎪⎪⎩

τij : if facility j is reachable from facility i,

ε
: if facility j is not reachable from
facility i,

e : if i = j,
(3)

where τij is the sum of the processing times in the preceding
mid-facilities from facility j to facility i, and is equal to the

maximum value if there are multiple paths between these
facilities.

C. Representations in Terms of Graph Theory

In terms of graph theory, a facility, precedence constraint,
and processing time can be interpreted as a node, arc,
and weight of arc, respectively. Moreover, solving X∗ is
equivalent to solving the longest path problem for all pairs
of nodes. However, using (2) directly, results in a highly
inefficient computation with time complexity O(n4). This
has led to efficient computation methods based on the idea
of a topological sort in graph theory.

If node i is physically located upstream of node j, we
denote this by i ≺ j. Moreover, the index number of node i
is denoted by î, is all nodes have been topologically sorted.
The topological sort is a method of aligning nodes for which
the relationship below holds for all pairs of nodes (i, j):

If i ≺ j, then î < ĵ. (4)

Note that the inverse of (4) does not hold. This implies that
even if node i is located upstream of node j topologically,
node i is not always located upstream physically. Moreover,
there could be cases where node j is not reachable from node
i. Hereafter, the terms ‘upstream’ and ‘downstream’ are used
in the context of topological positional relationships. There
is a well known efficient computation method called the
Depth First Search (DFS). Letting the number of nodes and
arcs be n and m, respectively, the time complexity based on
this method is O(n + m). It should be noted here that the
result is not unique and depends on its implementation.

Once all nodes have been topologically sorted, the original
node number of the node with index l, is given by l̃. This

implies ˜̂
l = l and ˆ̃

l = l. If node j physically precedes node
i, we represent this relationship by j → i. In this case, both
[X]ij �= ε and j ≺ i hold.

D. Existing methods

Efficient computation methods for the Kleene Star previ-
ously proposed in [6] are now reviewed briefly. Suppose that
the weighted adjacency matrix of a system with DAG type
precedence constraints is given by X , and its precedence
constraints are identified by a topological sort based on DFS.

First, initialize a work matrix Z as Z ⇐ e. Then,
in method (a), Z is iteratively updated according to the
following procedure:

[Z]̃ij̃ ⇐ [Z]̃ij̃ ⊕
n⊕

l=1

[X]̃il ⊗ [Z]lj̃ ,

for all ĩ and j̃ (1 ≤ i ≤ n, 1 ≤ j ≤ i− 1).(5)

For node ĩ, working upstream to downstream, this repetition
is carried out for all i (1 ≤ i ≤ n). For node j̃, it is carried
out from the uppermost upstream node to the node preceding
node i.

1389

Method (b) on the other hand, uses an adjacency list. The
update is carried out selectively for elements that satisfy
[X]̃il �= ε in the following way:

[Z]̃ij̃ ⇐ [Z]̃ij̃ ⊕
⊕

l∈P (̃i)

[X]̃il ⊗ [Z]lj̃ ,

for all ĩ and j̃ (1 ≤ i ≤ n, 1 ≤ j ≤ i− 1),(6)

where P (̃i) represents the collection of nodes l that satisfy
l → ĩ. The iterative procedure for nodes i and j is the same
as in method (a).

After the update process according to (5) and (6), the
values of X∗ are stored in Z. In the existing methods,
(a) and (b), we first fix the destination node ĩ, and then
the update procedure is performed for the corresponding
source nodes. This procedure coincides intuitively with
the mathematical interpretation in which obtaining X∗ is
equivalent to solving the longest path problem for all pairs
of nodes. However, the update of Z focuses on element
(̃i, j̃), and not on element (i, j), and consequently, it is not
performed on successive elements. As such, it is difficult to
update multiple elements at one time, which means that it
is not easy to apply efficient computational techniques such
as vectorization or parallelization, which are frequently used
in matrix and vector operations, to the algorithms. Thus this
paper proposes efficient new algorithms for calculating X∗,
focusing on source nodes.

III. PROPOSED ALGORITHMS

Two efficient computation methods for the Kleene star of
the weighted adjacency matrix X are proposed.

