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Abstract 

 
This paper proposes a new method for selecting 

input variables in short-term electric load forecasting. 
It is known that input and output variables do not 
follow the Gaussian distribution in load forecasting. In 
this paper, a hybrid method of Graphical Modeling 
(GM) and Deterministic Annealing Expectation 
Maximization (DAEM) clustering is presented to 
clarify causal relationship between the explained one-
step-ahead electric load and the explanatory variables. 
GM is effective for estimating the relationship between 
variables with the Gaussian distribution. The DAEM 
algorithm is used to decompose non-Gaussian data 
into clusters of Gaussian data so that GM is applied to 
Gaussian data in clusters. The proposed method is 
successfully applied to the real data.  
 
1. Introduction 
 

This paper proposes a method for evaluating the 
causal relationship between the explained and the 
explanatory variables in short-term electric load 
forecasting. A hybrid method of graphical modeling 
(GM) and Deterministic Annealing Expectation 
Maximization (DAEM) clustering is used to provide 
more realistic relationship. In power system operation, 
short-term electric load forecasting is very important to 
smooth Economic Load Dispatching (ELD), unit 
commitment, etc.[1]. Recently, the degree of 
uncertainty increases due to the emergence of 
deregulated and competitive power market. As a result, 
the power system players are interested in maximizing 
a profit while minimizing a risk in power systems. 
However, it is more difficult to understand the 
variation factor of the electric load due to the 
complexity of power markets and networks[2-4]. 
Therefore, it is necessary to clarify the causal 
relationship between the explained and explanatory 
variables and to 

enhance the model accuracy in load forecasting.  
In this paper, a GM-based method with DAEM 

clustering is presented to deal with the casual 
relationship of non-Gaussian data. GM is one of 
statistical multivariate analysis techniques that play a 
role to clarify the causal relationship of model 
variables. GM selects the covariance of variables under 
the assumption that they follow multivariate normal 
distribution[5]. As a result, the case of handling non-
Gaussian data as shown in Fig. 1 is an open problem. 
This paper proposed a new method to extend the 
conventional GM to handle non-Gaussian data. This 
paper employs a fuzzy clustering technique with the 
DAEM algorithm to cluster the multi-dimensional data 
through a multivariate mixture normal distribution 
(MMND) model. The method is successfully applied to 
real data of the New York Independent System 
Operator (NYISO). 
 
2. Graphical modeling 
 

Fig. 2. Network Models 
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Fig. 1. Frequency Distribution of Electric Hourly Load 

of Capital (NYISO) at 2 p.m. 
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This section describes GM that selects the 
explanatory variables from the candidates[5]. It is 
known for one of the statistical multivariate analysis 
techniques that clarifies the causal relationship of 
variables. 
 
2.1. Network models 
 

As shown in Fig. 2, there exist three kinds of 
expressions of a network model. The full network is a 
model with the maximum number of edges, and the 
null model is minimum one. The reduced model is a 
network in the middle of them in a way that the edges 
between variables without relationship are removed. 
GM is employed to construct the reduced model in 
understanding a meaningful relationship between 
nodes that are regarded as the explained or candidates 
of explanatory variable while filtering out the 
negligible variables. A direct graph is given through 
the possibilities of cause-effect of variable pairs, 
sequence or temporality. 
 
2.2. Partial correlation coefficient 
 

The partial correlation coefficient is the basic 
concept in GM of a quantitative variable. Although the 
correlation coefficient shows the relationship of 
variable pairs quantitatively, it does not show the 
realistic correlation in a case where an indirect 
influences exists with a hidden common cause between 
them. Suppose that the hidden common exists. Since 
two variables share the correlation with the third one, 
there is a possibility that the correlation of two 
variables is affected by the rest. This is called the 
spurious correlation or spurious association[6]. The 
partial correlation coefficient differs from the 
correlation one. It is important to remove the influence 
of spurious correlation in evaluating the relationship of 
a couple of variables. Now, let us define the correlation 
coefficient matrix and its inverse one as 

)( ijρ=Π and )(-1 ijρ=Π  respectively. The partial 
correlation coefficient may be written as  

iiii

ij

restij
ρρ

ρρ −=⋅   (1) 

where 
ijρ : coefficient of inverse matrix of correlation 

coefficient matrix 
restij⋅ρ : coefficient of the partial correlation 

coefficient 
 
2.3. Covariance selection 
 

The covariance selection proposed by Dempster is 
useful for the covariance selection model[7]. It makes 
use of the multi-dimensional data that follows a 
multivariate normal distribution (MND) and assumes 
the conditional independence of other variables to be 
fixed. The partial correlation coefficients of variable 
pairs with a small absolute value often appear after the 
partial correlation coefficients were obtained from the 
sample data. Such tiny coefficients should be removed 
from a standpoint of the principle of parsimony in 
statistics. To remove the coefficients, the negligible 
variables are assumed to be conditional independent, 
and replaced with zero in the covariance selection. 

To fit a covariance selection model systematically, 
this paper focuses on the cyclic fitting algorithm 
proposed by Wermuth and Scheidt to estimate the 
parameters of the covariance structure of a MND[8]. 
This algorithm settles the partial correlation 
coefficients with the conditional independence to zero 
sequentially while estimating other parameters. Speed 
and Kiiveri proved that the solution of this algorithm 
converged in maximum likelihood estimate (MLE)[9]. 
 
3. DAEM clustering 
 

Deterministic Annealing Expectation Maximization 
(DAEM) algorithm[10] is the modified version of the 
EM algorithm[11] that carries out the maximum 
likelihood estimation for system with unobservable 
hidden variables. Since the input data of GM obeys a 
MND, the paper makes use of data clustering with 
DAEM algorithm as a preprocessing to divide 
population of input data into the subsets to which GM 
is applicable. 

 
3.1. EM algorithm 
 

The EM algorithm is widely used for fitting the 
finite mixture model from incomplete data by the 
maximum likelihood[12]. It has been successfully 
employed in statistical learning, clustering and data 
communication[13-14]. Let y be a d- dimensional data. 
The mixture model may be written as  

∑
=

=
M

m
mmm fp

1

)|()|( θyy πθ   (2) 

where 
)|( mmf θy : probability density function (PDF) 

conditional on mθ  

mπ : mixing probabilities, 0≥mπ  1
1

=∑ =

M

m mπ  

mθ : parameters of m-th component 
y : incomplete data, ),...,( 1 Nyyy =  

According to the multivariate mixture normal 
distribution, function f may be written as  
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where 
μ : center vector 
Σ : covariance matrix 

The log likelihood for θ  that is obtained from y  
may be written as  

∑ ∑
= =

=
N

n

M

m
mmm fL

1 1

})|(log{)( θyπθ   (4) 

MLE of θ  is obtained by maximizing the equation. 
The EM algorithm was proposed to solve the 
formulation of (4) with the nonlinearity[11]. In the 
generalized EM algorithm, y is viewed as an 
incomplete data associated with latent variables and 
the EM algorithm maximizes (5) of the conditional 
expectation of the log likelihood instead of maximizing 
(4) directly. 

∑
=

=

=
N

n

t

tt

pP

pEQ

1

)(log)(

}|)({log)|(

θθ

θθθθ

)(

)()(

|xy,y,|x

y,|xy,
  (5) 

where 
y : observed variables 
x: latent variables 

)|( )(θθ tQ : conditional expectation of the log 
likelihood of complete data 

)( )(θ tP y,|x : posterior probability of x conditional on 
)(θ t  and y  

)(θ t : current estimate of step t 
 

From Bayes’ theorem, )( )(θ tP y,|x  may be written as 

∑
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The EM algorithm may be summarized as follows: 

Step 1: Set the initial conditions of )(θ 0  and 
0←t  

Step 2: (E step) compute )|( )(θθ tQ  
Step 3: (M step) )|(maxarg )(

θ

1)( θθθ tt Q=+
  

Step 4: Stop if ε≤−+

)(

)()(

θ
θθ

t

tt 1

. Otherwise, 

1+← tt  and return to Step 2 
 
The monotone behavior of the log likelihood 

function is guaranteed in a case where the Q function 
monotonously increases[11]. If the initialization is not 
close to a global optimum, the solution of the 
algorithm may be a local one. Suppose that the EM 

algorithm is applied to the MMND. The Q function 
may be written as  
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where 
nmq : posterior probability that the observed 

variable ny  is assigned to the m-th 
component 

Under the constraint condition of 1
1

=∑ =

M

m mπ , the Q 
function is maximized by maximizing (9) with the 
Lagrange multiplier method.  
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The mixing probabilities may be obtained as 
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The parameters μ  and Σ  may be calculated as 
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3.2. DAEM algorithm 
 

