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Abstract

In this paper, the texture property ”coarseness”
is modeled by means of type-2 fuzzy sets, relating
representative coarseness measures (our reference set)
with the human perception of this texture property. The
type-2 approach allows to face both the imprecision in
the interpretation of the measure value and the uncertainty
about the coarseness degree associated to a measure value.
In our study, a wide variety of measures is analyzed, and
assessments about coarseness perception are collected from
pools. This information is used to obtain type-2 fuzzy sets
where the secondary fuzzy sets are modelled by means of
triangular membership functions fitted to the collected data.

1 Introduction

For analyzing an image several kind of features can be
used. From all of them, texture is one of the most popular
and, in addition, one of the most difficult to characterize due
to its imprecision. For describing texture, humans use vague
textural properties like coarseness-fineness, orientation or
regularity [1, 2]. Among all, the coarseness-fineness is the
most common one, being usual to associate the presence of
fineness with the presence of texture. In this framework, a
fine texture corresponds to small texture primitives (e.g. the
image in Fig. 1(A)), whereas a coarse texture corresponds
to bigger primitives (e.g. the image in Fig. 1(I)).

There are many measures in the literature that, given
an image, capture the fineness (or coarseness) presence
in the sense that the greater the value given by the
measure, the greater the perception of texture [3]. However,
given a measure value, there is not an immediate way to
decide whether there is a fine texture, a coarse texture
or something intermediate; in other words, there is not a
textural interpretation.

To face this problem, fuzzy logic has been recently used
for representing the textural imprecision (most of them

type-1 fuzzy approaches). In many of these proposals,
fuzzy logic is applied just during the process, being the
output a crisp result [4]. Interesting type-1 approaches
emerge from the content-based image retrieval field, where
semantic data are managed by means of fuzzy sets [5].
However, these fuzzy sets are not obtained by considering
the relationship between the feature and the human
perception of texture. About type-2 fuzzy approaches, there
are some proposals in the literature that use interval-valued
fuzzy set for image restoration [6], edge detection [7] or
segmentation [8, 9]; nevertheless, to our knowledge, type-2
fuzzy sets have not been used for texture modeling.

Recent type-1 approaches try to represent the texture and
its semantic by means of fuzzy sets defined on the domain
of a given texture measure [10]. A good starting point in
the previous approaches in order to obtain a fuzzy model
is to collect user assessments for a certain set of images
where the different fulfilment degrees of the feature is well
represented. However, it is almost impossible to find a clear
functional correspondence between values of measures of
texture features and fulfilment degrees of the corresponding
fuzzy sets, because different images having the same value
of a given measure are usually given different membership
degrees by the users. In this situation, as it is well known,
type-2 fuzzy sets is the most suitable tool to represent the
uncertainty about the actual membership degree for every
value in the reference set (domain of the measure).

In this paper, the texture property coarseness is modelled
by means of type-2 fuzzy sets defined on the domain of a
given measure. With this approach two problems in the
texture modeling will be faced: firstly, the imprecision
in the interpretation of the measure value, secondly, the
uncertainty about the association between measure values
and degree of coarseness-fineness. For defining the fuzzy
sets, information about human perception of coarseness will
be used to relate the measures values with this perception.

The rest of the paper is organized as follows. In section
2 we present our methodology to obtain type-2 fuzzy sets
modelling coarseness. Results are shown in section 3, and
the conclusions and future work are sumarized in section 4.
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Figure 1. Some examples of images with
different degrees of fineness

2 Coarseness Type-2 Fuzzy Modeling

As it was pointed out, there is not a clear perceptual
interpretation of the value given by a coarseness-fineness
measure1. In addition, there is uncertainty about
the association between measure values and degree of
coarseness-fineness. In order to face this problem, we
propose to model the coarseness-fineness perception as
a type-2 fuzzy set defined on the domain of a given
measure. Let P = {P1, . . . , PK} be a set of measures
of coarseness-fineness and let T̃k be a type-2 fuzzy set
defined on the domain of Pk ∈ P representing the concept
of ”coarseness-fineness”. Thus, the type-2 membership
function2 associated to T̃k will be defined as

T̃k : R × [0, 1] → [0, 1] (1)

where T̃k(x, u) represents the degree to which u is in the
fuzzy set representing the membership degree of x in T̃k.
The secondary fuzzy set representing the membership of
every element x ∈ R to the type-2 fuzzy set T̃k is denoted
by T̃k,x, with membership function T̃k,x : [0, 1] → [0, 1].

Given a measure Pk ∈ P , we propose to obtain T̃k

by finding a type-2 membership function defined on Pk

1Let us remark that ”coarseness” and ”fineness” are opposite, and hence
related, properties

2From now on, in order to simplify the notation, we will use the
same notation T̃k for the type-2 fuzzy set and for the type-2 membership
function that defines it

modeling the perception degree of coarseness-fineness. To
do it, we will use a set I = {I1, . . . , IN} of N images
that fully represent the different degrees of fineness. Thus,
for each image Ii ∈ I, we will obtain (a) a human
assessment of the fineness degree perceived, noted as vi,
which will be collected by means of a poll with human
subjects (section 2.1), and (b) a value calculated applying
the measure Pk ∈ P to the image Ii, noted as mi

k. From
the multiset Ψk = {(m1

k, v1), . . . , (mN
k , vN )}, the function

T̃k will be estimated (section 2.2).

2.1 Assessment collection

In this section, the way to obtain the set Γ =
{v1, . . . , vN} of assessments associated to I will be
described.

2.1.1 The texture image set

A set I = {I1, . . . , IN} of N = 80 images representative
of the concept of coarseness-fineness has been selected.
Fig. 1 shows some images extracted from the set I. Such
set has been selected satisfying the following properties: (1)
it covers the different presence degrees of fineness, (2) the
number of images for each presence degree is representative
enough, and (3) each image shows, as far as possible, just
one presence degree of fineness. Due to the third property,
each image can be viewed as ”homogeneous” with respect
to the fineness degree represented, i.e., if we select two
random windows (with a dimension which does not ”break”
the original texture primitives and structure), the perceived
fineness will be the same for each window (and also respect
to the original image).

As we explained, given an image Ii ∈ I, a set of
measures P will be applied on it. In fact, and thanks to
the third property, we really can apply these measures to
subimages (windows), assuming that the human assessment
associated to that subimage will be the human assessment
associated to the whole image. From now on, we will note
as mi,w

k the result of applying the measure Pk ∈ P to
the w-th window of the image Ii. Therefore, the multiset
Ψk is redefined as Ψk = {(mi,w

k , vi), i = 1, . . . , N ;w =
1, . . . , W}, with N being the number of images and W the
number of windows considered for each image. From now
on, we will note as pi,w

k the pair (mi,w
k , vi).

2.1.2 The poll

In order to obtain assessments about the perception of
fineness, L subjects will be asked to assign images from
I to classes, so that each class has associated a perception
degree of fineness. In particular, L = 20 subjects have
participated in the poll and 9 classes have been considered
(the nine images in Fig. 1 show the nine representative
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images for each class used in this poll). As result, a vector
of 20 assessments Θi = [oi

1, . . . , o
i
20] is obtained for each

image Ii ∈ I. The degree oi
j associated to the assessment

given by the subject Sj to the image Ii is computed as
oi

j = (9 − l) ∗ 0.125, where l ∈ {1, . . . , 9} is the index of
the class Cl to which the image is assigned by the subject.

2.1.3 Assessment aggregation

For each image in I, one assessment vi that summarizes
the Θi values is needed. To aggregate opinions, an OWA
operator guided by a quantifier have been used. Concretely,
the quantifier ”the most” has been used, which allows to
represent the opinion of the majority of the subjects [11].

2.2 Fitting the membership function

At this point, the aim is to obtain, for a given measure
Pk ∈ P , the corresponding type-2 membership function
T̃k. We will restrict ourselves to type-2 functions such that
the membership function of the secondary fuzzy set T̃k,x is
a triangular function defined on [0, 1] with parameters ax ≤
bx ≤ cx ∈ [0, 1]. Thus, T̃k is defined in the following way:

T̃k(x, u) =

⎧⎪⎪⎨
⎪⎪⎩

0 u ≤ ax
u−ax

bx−ax
ax ≤ u ≤ bx

cx−u
cx−bx

bx ≤ u ≤ cx

0 u ≥ cx

(2)

The rationale behind this choice is the following: when
there is no uncertainty about the fuzzy model, each value
x ∈ R is assigned a membership degree in [0, 1] (type-1
approach); hence, a natural way to take into account
uncertainty about the model (type-2 approach) is to assume
there is uncertainty about the membership degree, so that
instead of a precise value bx ∈ [0, 1], we will use an
approximate value of the form around bx, that is usually
modeled as a triangular membership function with kernel
bx. If there is no uncertainty about the fuzzy model, we
are in the case ax = bx = cx, corresponding to a type-1
fuzzy set (in which case we denote the type-1 membership
function as Tk, verifying Tk(x) = ax = bx = cx).

The function proposed in Eq.2 can be characterized and
described by means of three functions:

fa
T̃k

, f b
T̃k

, fc
T̃k

: R → [0, 1] (3)

with fa
T̃k

(x) ≤ f b
T̃k

(x) ≤ fc
T̃k

∀x ∈ R, so that, for each

(x, u) ∈ R × [0, 1], the type-2 membership function T̃k

is calculated as in Eq.2 using as parameters ax = fa
T̃k

(x),
bx = f b

T̃k
(x), and cx = fc

T̃k
(x). Fig. 2 shows graphically

an example of this kind of type-2 membership function. A
bidimensional representation is also showed in Fig. 3.

Notice that an interval-valued fuzzy set (a special case
of type-2 fuzzy set) can be obtained just considering ax =
fa
T̃k

(x) and cx = fc
T̃k

(x) as the extremes of the interval, that

is, assigning values 1 to pairs (x, u) ∈ R × [0, 1] such that
fa
T̃k

(x) ≤ u ≤ fc
T̃k

(x), and 0 otherwise.

Our approach to obtain the membership function T̃k

is based on obtaining the functions fa
T̃k

, f b
T̃k

, and fc
T̃k

.
Since we are searching for a function which associates
the measure values (mi,w

k ) and the human assessments of
fineness (vi), we propose to estimate the three functions by
fitting suitable curves on the basis of the multiset of points
Ψk = {(mi,w

k , vi), i = 1, . . . , N ;w = 1, . . . , W}, with N
being the number of images and W the number of windows
considered for each image. In the next sections we shall
introduce and justify the approaches followed to obtain f b

T̃k

(section 2.2.1) and both fa
T̃k

and fc
T̃k

(section 2.2.2).

2.2.1 Estimation of the function f b
T̃k

As we mentioned in the previous section, the secondary
fuzzy set T̃k,x represents the uncertainty about the actual
membership degree of x by means of a triangular fuzzy
set whose semantics is “around bx”. The first step is to
determine the most suitable value of bx ∀x ∈ R that, as
we explained, will be given by bx = f b

T̃k
(x). Our idea is

that the value in [0,1] with higher possibility to be bx can
be obtained as a central tendency measure calculated in the
subset of pairs in Ψk, so we shall calculate f b

T̃k
as a function

representing the central tendency of the set Ψk

Following this idea, we propose to define f b
T̃k

as a

function of the form3

f b
T̃k

(x; an . . . a0, α, β) =

⎧⎨
⎩

0 x < α,
polyn(x; an . . . a0) α ≤ x ≤ β,
1 x > β

(4)
with polyn(x; an . . . a0) being a polynomial function

polyn(x; an . . . a0) = anxn + . . . + a1x
1 + a0 (5)

In our proposal, the parameters an . . . a0, α and β of the
function f b

T̃k
are calculated by carrying out a robust fitting

on Ψk with the constraint to obtain a monotonic function.
For the polynomial function, the cases of n=1,2,3 (i.e.
linear, quadratic and cubic functions) have been considered.
In this paper, the robust fitting based on M-estimators (a
generalization of the least squares fitting) has been used
[12]. For each image Ii ∈ I, W = 2000 subimages of
size 32 × 32 have been considered (so 16000 points have
been used for the fitting).

3Note that this function is defined for measures that increase according
to the perception of fineness. For those that decreases, the function needs
to be changed appropriately
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2.2.2 Estimation of the functions fa
T̃k

and fc
T̃k

As we have seen, the triangular secondary fuzzy set T̃k,x has
the semantics ”around bx”, with bx = f b

T̃k
(x) calculated

as the central tendency of Ψk. Not only the value of this
central tendency, but also the actual semantics of around
must be calculated for each x ∈ R. This semantics is given
by the support of T̃k,x (the interval [ak, ck]) and, in our view,
should reflect the variability or deviation of the values vi

around the expected central value bx.
Thus, we propose to estimate the functions fa

T̃k
and fc

T̃k

as central tendencies of the variability above and below
bx = f b

T̃k
(x), respectively. As in the previous section,

we propose to obtain the two functions by fitting suitable
curves on the basis of a set of points, noted as Υa

k and
Υc

k, representing the variability above and below f b
T̃k

,
respectively. How we obtain these sets Υa

k and Υc
k is

explained next.
For each point pi,w

k = (mi,w
k , vi) ∈ Ψk we define the

following deviation measure

σi,w,Ω
k =

√√√√
∑

pi′,w′
k ∈Ω

(vi′ − f b
T̃k

(mi,w
k ))2wei′,w′

k∑
Ω wei′,w′

k

(6)

with Ω being a set of points in Ψk around pi,w
k , and wei,w

k

being the weight calculated for pi,w
k during the f b

T̃k
fitting

procedure.

Let Ω
i,w

k = {pi′,w′
k ∈ Ψk, ‖ pi′,w′

k − pi,w
k ‖≤ λ; vi′ ≥

f b
T̃k

(mi′,w′
k )} be the set of points around pi,w

k (at a distance

lower than λ) located above the function f b
T̃k

. In a similar

way, let Ωi,w
k = {pi′,w′

k ∈ Ψk, ‖ pi′,w′
k − pi,w

k ‖≤ λ; vi′ ≤
f b
T̃k

(mi′,w′
k )} be the set of points around pi,w

k and located

below the function f b
T̃k

. In this paper, λ has been selected

to ensure that the size of both Ω
i,w

k and Ωi,w
k is 30 in each

case (size enough for statistical analysis).
Using the previous concepts, we define4 Υa

k =
{(mi,w

k , σ
i,w,Ω
k ), i = 1, . . . , N ;w = 1, . . . , W} as the set of

pairs representing the deviation above the function f b
T̃k

. In a

similar way, let Υc
k = {(mi,w

k , σi,w,Ω
k ), i = 1, . . . , N ;w =

1, . . . , W} be the set of pairs representing the deviation
below the function f b

T̃k
.

Finally, we propose to define fa
T̃k

(resp. fc
T̃k

) following
the Eq.4 and obtaining the parameters an . . . a0, α and β by
carrying out a robust fitting on Υa

k (resp. Υc
k) in the same

way we did for the f b
T̃k

function (section 2.2.1).

4In order to simplify the notation, the indexes have been removed in

Ω
i,w
k and Ωi,w

k

Table 1. Error related to each model and
parameters for the measure of Amadasun

Measure Error Parameters for Amadasun
Amadasun [1] 0.1290 f b

T̃k
fa
T̃k

fc
T̃k

Correlation [3] 0.1353 α 0.1735 0.2089 0.1482
Abbadeni [13] 0.1564 β 0.6425 0.8727 0.5512
FD [14] 0.1769 a0 1.8767 1.9037 2.6750
Tamura [2] 0.1806 a1 -6.3436 -6.1434 -16.090
ED [15] 0.1846 a2 8.2216 10.982 37.569
Weszka [16] 0.1873 a3 -4.5051 -12.021 -37.168
DGD [17] 0.1955 a4 0.0000 5.3161 10.878
LH [3] 0.2011
SRE [18] 0.2108
SNE [19] 0.2156
Newsam [20] WSD
Entropy [3] WSD
Uniformity[3] WSD
FMPS [21] WSD
Variance[3] NR
Contrast [3] NR

2.2.3 Goodness of the fitting

To analyze the performance of the fitting, we propose the
following goodness measure calculated as a weighted mean
of absolute differences:

Ek =

∑
i,w |f b

T̃k
(mi,w

k ) − vi| · (1 − T̃k(mi,w
k , vi)) · wei,w

k∑
i,w wei,w

k

(7)
Table 1 shows the error obtained for each measure Pk ∈

P sorted in increasing order. The parameter values of the
measure with the lowest error are also shown in Table 1. It
should be noticed that we haven’t carried out the fitting with
six of the measures. Four of them (marked with WSD) are
rejected because their values are affected by the window
size. The other two (marked with NR) produce a diffuse
cloud of points ΨF , so they do not provide representative
information.

3 Results

In this section, the type-2 fuzzy set T̃k with the least
error (obtained for Amadasun’s measure and defined by the
parameter values shown in Table 1) will be applied in order
to analyze the performance of the proposed model. Fig. 2
shows graphically the type-2 membership function T̃k(x, u)
used in our experiments.

Let’s consider Fig. 3(A) corresponding to a mosaic made
by several images, each one with a different increasing
perception degree of fineness. Images in Fig.3(B,C) show,
respectively, a mapping from the original image to the
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Figure 2. Type-2 membership function

kernel (given by bx) and the support width (given by
|ax − cx|) of the secondary fuzzy sets T̃k,x. For each
pixel in the original image, a centered window of size
32 × 32 has been analyzed to obtain ax = fa

T̃k
(x), bx =

f b
T̃k

(x) and cx = fc
T̃k

(x). Thus, Fig. 3(B) represents
the degree in which the human perceives the texture,
with a white grey level meaning maximum perception
of fineness, and a black one meaning no perception of
fineness (i.e., maximum perception of coarseness). Fig.
3(C) can be interpreted as the uncertainty in the estimated
fineness membership degree, where a white grey level
means maximum uncertainty, and a black one means no
uncertainty. A bidimensional representation of the type-2
membership function used in this experiment is showed in
the top of Fig. 3 (a zenithal view of Fig.2). As example, this
graph shows the mapping process for two different windows
of the original image (marked as 1 and 2 in Fig.3(A)).
It can be noticed that our model captures the evolution
of the perception degrees of fineness, showing high (resp.
low) degrees for fine (resp. coarse) textures. In addition,
the uncertainty in the degrees is also captured (Fig.3(C)),
showing less uncertainty in the very fine and very coarse
cases than in the intermediate cases.

Fig. 4 presents an example where the proposed type-2
fuzzy set has been employed for pattern recognition. In
this case, the figure shows a microscopy image (Fig.
4(A)) corresponding to the microstructure of a metal
sample. The lamellae indicates islands of eutectic, which
are to be separated from the uniform light regions.
The brightness values in regions of the original image
are not distinct, so texture information is needed for
extracting the uniform areas. This fact is shown in Fig.
4(B1,B2), where a thresholding on the original image is
displayed (homogeneous regions cannot be separated from

Figure 3. Mosaic image example (A) Original
image (B)(C) Mapping from the original image
to the kernel and support width of the
secondary fuzzy sets

the textured ones as they ”share” brightness values). Fig.
4(C1,C2) shows a mapping from the original image to
the kernel (bx) and the support width (|ax − cx|) of the
secondary fuzzy sets T̃k,x. Thus, Fig. 4(C1) represents
the degree in which the human perceives the texture and
Fig. 4(C2) the uncertainty of that degree. It can be noticed
that uniform regions in Fig. 4(C1) correspond to areas
with low degrees of fineness (i.e., high coarseness), so if
only the pixels with fineness degree lower than 0.1 are
selected (which it is equivalent to a coarseness degree upper
than 0.9), the uniform light regions emerge with ease (Fig.
4(C3,C4)). In addition, Fig. 4(C2) shows low uncertainty
in the degrees associated to these areas.

4 Conclusions and future works

In this paper, type-2 fuzzy sets for coarseness-fineness
representation have been defined, relating measures values
(the reference set) with the human perception of this texture
property. In order to obtain assessments about fineness
perception, a group of human subjects has been polled.
From the collected data, a fitting procedure has been applied
in order to obtain the parameters defining the membership
functions of the secondary fuzzy sets (in our case, triangular
functions). The resulting type-2 fuzzy sets model both the
imprecision in the interpretation of the measure value and
the uncertainty about the coarseness degree associated to
a measure value. In our study, the Amadasum’s measure
gives the best fitting; the results show a high connection
between our model and the human perception of coarseness.
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Figure 4. Pattern recognition example (A)
Original image (B1) Binary image obtained
by thresholding the original one (B2) Region
outlines of B1 superimposed on original
image (C1)(C2) Mapping from the original
image to the kernel and support width of
the secondary fuzzy sets (C3) Binary image
obtained by thresholding C1 (C4) Region
outlines of C3 superimposed on original
image

As future work, the combination of several measures as
reference set will be studied. In addition, the performance
of the proposal will be analyzed in applications like textural
classification or segmentation.
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