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Abstract—In this work an ignorance-based fuzzy clustering
algorithm is presented. The algorithm is based on the Entropy-
based clustering algorithm proposed by Yao et al. [1]. In our
proposal, we calculate the total ignorance instead of using the
entropy at each data point to select the data point as the first
cluster center. The experimental results show that the ignorance-
based clustering improves the data classification made by the
EFC in image segmentation.

Index Terms—Clustering, Ignorance functions, Restricted
equivalence functions, Image segmentation.

I. INTRODUCTION

Cluster analysis or clustering is the assignment of a set of

observations into subsets (called clusters) so that observations

in the same cluster are similar in some sense. Clustering is a

method of unsupervised learning, and a common technique for

statistical data analysis used in many fields, including machine

learning, data mining, pattern recognition, image analysis and

bioinformatics.

Among fuzzy clustering methods, the fuzzy c-means (FCM)

method [2], [3] is one of the most popular methods. One

important issue in fuzzy clustering is identifying the number

and initial locations of cluster centers. In classical FCM

algorithm, these initial values are specified manually.

In [4], [5] some methods are proposed that automatically

determine the number of clusters and the location of cluster

centers by the potential of each data point. Yao et al. in [1]

proposed a clustering method based on the entropy measure

in place of the potential measure.

A problem of this algorithm is to choose the correct thresh-

old in order to bound the maximun distance of the elements

belonging to a cluster. In [6] the data spread is considered to

determine the adaptive threshold within parameters optimized

by a genetic algorithm. The algorithm [7] eliminates threshold

constraint to detect possible cluster members. Cluster centers

are formed with minimum entropy, instead of using a fixed-

threshold, a decision region is formed with the use of maxi-

mum mutual information.

The EFC algorithm has some problems in some practical

applications. For example, for a dataset with two classes that

are symmetrically sparse, the EFC algorithm does not provide

a correct data partitioning due to the first cluster center being

located in the middle of all data, so clusters obtained with

this method are not correct. Therefore we propose to use other

measures that satisfy other properties, instead of distances and

the fuzzy entropy, to solve this problem of the symmetric data.

In this work we are going to replace the distance between

elements by restricted equivalence functions and the entropy

by ignorance functions.

This paper is organized in the following way: In Section II

the Entropy-based Fuzzy Clustering algorithm is explained. In

Section III we explain our proposed algorithm. In Section IV

we show some experimental results. Finally, some conclusions

are exposed.

II. ENTROPY-BASED FUZZY CLUSTERING

The basis of EFC is to find the elements which, if they are

supposed to be the center of the cluster, then the entropy of the

total set of elements is the lowest. This entropy is calculated

for each element taking into account the similarity of said

element with all the elements left (Sij), with the following

expression:

Ei = −

j 6=i
∑

j∈X

(Sij log2Sij + (a− Sij)log2(1− Sij))

Such a way the algorithm first selects the element with lowest

entropy as the center of the first cluster. Once it is selected, it

is deleted from the center candidates list. Also, the elements

with similarity with the center bigger than a given threshold

(β) are deleted. This similarity threshold between the elements

of a cluster must be valued between 0 and 1. Experimentally,

the authors have determined that a good and robust value of

this threshold is 0.7. Once those elements are deleted from the

candidates list, the element with lowest entropy is taken as the

center of the second cluster. The process is repeated until the

candidates list is empty.

Given a set T with N data, the algorithm is outlined as

follows:

1. Calculate the entropy of each xi ∈ T , for i = 1, . . . , N .

2. Choose xiMin
achieving the lowest entropy.

3. Delete from T , xiMin
and all the data whose distance to

it is smaller than β.

4. If T is not empty, go to step 2.

We must notice that it is not possible to choose a priori the

number of clusters in which the algorithm must split the data.

The user must modify the value of threshold β to obtain the

number of desired clusters.
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III. IGNORANCE-BASED FUZZY CLUSTERING

The EFC algorithm does not obtain the correct partition of

the data depending on the dataset. For example, if we have a

dataset with two different classes in which the data is sparse

symmetrically (see figure 2 - Data 1), the EFC does not split

the data correctly. In this case the element with the lowest

entropy is located in the center of the picture, grouping in

the same class almost all of the elements. This is one of the

problems of the EFC that we want to improve.

We propose to replace two concepts of the EFC algorithm.

First one, we are going to replace the distance between

elements by restricted equivalence functions to calculate the

similarity between elements. In addition we are going to use

ignorance functions instead entropy functions so, for us, the

center of the cluster is the element which causes that the

partition of the data has the lowest ignorance.

A. Equivalence between two data points

To calculate how similar are two elements, we are going to

use restricted equivalence functions.

Definition 1: [8] A function REF : [0, 1]2 → [0, 1] is

called a restricted equivalence function, if it satisfies the

following conditions:

(1) REF (x, y) = REF (y, x) for all x, y ∈ [0, 1];
(2) REF (x, y) = 1 if and only if x = y;

(3) REF (x, y) = 0 if and only if x = 1 and y = 0 or x = 0
and y = 1;

(4) REF (x, y) = REF (n(x), n(y)) for all x, y ∈ [0, 1], n
being a strong negation;

(5) For all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then REF (x, y) ≥
REF (x, z) and REF (y, z) ≥ REF (x, z).

An example of REF that we will use within the algorithm

is the following:

REF (x, y) = (1− |x3 − y3|)3

In figure 1 we can see the plot of previous REF.

Fig. 1. Function REF

Each element is defined by some attributes (characteristics).

In this way, to calculate the equivalence between two elements

we aggregate the values of REF between every attribute. Such

a way the equivalence between two elements with n attributes

is the following:

Eq(x, y) =

M(REF (x1, y1), REF (x2, y2), . . . , REF (xn, yn))
(1)

where M is defined as follows:

Definition 2: [9]An n-ary aggregation function is a function

M : [0, 1]n → [0, 1]

such that

(i) M(x1, . . . , xn) ≤ M(y1, . . . , yn) whenever xi ≤ yi for

all i ∈ 1, . . . , n.

(ii) M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1.

An example of aggregation function that satisfies these prop-

erties is the arithmetic mean.

With equation (1) we calculate how much similar are two

elements, instead of calculate the distance as is done in [1].

B. Ignorance functions

We first introduced Ignorance functions in [10] applied

to image thresholding. When choosing membership functions

that represent the image in the process of thresholding, evi-

dently, there are pixels of the image for which the expert is

absolutely sure that the representation chosen is the correct

one. Nevertheless, there are also pixels for which the expert

does not know if the representation taken is the best.If the

membership degree to the object of a pixel is 1, then the expert

has total knowledge (total sureness) that the pixel belongs to

the object (background).Also if the membership degree of a

pixel to the object is 0.5 and to the background is 0.5, we say

that the expert is totally ignorant, total doubt,of whether the

pixel belongs to the object (background).We proposed in [10]

to represent the expert’s lack of knowledge by means of what

we called Ignorance functions. The considerations above and

others led us to present the following definition:

Definition 3: A function

Gu : [0, 1]2 → [0, 1]

is called an ignorance function if it satisfies the following

conditions:

( Gu1) Gu(x, y) = Gu(y, x) for all x, y ∈ [0, 1];
( Gu2) Gu(x, y) = 0 if and only if x = 1 or y = 1;
(G u3) If x = 0.5 and y = 0.5, then Gu(x, y) = 1;
( Gu4) Gu is decreasing;

( Gu5) Gu is continuous.

In [10] we presented a construction method of Gu functions

form t-norms. An example of ignorance function is:

Gu(x, y) =

{

4(1− x)(1− y) if (1− x) · (1− y) ≤ 0.25
1

4((1−x)(1−y)) otherwise

(2)

The Ignorance functions estimate the uncertainty that exists

when there are two membership functions. However, in this

case we want to calculate the total ignorance of a set of

elements by means of their membership degree to a cluster.

If we are completely sure that an element is the center of
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the cluster, then we have no ignorance. In the case of the

membership of the element to the cluster is 0.5 the we

said that we have total ignorance. Therefore we can use

following expression to calculate the ignorance associated to

each element by means of ignorance functions:

Ig(x) = Gu(x, 1− x)

For equation (2) the Ignorance function for a single element

results:

Ig(x) =

{

4(1− x)x if x ≥ 0.5
1

4(1−x)x otherwise
(3)

This way we can obtain expressions that satisfy the proper-

ties that are demanded to fuzzy entropies. It is left as future

work to prove in which cases the ignorance functions are

entropies.

C. Algorithm

1. Calculate the ignorance of each xi ∈ T , for i = 1, . . . , N .
1.1. Calculate the restricted equivalence between each

pair of data.

Eq(xi, xj) =

M(REF (xi1, yx1), REF (xi2, yx2), . . . , REF (xin, xjn))

for all j = 1..N where j 6= i

(4)

1.2. Calculate the ignorance of each pair of data:

Ig(Eq(xi, xj)) = (1− Eq(xi, xj)) ∗ −Eq(xi, xj)

.

1.3. Calculate the ignorance of each datum.

IT (xi) =

∑N

j=1 Ig(Eq(xi, xj))

N

if we are working with a set of N data.

2. Choose xiMin
achieving the lower ignorance.

3. Delete from T , xiMin
and all the data whose distance to

it is smaller than β.

4. If T is not empty, go to step 2.

IV. EXPERIMENTAL RESULTS

In this section we are going to compare the results obtained

by our method, previously explained, and the ones obtained

by the Entropy-based Fuzzy Cluster method (EFC), on which

our proposal is based.

We make two kind of experiments. We first prove synthetic

data, and then we prove with real images.

A. Synthetic data

In this experiment we prove the algorithm in two cases: on

one side we prove it with two perfectly linearly separable and

symmetric datasets, and on the other one we prove it with two

linearly separable datasets with two straight lines. These two

data distributions can be seen in Figure 2.

To make the comparison, we show the results obtained

by our proposed method and the ones obtained by the EFC,

studied in Section II. As we have already said, to apply any

Data 1 Data 2

Fig. 2. Original data distribution

of these two algorithms it is necessary to previously choose

the threshold that fixes the maximun distance among the data

which belong to the same cluster. In this experiment, as we

know that the original data are divided into two classes, we

use the suitable threshold in each case to obtain a solution with

two clusters. To prove which of the solutions is more likely

to the original data distribution, we use the accuracy rate, it

means, the number of well classified data respect to the whole

data.

The graphic results obtained can be viewed in Figures 3 and

4, following in both cases the same distribution: the image (a)

represents the result obtained by our method and the image

(b) is the one obtained by the EFC. Below each image it is

shown the threshold used in that result.

The numeric comparison of the accuracy is shown in Table

I.

Ignorance EFC

Data1 100% 53%
Data2 72% 35.33%

Mean 86% 44.17%

TABLE I
RESULT COMPARISON OF EXPERIMENT 1

As it can be checked, the first data distribution is relatively

easy. However, the EFC algorithm is not able to correctly split

the clusters, because it chooses as the first centroid the datum

situated in the center of the graphic, so it is not able to identify

the two classes. Nevertheless, the algorithm based on restricted

equivalence and ignorance functions identify with a 100% of

accuracy each datum.

In the second kind of data distribution, it can be clearly

viewed that, despite any of the two studied methods gets the

ideal solution, the one obtained by equivalence and ignorance

functions is better than the one obtained by similarity and

entropy functions. In this case, the EFC creates a class with

only three data, which is far away from what it should be,

while our proposed method creates two clusters more well-

balanced, which is closer to the ideal distribution.

Therefore, for these two data distributions, we can conclude

that our proposal improves 41.835% on average the EFC

algorithm.

1355



(a) (b) (c) (d)

Threshold=300 Threshold=120

Threshold=320 Threshold=200

Threshold=140 Threshold=60

Threshold=60 Threshold=40

Threshold=260 Threshold=135

Threshold=120 Threshold=50

Fig. 5. Image results

B. Images

In the second experiment, we work with six images in order

to segment them. These images has been got from [11]. For

every pixel, we work with three attributes: its gray intensity

level, its coordinate x and its coordinate y. We compare the

obtained solution with the ideal segmentation, which is calcu-

lated manually. As in the previous experiment, the thresholds

needed for the algorithms execution are calculated for each

image. They are chosen in the way that the obtained result

has the same number of clusters that the ideal segmented one.

In this sense, all the images must be divided into two clusters,

but the image number four, that is divided in four different

clusters.

The obtained images are shown in Figure 5, where the

column (a) represents the original image, the column (b)

represents its ideal segmentation, the column (c) is the result

of our algorithm, and the column (d) is the result obtained

with the EFC algorithm. Below each image, it is shown the

threshold used.

The numeric comparison of the number of pixels well

classified by each method is the one shown in Table II.

The algorithm proposed, based on restricted equivalence

and ignorance functions, presents an improvement of 10% in

average over the EFC.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work we have proposed a modification of the

EFC algorithm. We have changed the similarity for restricted

equivalence functions, and the entropy functions for ignorance

functions. Based on the experimental results, our proposal

improves the data classification made by the EFC.
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(a) Threshold=105

(b) Threshold=120

Fig. 3. Data 1

Ignorance EFC

Image1 97.19% 98.26%
Image2 66% 62.03%
Image3 96.27% 93.96%
Image4 76.63% 48.93%
Image5 86.47% 63.87%
Image6 97.92% 91.40%

Mean 86.75% 76.41%

TABLE II
RESULT COMPARISON OF EXPERIMENT 2

As future research lines, the first topic is finding the way of

calculate automatically the threshold. Besides, the restricted

equivalence and ignorance functions can be applied on differ-

ent cluster techniques, to improve the obtained results.
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