The EM algorithm is useful for obtaining a local 
optimum efficiently. However, it does not converge to 
global one due to the influence of initial conditions on 
the final one[10][12-13]. Several improved versions 
have been proposed to improve the convergence 
characteristics to a global optimum[12][14-15]. In 
particular, the performance is significantly improved 
by deterministic annealing[10]. To avoid local optima, 
this method smoothes the Q function through 
introducing the concept of temperature state in 
iteration. From the law of entropy increase, it is 
repeated until the algorithm converges to an 
equilibrium configuration for a fixed temperature state 
while the temperature state slowly decreases from high 
to low[6]. In the DAEM algorithm, (8) may be 
rewritten as  
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β  is temperature parameter that corresponds to 

reciprocal of temperature. It starts from minβ  of initial 
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state and ends up to maxβ . If the algorithm converges at 
each temperate state, β  is increased with  

ratenext βββ ×←   (14) 
 
4. Proposed method 
 

This paper proposes a new method for clarifying the 
casual relationship in electric load forecasting. The 
proposed method is based on the hybrid method that 
consists of GM and DAEM clustering. GM is very 
useful for selecting input variables with the partial 
correlation. DAEM clustering serves as a 
preconditioned technique that classifies input data of 
the explained variable and the candidates of 
explanatory variables into clusters. The reason of using 
the DAEM clustering gives as follows: 

 
a) Since GM deal with the casual relationship 

between Gaussian variables, a new technique 
is required to handle the casual relationship 
between non-Gaussian variables. The user of 
DAEM allows the uses to decompose non-
Gaussian data into clusters of Gaussian data. 

b) The DAEM algorithm has advantage that the 
obtained results are not affected by initial 
conditions. Namely, the introduction of 
Deterministic Annealing into the EM 
algorithm brings about a robust algorithm for 
decomposing non-Gaussian data into clusters 
of Gaussian data. 

 
Fig. 3 shows the conceptual diagram of the 

proposed method with five variables, where Variable 1 
is the explained variable and Variables 2-5 are the 

candidates of explanatory variables. First, the 
distribution of the data is estimated by the DAEM 
algorithm, and the posterior probability that the 
observed variable ny  is assigned to the m-th 
component may be calculated by (15). 
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where 
 

**,Σμ : MLEs of the parameter of the MMND 
Let α  to be a threshold value. A rule may be 

defined as soft clustering that if 1* << nmqα , data ny  is 
assigned to the m-th cluster[16]. In the process of GM, 
the influence of spurious correlation is removed by the 
partial correlation coefficients and the MLEs of the 
partial correlation coefficient are estimated by 
covariance selection. Finally, to evaluate the causal 
relationship of the explained variable and the 
candidates of explanatory variable, the cause-effect 
graphs are constructed with the results. 

Table 1. Explained Variable and Candidates of 
Explanatory Variable 

  Contents No. Zone of NYISO or 
ISO

Explained 
Variable

Electric Hourly Load 
(day＋1) of 14-hour Z1 Capital 

Candidates of 
Explanatory 

Variable 

Electric Hourly Price 
(day) of 14-hour 

X1 Capital 
X2 Central
X3 Dunwoodie 
X4 Genesee 
X5 Hydro-Quebec
X6 Hudson Valley 
X7 Long Island
X8 Mohawk Valley 
X9 Millwood 
X10 N.Y.C. 
X11 North 
X12 NEISO
X13 Ontario Hydro 
X14 PJM
X15 West 

Electric Hourly Load 
(day) of 14-hour 

X16 Capital 
X17 Central
X18 Dunwoodie 
X19 Genesee
X20 Hudson Valley 
X21 Long Island 
X22 Mohawk Valley 
X23 Millwood 
X24 N.Y.C.
X25 North 
X26 West

Note) the zone in gray is Independent System Operators (ISOs) 
that is adjacent to NYISO 

 

Fig. 3. Concept of Proposed Method 
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5. Simulation 
 
5.1. Simulation conditions 
 

The proposed method was applied to real data in 
NYISO[17]. This paper focuses on one-day-ahead 
electric load in Capital at 2 p.m.  as the explained 
variable, where Capital means a zone in NYISO, and 
the load varies in a nonlinear and non-Gaussian way at 
2 p.m. as shown in Fig. 1. To select appropriate 
explanatory variables, the paper prepares 26 candidates 
as shown in Table 1. A set of data (26×1276; 2005/2/1 
to 2008/7/31) was used as test data. To demonstrate the 

effectiveness of the proposed method, this paper made 
a comparison between the proposed and other methods. 
For convenience, the following methods are defined as  

