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Abstract—In this work we propose an efficient and poly-
nomial algorithm for the graph segmentation problem based
on the coloring problem for graphs. The work here presented
extend the algorithm published in [10] making possible the
segmentation to any class of graph (not only fuzzy-valued planar
graphs) and also improving the computational complexity of the
previous work.

I. INTRODUCTION

CLASSIFICATION can be understood as one of the
main activities of human brain, perhaps the most char-

acteristic one. According to the tradition of some ancient
religions, for example, it looks like the first objective of
human being is to name things, i.e., classify objects and
animals, as written in the Bible, Genesis 2.19: ”And the
Lord God formed out of the earth all the wild beasts and
all the birds of the sky, and brought them to the man to see
what he would call them; and whatever the man called each
living creature, that would be its name” (translation taken
from The Jewish Study Bible, by A. Berlin, M. Zvu Brettler
and M.A. Fishbane, Oxford University Press, 2004). In fact,
as proven by modern medicine (see, e.g., [1]), rationality is
deeply related to the analysis of the decision making problem
(implying the use of concepts and the associated underlying
classification problems) rather than to the final decision itself
(which is in the sphere of emotion, see also [15]).

Classification use to be a procedure in which individual
items are placed into groups based on their quantitative
and qualitative description. Classical classification problems
assume a statistical approach, connecting to a huge variety
of decision making problems within economics, biology,
geology, industry, etc. It is then relevant for this paper to
stress how quite a number of this applied research on classi-
fication take advantage of a nice mathematical properties like
independency , a property that can never be proven (see [9]
for an interesting critical approach in a related context, but
also the shocking experiment shown in [17]). The only thing
we can do in Statistics to check independence is to check that
dependency seems to be not significative. In fact, things are
always connected within a structure that too often seems to
be forgotten. And few classification algorithms can be found
dealing with connected objects fitting non trivial structures.
There is a lot of work ahead for developing classification
models that take into account how real objects are related
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(see, e.g., [6] as an example of classification model without
structure and the relevant modification proposed in [14]).

In the case in which the relation between objects can be
modeled as a graph, some classification problems can be
approached as partition problems in graphs. In a partition
problem, a partition of the graph has to be found attending
to some desired properties. During the last three decades,
many researchers have been developing models, building
algorithms and implementing solutions for district-partition
problems, for example. Such problems can be viewed as a
grouping process of elementary units or atoms of a given
territory into larger pieces of land or zones, thus giving rise
to a partition, also called a district map. There are many
practical questions and applications related to district prob-
lems, including defining the electoral districts of a country,
establishing different work or delivery zones for a trav-
eling salesperson team; defining areas within metropolitan
internet networks in order to install hubs; defining a public
transportation network pricing system; designing a school
district plan, electrical power zones or a police district map;
constructing a district map for salt spreading operations; or
defining a district-based health information system, among
others. Unfortunately, in order to obtain a partition in a
reasonable period of time, it is usually necessary to impose
too many constraints to the associated graph.

The algorithm and methodology proposed in this paper,
should allow to address classification problems without im-
posing any a priori constrain to the graph representing its
associated structure. As it will be acknowledged below,
the classification-coloring algorithm here defined shares key
elements of the coloring algorithm proposed in [11], which
is here generalized for arbitrary graphs. The original col-
oring algorithm was developed within the field of image
classification, being our main aim to obtain a segmentation
of the digital image or the remote sensing image under
study. Such an algorithm allowed the classification of the
pixels in an image, determining homogeneous regions for a
further supervised classification. Later (see [10]), the authors
proposed a first extension of such a coloring algorithm to
the case in which the graph was fuzzy and planar. This
second algorithm allowed to model digital images in a more
realistic way, since fuzziness appears naturally when we work
with real problems and images, at least in the framework of
scenario analysis. It is then important to emphasize that the
two algorithms previously developed in [11] and [10] for
coloring and classifying images are only valid for a specific
class of graphs and had a specific application in the field of
classification images, a limitation that we can avoid under
the approach of the present paper.

The main contribution of this paper is to develop a
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classification algorithm in which it is supposed that the target
or objects that have to be classified are not independent
and the relation among this items are given by an arbitrary
graph. In order to do that we extend the ideas of the coloring
algorithms presented in [11] and [10] to arbitrary graphs.

II. ASSOCIATED GRAPHS

As pointed out previously, we are going to identify the
existing relations of objects or items that has to be classify
by means of a graph. We will denote by P the set of items
and by k the number of characteristic or variables associated
to each item p ∈ P . We will identify by pi, i ∈ {1, . . . , k},
the ith-characteristic or variable of item p.

Let G = (V,E) be the graph that shows the relations
among items. