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Abstract

In this paper, we propose a new diagnostic checking tool
for fuzzy rule-based modelling of time series. Through the
study of the residuals in the Lagrange Multiplier testing
framework we devise a hypothesis test which allows us to
determine if there is some left autocorrelation in the er-
ror series. This is an important step towards a statistically
sound modelling strategy for fuzzy rule-based models.

1. Introduction

In general, once a time series model is built and esti-
mated, it has to be evaluated. This is true in the Soft Com-
puting framework as well as in the classical Statistics ap-
proach. By evaluating a model we understand to find out
if the model satisfies a set of quality criteria that allow us
to say if the interesting characteristics of the system under
study are actually being captured by it or not.

Notwithstanding, this set of evaluation criteria is heav-
ily dependent on several considerations: the final use that
the model is built for, the inner characteristics of the system
that are to be captured and whether the emphasis is put on
the empirical behaviour of the model or if there are theoreti-
cal considerations that are considered to be more important.
This is evident when we consider the evaluation means used
in the Soft Computing field as opposed to those used in the
statistical approach to time series analysis.

In the usually engineering-oriented Soft Computing
framework, there has been an overwhelming preeminence

of just one evaluation criterion, and this has been the good-
ness of fit. Generally, evaluation of a model consists on
computing the prediction (or classification) error produced
when it is faced with a previously unseen problem of the
same type of the one used to estimate it. This measure, in its
different flavours (mean squared error, mean average error
and so on) is affected by some inherent limitations: it is not
very meaningful for a single model unless compared against
other models, and is usually range-dependent, which makes
it difficult to compare the same model applied to different
problems represented by data sets with different character-
istics.

On the other hand, evaluation in the statistical approach
to time series has usually more to do with obtaining an esti-
mate of the probability that the model is effectively captur-
ing the interesting characteristics of the data set, and this is
achieved through developing hypothesis tests, also known
as misspecification tests.

The inclusion of the error term εt in the expression of
FRBM in the context of time series analysis has been sug-
gested [1]. The main assumption behind modelling is that a
part of the system under study behaves according to a model
but there is another part which cannot be explained by it and
is usually considered to be white noise. This is the main
idea encoded in the expression of the general model

yt = G(xt;ψ) + εt, (1)

and it is also behind the diagnostic checking procedure pre-
sented here.

It is interesting to obtain a precise knowledge about the
series of the residuals, {εt}, for example determining if
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its values are independent and normally distributed. If the
residuals were not independent, that would mean that the
model is failing to capture an important part of the be-
haviour of the series, and hence it should be respecified.

2. Fuzzy Rule-based Models for Time Series
Analysis

When dealing with time series problems (and, in gen-
eral, when dealing with any problem for which precision is
more important than interpretability), the Takagi-Sugeno-
Kang paradigm is preferred over other variants of FRBM.
When applied to model or forecast a univariate time series
{yt}, the rules of a TSK FRBM are expressed as:

IF yt−1 IS A1 AND yt−2 IS A2 AND . . . AND yt−p IS Ap

THEN yt = b0 + b1yt−1 + b2yt−2 + . . . + bpyt−p. (2)

In this rule, all the variables yt−i are lagged values of the
time series, {yt}.

Concerning the fuzzy reasoning mechanism for TSK
rules, the firing strength of the ith rule is obtained as the t-
norm (usually, multiplication operator) of the membership
values of the premise part terms of the linguistic variables:

ωi(x) =
d∏

j=1

μAi
j
(xj), (3)

where the shape of the membership function of the linguis-
tic terms μAi

j
can be chosen from a wide range of functions.

One of the most common is the Gaussian bell, although it
can also be a logistic function and even non-derivable func-
tions as a triangular or trapezoidal function.

The overall output is computed as a weighted average
or weighted sum of the rules output. In the case of the
weighted sum, the output expression is:

yt = G (xt;ψ) =

R∑
i=1

ωi(xt) · bixt, (4)

where G is the general nonlinear function with parameters
ψ, and R denotes the number of fuzzy rules included in
the system. While many TSK FRBS perform a weighted
average to compute the output, additive FRBS are also a
common choice. They have been used in a large number of
applications, for example [4, 7, 8, 14].

It has been proved [1] that this specification of the FRBM
nests some models from the autoregressive regime switch-
ing family. More precisely, it is closely related with the
Threshold Autoregressive model (TAR) [13], the Smooth
Transition Autoregressive model (STAR) [12], the Lin-
ear Local-Global Neural Network (L2GNN) [11] and the
Neuro-Coefficient STAR [9].

This relation gave place to an exchange of knowledge
and methods from the statistical framework characterising
those models to the fuzzy rule-based modelling of time se-
ries. For instance, a linearity test against FRBM has been
developed [2], and other contributions are yet to come.

3. Testing for independence of the residuals

If we are able to find any remaining autocorrelation in the
residuals series {εt}, we would be able to conclude that our
model is failing in capturing a part of the inner behaviour of
the series, and that it should hence be re-specified.

Consider the following FRBM with autocorrelated er-
rors:

yt = G(xt;ψ) + εt =
∑r

i=1
bixt · μi (xt;ψμi

) + εt

εt = π′νt + ut

(5)
where the π′ = [π1, π2, ..., πs] is a vector of parameters,
νt = [εt−1, εt−2, ..., εt−s] and ut ∼ NID(0, σ2). We as-
sume that εt is stationary, and furthermore, that under the
assumption εt ∼ NID(0, σ2), that is, π = 0, {yt} is sta-
tionary and ergodic such that the parameters of (5) can be
consistently estimated by nonlinear least squares.

In the context of this model, we can formulate the null
hypothesis of serial independence of the residuals as H0 :
π = 0.

The conditional normal log-likelihood, given the fixed
starting values, has the form

lt = −
1

2
ln (2π)−

1

2
ln ς2 −

1

2ς2⎧⎨
⎩yt −

s∑
j=1

πjyt−j −G(xt;ψ) +
s∑

j=1

πjG(xt−j ;ψ)

⎫⎬
⎭

2

.

(6)

The information matrix related to (6) is block diagonal
such that the element corresponding to the second deriva-
tive of (6) forms its own block. The variance ς2 can thus
be treated as a fixed constant in (6) when deriving the test
statistic. The first partial derivatives of the normal log-
likelihood with respect to π and ψ are

∂lt
∂πj

=
( ut

σ2

)
{yt−j −G(xt−j ;ψ)} , j = 1, ..., s (7)

∂lt
∂ψ

=−
( ut

σ2

)⎧⎨
⎩∂G(xt;ψ)

∂ψ
−

s∑
j=1

πj

∂G(xt−j ;ψ)

∂ψ

⎫⎬
⎭
(8)

Under the null hypothesis, the consistent estimators of
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(7) are

∂l̂t
∂πj

∣∣∣∣∣
H0

=
1

σ̂2
ε̂tν̂t and

∂l̂t
∂ψ

∣∣∣∣∣
H0

= −
1

σ̂2
ε̂tĥt, (9)

where ν̂t = [ε̂t−1, ε̂t−2, ..., ε̂t−s], ε̂t−j = yt−j −

G(xt−j ;ψ), j = 1, ..., s, ĥt = ∇G(xt; ψ̂) and σ̂2 =

(1/T )
∑T

t=1
ε̂t.

The LM statistic is

LM =
1

σ̂2

T∑
t=1

ε̂tν̂t
′×

⎧⎨
⎩

T∑
t=1

ν̂tν̂t
′ −

T∑
t=1

ν̂tĥ
′

t ×

(
T∑

t=1

ĥ
′

tĥt

)−1

×

T∑
t=1

ĥtν̂t
′

⎫⎬
⎭×

T∑
t=1

ν̂t
′ε̂t (10)

where ĥt = ∇G(xt; ψ̂) and ν̂t =
[tx′t, tx

′

tμ1 (xt;ψμ1
) , ..., tx′t μs (xt;ψμs

)]
′.

Under the condition that the moments implied by (10)
exist, LM is asymptotically distributed as a χ2 with s de-
grees of freedom.

The test can be performed in three stages as follows:

1. Estimate model (4) under the assumption of uncorre-
lated errors and and compute the residuals ε̂t. Or-
thogonalize the residuals by regressing ε̂t on ĥt,
and compute the residual sum of squares SSR0 =
(1/T )

∑T
t=1

ε̃2
t .

2. Regress ε̃t on ĥt and ν̂t. Compute the residual sum of
squares SSR1 = (1/T )

∑T
t=1

v̂2
t .

3. Compute the χ2 statistic

LMsi
χ2 = T

SSR0 − SSR1

SSR0

or the F version of the test

LMsi
F =

(SSR0 − SSR1)

s

(
SSR1

(T − s− n)

)
−1

.

Under H0, LMsi
χ2 is asymptotically distributed as a χ2 with

s degrees of freedom and LMsi
F has approximately an F

distribution with s and T − s− n degrees of freedom.
Upon rejection of H0, we know that the residuals might

be autocorrelated up to order s = ‖π‖, which means that
the FRBM has failed to capture the lagged structure of the
data.

4. An example: modelling the Lynx time series

The Canadian lynx data set is a commonly used series,
corresponding to the annual record of the number of the
Canadian lynx ”trapped” in the Mackenzie River district of
the North-West Canada for the period 1821 to 1934. These
data are actually the total fur returns, or total sales, from
the London archives of the Hudson’s Bay Company in the
years of 1821 to 1891 and 1887 to 1913; and those for
1915 to 1934 are from detailed statements supplied by the
Company’s Fur Trade Department in Winnipeg; those for
1892 to 1896 and 1914 are from a series of returns for the
MacKenzie River District; those for the years 1863 to 1927
were supplied by Ch. French, then Fur Trade Commissioner
of the Company in Canada. By considering the time lag be-
tween the year in which a lynx was trapped and the year
in which its fur was sold at auction in London, these data
were converted in [6] into the number that were presumably
caught in a given year for the years 1821 to 1934 as shown
in Figure 1(a).

(a) Lynx Series

Time

C
ap

tu
re

s

1820 1840 1860 1880 1900 1920

0
30

00
60

00

(b) Log−Transformed Lynx Series
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Figure 1. Number of lynx caught in the
Mackenzie River district of the North-West
Canada from year 1821 to 1934.

A first time series model of the Canadian lynx data was
fitted by P.A.P Moran in [10]. He observed that the cycle
is very asymmetrical with a sharp and large peak and a rel-
atively smooth and small trough. The log transformation
gives a series which appears to vary symmetrically about
the mean. As the actual population of lynx is not exactly
proportional to the number caught, a better representation
would perhaps be obtained by incorporating an additional
”error of observation” in the model, thereby resulting in a
more complicated model. The log transformation substan-
tially reduces the effect of ignoring this error of observation;
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Table 1. Results of misspecification tests for
the lynx problem.

Test for q-order serial correlation

AR(2) FRBM

q p-value p-value

1 0.949 0.411
2 0.921 0.622
3 0.813 0.587
4 0.946 0.733
5 0.998 0.234
6 0.953 0.834
7 0.995 0.532
8 0.947 0.424
9 0.944 0.672

10 0.722 0.562
11 0.975 0.623
12 0.826 0.789

therefore, after Moran, nearly all the time series analysis of
the lynx data in the literature have used the log-transformed
data. Figure 1(b) shows the transformed data.

The aforementioned study, [10], proposed an AR(2)
model considering the sample correlogram, and second or-
der autoregression was also chosen by [5] in a harmonic-
autoregressive combined model and by [9] for the NCSTAR
model. We fix the order of our model also to 2, for these
reasons.

The linearity test against a FRBM with sigmoid transi-
tion function threw a p-value of 0.000259, while the test
against a Gaussian-based FRBM obtained a 0.000115. Both
tests indicate that the series is nonlinear and suggest the use
of more than one rule.

The modelling cycle ended in both cases when the sec-
ond regime was added, so the estimated models have just
two rules given by

yt = 0.9599 + 1.2514yt−1 − 0.3398yt−2+

(2.5466 + 0.3764yt−1 − 0.7973yt−2)μS(xt;ψS) + εt

(11)

in the sigmoid case, with ψS = (γ,ω, c) =
(103.1266, [0.4630, 0.8863], 9.4274), and

yt = 0.8749 + 1.2302yt−1 − 0.3074yt−2+

(2.0084 + 0.2961yt−1 − 0.6486yt−2)μG(xt;ψG) + εt

(12)

in the Gaussian case, where ψG = (γ, c) =
(11.0129, [5.8417, 3.6653]).

The first model obtained a residual standard deviation of
σ̂ε,S = 0.196, while the second obtained a value of σ̂ε,G =
0.207. The value obtained for the AIC were AICS = −314
and AICG = −306 respectively, while the median average
percentage error was MAPES = 5.94% and MAPEG =
6.31%.

Once both models were estimated through the standard
procedure, we applied a metaheuristic to fine-tune the pa-
rameters. After [1]s, a Genetic Algorithm was chosen and
applied.

Using the GA to fine tune the parameters, left us with the
following two models:

yt = 0.3978 + 1.2560yt−1 − 0.3359yt−2+

(1.0193 + 0.3744yt−1 − 0.7736yt−2)μS(xt;ψS) + εt

(13)

in the sigmoid case, with ψS = (γ,ω, c) =
(38.9935, [0.4969, 0.8678], 4.1306), and

yt = 0.4023 + 1.2224yt−1 − 0.3103yt−2+

(0.8099 + 0.3751yt−1 − 0.7074yt−2)μG(xt;ψG) + εt

(14)

in the Gaussian case, where ψG = (γ, c) =
(10.000, [2.576, 6.831]). For these models tuned with the
GA, the obtained residual standard deviation was σ̂ε =
0.191 for the sigmoid and σ̂ε = 0.205 for the Gaussian
membership function. The value obtained for the AIC were
AICS = −313 and AICG = −307 respectively, while the
median average percentage error was MAPES = 5.90%
and MAPEG = 6.26%.

As we can see in Table 1, the FRBM model managed
to capture most of the autocorrelation of the data, as up to
12th order the null hypothesis of linear independence of the
residuals is not rejected. For comparison, we show the p-
values of the test for the AR(2) model, which show that the
null hypothesis might be rejected in most of the orders for
this model. That means that (as the linearity test already
show) an AR(2) model fails to capture the inner behaviour
of the series, and hence that the series is nonlinear.

5. Conclusions

In this paper we have shown how to apply hypothesis
testing against linear independence of the residuals of a
FRBM, when used in the framework of time series mod-
eling and analysis.

The application of the proposed test allows the practi-
tioner to gain a deeper insight about the goodness of his/her
model, and to discard it if it fails to capture the possible
nonlinearity of the data. The use of the test complements
the use of other common error measures as the RMSE or
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the MAE as it gives a different type of information about
the performance of a given model.

This test is an important result which is framed in a con-
tinuous effort to provide the fuzzy rule-based modeling of
time series with a statistically sound background and with
useful statistical methods and procedures.
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