 
Method A :  Correlation Coefficient 
Method B :  Graphical Modeling (GM) 
Method C :  EM Clustering and GM (Proposed) 
Method D :  DAEM Clustering and GM (Proposed) 
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Fig. 8. Results of Method D 
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Fig. 7. Results of Method C 
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Fig. 6. Results of Method B 
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Fig. 5. Results of Method A 
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Fig. 4. Conditional Expectation of the Log Likelihood of 

Method C and D 

Table 4. Results of Clustering 

Methods A and B Center  of 
All Data ( 0.49, 0.55, 0.54,..., 0.47, 0.25, 0.66 ) 

Method C 
Center 1 ( 0.49, 0.56, 0.55..., 0.48, 0.25, 0.67 ) 
Center 2 ( 0.47, 0.54, 0.54,…, 0.44, 0.25, 0.64 ) 
Center 3 ( 0.55, 0.56, 0.55,..., 0.44, 0.25, 0.64 ) 

Method D 
Center 1 ( 0.50, 0.56, 0.55,…, 0.48, 0.25, 0.67 ) 
Center 2 ( 0.47, 0.54, 0.54,…, 0.44, 0.25, 0.64 ) 
Center 3 ( 0.55, 0.57, 0.55,…, 0.57, 0.25, 0.72 ) 

 

Table 3. Results of Clustering 
  Mixing Probability Data 

Methods A and B All Data 1 1277 

Method C 
Cluster 1 0.37 507 
Cluster 2 0.53 714 
Cluster 3 0.1 142 

Method D 
Cluster 1 0.36 501 
Cluster 2 0.53 709 
Cluster 3 0.11 147 

 

 
Table 2. Parameters of Methods 

Common Parameters of EM and 
DAEM  DAEM 

ε  410−≤⋅   minβ  0.5 

M 3  maxβ  1.0368 

α  0.2  rateβ  1.1 

Where, ε  is the convergence criterion for EM and DAEM  

 

Convergence Point 
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The parameters of each method were fixed as 

shown in Table 2. 
 
5.2. Simulation results 
 

Fig. 4 shows the conditional expectation of the log 
likelihood of EM and DAEM clustering that are used 
as a data preprocessing of Methods C and D 
respectively. It can be seen that Method C converges to 
a local optimum due to the high sensitivity to the initial 
values. On the other hand, Method D obtains a better 
solution to avoid local optima with smoothing the Q 
function. It means that the results of Method D are 
more accurate than those of Method C. That is because 
the clustering solution of Method D was more 
appropriate. Tables 3 and 4 show the results of 
clustering of Methods C and D. It can be observed that 
although the center vectors of each cluster estimated by 
Method D do not overlap mutually, a part of data 
vectors are shared in two or more clusters for 
clustering softly. Figs. 5 and 6 show the correlation 
and the partial correlation coefficients between the 
explained variable and the candidates of explanatory 
variables, respectively. It can be seen that the day-
ahead load Z1 of Capital has strongly positive 
correlation with a lot of candidates. However, the 
partial correlation coefficient dose not. After the 
spurious correlation was removed, Z1 is strongly linked 
to X19 and X21 with positive causal relationship and X24 
with negative one (see Fig. 6). The causal relationship 
for clustering results was investigated in detail with 
Methods C and D. It can be seen that the causal 
relationship of each cluster is different from others. It 
implies that the optimal explanatory variables may be 
different on different day. The proposed method makes 
the directed graph of causal relationship based on 
temporality. Fig. 9 gives the causal relationship of Z1, 
X16, X19, X21 and X24 for Method D of Cluster 1.  
 
6. Conclusion 
 

This paper has proposed a new method for the 
variable selection of electric load forecasting. The 
proposed method makes use of a hybrid method that 

consists of DAEM clustering and GM. DAEM 
clustering plays a key role to divide the non-Gaussian 
data into Gaussian clusters so that the realistic causal 
relationship of each cluster was estimated by GM. The 
proposed method was successfully applied to real data 
of NYISO. The simulation results have shown that the 
proposed method provides more appropriate variable 
selection than the conventional methods.  
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Fig. 9. Cause-effect Graph of Method D of Cluster 1 
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