A. Method based on an elementary transformation of the
adjacency matrix

Hereafter, this method is referred to as method (c). As-
sume the weighted adjacency matrix is given by X and
the precedence constraints of nodes are identified by pre-
processing including a topological sort. In other words,
assume that {1̃, 2̃, 3̃, · · · ñ} have already been obtained.
Then, X∗ can be computed as follows.

First, initialize the work matrix Z, as

Z ⇐ e. (7)

Then, for source node l̃, obtain a collection of destination
nodes i, that is, a collection of i, denoted by S(l̃), that
satisfies l̃ → i. Then, we update the work matrix Z
according to Eq. (8):

[Z]ij ⇐ [Z]ij ⊕ [X]il̃ ⊗ [Z]l̃j ,

for all i ∈ S(l̃) and j (1 ≤ j ≤ n). (8)

This is repeated for all l̃, from the uppermost upstream node
working downstream. This means that the update is carried
out for (1 ≤ l ≤ n) by increasing l.

Equation (8) can be interpreted as the operation of adding
to the ith row of Z, the values of the l̃th row of matrix Z
multiplied by a constant [X]il̃. This procedure is equivalent
to the elementary transformation of a matrix, frequently used
in conventional linear algebra.

Next, we consider the time complexity. To execute (7),
the complexity is O(n2). The time complexity for all update
procedures of (8), noting that there are n repetitions of j, and
that the number of combinations of (i, l̃) that satisfy [X]il̃ �=
ε is m, is O(n ·m). Consequently, the time complexity of
the proposed method is O(n · (n + m)), which is the same
as method (b).

To confirm that the above algorithm gives X∗, we provide
a proof for Theorem 1 below.

Thorem 1: After the update process given by (7) and (8),
the values of X∗ are stored in Z.
Proof. Since (8) is an expression that focuses on the source
node l̃, the number of updates of the ith row of Z is
unknown. This means that the row may never be updated or
may be updated multiple times. Hence, we derive another
expression in which the update operations for the ith row
are combined. It can be rewritten thus:

[Z]ij ⇐ [Z]ij
⊕([X]il1 ⊗ [Z]l1j)⊕ ([X]il2 ⊗ [Z]l2j)⊕ · · ·
for all j (1 ≤ j ≤ n), (9)

where l1, l2, · · · represent the source nodes for the destina-
tion node i, which is henceforth denoted by P(i). Here,
since we do not assume that the repetition involving l is
topological, the tilde suffixes are not attached. According to
(9), there is only one update for the ith row of Z, and the
equation can be restated as:

[Z]ij ⇐ [Z]ij ⊕
⊕

l∈P(i)

[X]il ⊗ [Z]lj ,

for all j (1 ≤ j ≤ n). (10)

Next, consider the operational sequence with respect to i
and j. Since the ith row of Z is updated only once by (10),
the final value of [Z]lj (l ∈ P(i)) must already be stored
in the second term on the right hand-side. Moreover, (10)
indicates that elements of the jth (1 ≤ j ≤ n) column must
be updated consecutively for an instance i. As this implies,
when updating the values of nodes j and i, the values of
nodes j and l must already have been obtained. In addition,
this update is carried out strictly by maintaining relationship
l → i. Thus it is necessary to update the value of node j
beforehand when it is located upstream of node i. On the
other hand, if j = i or node j is located downstream of node
i, the value of [Z]ij is never updated and remains the initial
value [e]ij . In the former case, the value is e, whereas in
the latter case it is ε. This satisfies the properties of X∗ in
(3).

1390

The repetition of i must be carried out for all i (1 ≤
i ≤ n). However, as mentioned earlier, if there is a node l
that satisfies l → i downstream of node j, the value with
respect to nodes j and l must have been obtained already. As
such, i and j should be iterated according to the following
sequence:

For all ĩ and j̃ (1 ≤ i ≤ n, j ≺ i).

This means that the operation in (10) is equivalent to (6),
that is, method (b). The fact that the values of X∗ are stored
in Z through this procedure has already been proved in [6].

In the method based on (6), the update of the ĩth row of
Z is carried out for discontinuous elements. On the other
hand, (8) can update the jth column of Z in an arbitrary
order. That is, the update need not necessarily be performed
in topological order, and can be carried out according to
the original sequence of columns. Thus this algorithm could
increase the computation efficiency in systems suitable for
vector and matrix calculations. Moreover, the algorithm can
easily be implemented on processors with vector instructions
such as SIMD [8]. Furthermore, recall the elementary trans-
formation of a matrix that includes the addition of values
multiplied by a constant, which is independent of column
direction. Thus the transformation can be broken up into
arbitrary sets of columns, each of which can be computed
independently. This indicates that it is easy to parallelize the
procedure [9].

B. Another Efficient Algorithm

Consider systems that have precedence constraints of the
DAG type. If i ≺ j, node i is not reachable from node j, and
[X∗]ij = ε holds true. Accordingly, with respect to node i,
it would not be necessary to calculate the longest path from
the node to the downstream node j. Utilizing this feature, in
this subsection we propose another method for calculating
X∗ based on (8), after sorting the columns and rows of
the weighted adjacency matrix X using a topological sort.
Henceforth, this method is referred to as method (d). The
time complexity of method (d) is O(n · (n + m)), which is
equal to method (c) described above. However, by utilizing
desirable properties of the DAG, the computation time can
be reduced several fold, the detail of which is discussed
below.

Thorem 2: The weighted adjacency matrix X is a DAG
type whose rows and columns are topologically sorted in the
lower triangular matrix. In addition, the work matrix Z in
the update process specified by (7) and (8) is also a lower
triangular matrix, whose diagonal elements are e at any time
during the process.
Proof. Since the rows and columns of X are topologically
sorted, if precedent constraint j → i is true, j < i holds.
In other words, if there are instances that satisfy [X]ij �= ε,

then j < i. This clearly indicates that X is a lower triangular
matrix.

Subsequently, we prove that Z is lower triangular and
its diagonal elements are all e. First, immediately after the
initialization process by (7), the proposition clearly holds
true. Next, suppose Z is lower triangular and its diagonal
elements are e during a certain update process based on (8).
Under this assumption, and by enforcing [Z]l̃j �= ε, this can

be accomplished only when j ≺ l̃, that is ĵ <
ˆ̃
l = l. On

the other hand, i ∈ S(l̃) indicates that a relationship l̃ → i

holds true and yields ˆ̃
l = l < î. Thus the update is carried

out only for elements [Z]ij that satisfy ĵ < î. This also
indicates that elements [Z]ij which satisfy ĵ ≥ î are not
updated. Accordingly, the diagonal elements of Z remain e.
Moreover, if î < ĵ, node j is not a preceding node of node
i, which yields [Z]ij = ε. This proves the proposition.

As the above theorem implies, it is not required to update
the l (i ≤ l ≤ n)th column of Z when updating the ith
row. This indicates that the number of elements that must be
updated can be reduced to less than half. However, it should
be noted that a topological sort of X must be carried out
twice, in both pre- and post-processing, thereby incurring
additional overhead. The time complexity for these sorts is
O(n2), which may not be ignored if n is small. Hence, it can
be said that method (d) is suitable only if n is sufficiently
large.

IV. EFFICIENCY OF THE PROPOSED METHODS

The effectiveness of the proposed methods is validated
through an illustrative example and numerical experiments.

A. Illusrative example

Let us demonstrate the algorithm in method (c) for a
simple illustrative manufacturing system of the DAG type.
Figure 1 depicts a simple manufacturing process with one
input, one output, and five facilities. Each value in the box
represents a facility number, and (*) gives the processing
time. In this case, the weighted adjacency matrix is:

X =

⎡
⎢⎢⎢⎢⎣

ε ε ε ε 1
3 ε ε ε ε
ε ε ε ε 1
ε 5 4 ε ε
ε ε ε ε ε

⎤
⎥⎥⎥⎥⎦

.

The results of the topological sort for this system are
illustrated in Fig. 2, which yields: (1̃, 2̃, 3̃, 4̃, 5̃) =
(5, 3, 1, 2, 4). Note that this is not unique as previously
mentioned. First, let l = 1, giving l̃ = 5. The set that obeys
[X]il̃ �= ε is S(l̃) = {1, 3}. Then, we set i = 1 (∈ S(l̃)).
Since we enforce [X]15 = 1, values of the fifth row of Z
multiplied by one are added to the first row. Next, we set
i = 3. Since [X]35 = 1 is true, we add values of the fifth
row of Z multiplied by one to the third row.

1391

3

Input

1

Output

4

2

Processes

5

(1)

(3) (5)

(4)

(2)

3

Input

1

Output

4

2

Processes

5

(1)

(3) (5)

(4)

(2)

Figure 1. A simple manufacturing system.

3 1 4 2 5 3 1 4 2 5

Figure 2. Result of the topological sort.

In a similar way, for l = 2, after l̃ = 3 and S(l̃) =
{4} have been obtained, let i = 4 (∈ S(l̃)) and then we
obtain [X]il̃ (= 4). Subsequently, add the l̃ (= 3)th row of
Z multiplied by this value to the i (= 4)th row. Using an
analogous procedure to that shown above, the transformation
is repeated until j = 5. This finally produces:

Z =

⎡
⎢⎢⎢⎢⎣

e ε ε ε 1
3 e ε ε 4
ε ε e ε 1
8 5 4 e 9
ε ε ε ε e

⎤
⎥⎥⎥⎥⎦

. (11)

The above procedure is depicted in Fig. 3.
As an application example, we calculate the earliest

processing completion times for job k = 1. We set the
processing times to d(1) = [3, 5, 4, 2, 1]T , feeding times of
material to u(1) = [ε, ε, ε, ε, 0]T , and the state variables of
job k = 0 to x(k−1) = ε. Letting Z in (11) be X∗, xE(1)
in (1) is calculated as: xE(k) = [4, 9, 5, 11, 1]T . The fact
that this is equivalent to the earliest processing completion
times in the respective facilities can easily be confirmed by
considering Fig. 1.

B. Performance evaluation

We have implemented methods (a)–(d) to examine their
computational efficiency. With respect to the weighted ad-

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

e

e

e

e

e

εεεε
εεεε
εεεε
εεεε
εεεε

Z

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εεεε
εεεε
εεεε

εεε 1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εεεε

εεε
εεεε

εεε

1

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εε

εεε
εεεε

εεε

54

1

1

1⊗ 1⊗ 4⊗

3⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εε

εεε
εε
εεε

54

1

43

1
5⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε

εεε
εε
εεε

9458

1

43

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

e

e

e

e

e

εεεε
εεεε
εεεε
εεεε
εεεε

Z

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εεεε
εεεε
εεεε

εεε 1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εεεε

εεε
εεεε

εεε

1

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εε

εεε
εεεε

εεε

54

1

1

1⊗ 1⊗ 4⊗

3⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε
εε

εεε
εε
εεε

54

1

43

1
5⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

e

e

e

e

e

εεεε

εεε
εε
εεε

9458

1

43

1

Figure 3. Update processes based on method (c).

2 nn-11 …2 nn-11 …

Figure 4. A tandem structured system.

jacency matrix X , both dense and sparse matrices are
considered. For dense matrices, we apply the precedence
constraint i → j with a probability of 1/2 to all pairs of
(i, j) that satisfy i ≺ j. For sparse matrices, we apply
precedence constraints with all nodes connected in tandem,
as shown in Fig. 4. We assume that the weights, d(k),
obey a uniform [0, 1] distribution. For both cases, after the
adjacency matrix has been generated, the indexes of nodes
are sorted randomly. Experiments have been carried out with
n = {10, 50, 100, 500, 1000}.

The execution environment is an IBM PC/AT, Pentium
IV 3.0GHz, running Windows XP. The calculation modules
are coded using Octave-3.0.3 [10]. Computation times are
measured ten times and the average of the eight times,
excluding the maximum and minimum times, is calculated.
The computation times are measured using ‘tic’ and ‘toc’
functions. Table 1 gives the results where the adjacency
matrix X is dense, while Table 2 gives the results for sparse
matrices. All time units are given as seconds.

In Table 1, the proposed methods (c) and (d) are faster
than the existing methods (a) and (b), except where n = 10.
The difference in performance is significant as n increases.
Compared with methods (c) and (d), the results show no
significant difference when n = 50 or smaller. On the
contrary, if n = 100 or larger, method (d) is faster and
its effectiveness becomes more noteworthy as n increases.

In Table 2, methods (c) and (d) are faster than methods
(a) and (b), and their performance is significantly better as n
increases. This is the same as in Table 1. On the other hand,
unlike Table 1, method (d) is not always faster than method
(c) even as n increases. This may be because the reduction
effect of handling the lower triangular matrix is comparable
with the overhead for sorting indexes of the adjacency matrix
X .

Comparing Tables 1 and 2, the computation times for
method (a) are not that different because the time complexity
is O(n3), which is independent of the number of arcs.
In contrast, methods (b)—(d) have O(n · (n + m)) time
complexity. Thus for the same n, the computation time is
shorter if X is sparse. Moreover, for methods (c) and (d),
if n = 50 or smaller, the computation times are not that
different. On the other hand, it might be said that method
(d) has the advantage if n = 100 or larger. However, if the
adjacency matrix is extremely sparse such as shown in Fig.
4, the computation time based on method (c) is sometimes
shorter. This should always be taken into account. Also, in
practice, method (d) may not be a ‘bad selection’ regardless
of the size of n and the density of X .

1392

Table I
CALCULATION TIMES FOR DENSE MATRICES.

n 10 50 100 500 1,000
(a) 0.01889 0.4074 1.646 65.92 395.2
(b) 0.02732 0.6267 2.527 77.84 409.0
(c) 0.02278 0.2964 1.183 41.17 233.6
(d) 0.02159 0.2935 1.135 32.78 159.5

Table II
CALCULATION TIMES FOR SPARSE MATRICES.

n 10 50 100 500 1,000
(a) 0.01901 0.4063 1.691 69.34 420.8
(b) 0.02537 0.5308 2.067 50.94 204.8
(c) 0.01408 0.2322 0.862 20.29 81.3
(d) 0.01585 0.2198 0.810 22.43 108.8

V. CONCLUSION

This paper has proposed efficient computation methods
for the Kleene Star focusing on discrete event systems
in which the adjacency matrix can be represented by a
DAG. The time complexity of the new methods is the same
as that of the previously proposed methods. However, we
have confirmed that the practical computation times are
shorter than those in the previous methods. Moreover, the
proposed methods do not require estimating, in advance,
whether or not the adjacency matrix is dense. This would
be advantageous in a practical implementation.

In addition, the proposed methods have the following
attractive properties for further speedup in future research;
the algorithms are suited to collective calculation such
as using vector or matrix operations, and can be divided
into several column blocks to be handled in parallel. This
could be accomplished using computers with instructions for
vector calculations and/or parallel processing. Porting and
implementing the proposed system is our future work.

REFERENCES

[1] B. Heidergott, G. J. Olsder, and L. Woude, Max Plus at Work:
Modeling and Analysis of Synchronized Systems. New Jersey:
Princeton Univ. Pr., 2006.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat,
Synchronization and Linearity. New York: John Wiley &
Sons, 1992. [Online]. Available: http://maxplus.org

[3] G. Schullerus, V. Krebs, B. Schutter, and T. Boom, “Input
signal design for identification of max-plus-linear-systems,”
Automatica, vol. 42, pp. 937–943, 2006.

[4] R. Goverde, “Railway timetable stability analysis using max-
plus system theory,” Transportation Research Part B, vol. 41,
no. 2, pp. 179–201, 2007.

[5] H. Goto and S. Masuda, “Monitoring and scheduling methods
for mimo-fifo systems utilizing max-plus linear represen-
tation,” Industrial Engineering and Management Systems,
vol. 7, no. 1, pp. 23–33, 2008.

[6] H. Goto, “Efficient calculation of the transition matrix in a
max-plus linear state-space representation,” IEICE Transac-
tions on Fundamentals, vol. E91-A, no. 5, pp. 1278–1282,
2008.

[7] T. Cormen and C. Leiserson, Introduction to Algorithms.
Massachusetts: MIT Press, 2001.

[8] P. Cockshott and K. Renfrew, SIMD Programming Manual
for Linux and Windows. Heidelberg: Springer, 2004.

[9] R. Shonkwiler and L. Lefton, An Introduction to Parallel
and Vector Scientific Computing (Cambridge Text in Applied
Mathematics). Cambridge Univ. Pr., 2006.

[10] J. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual
Version 3. Network Theory Ltd., 2008.

1393

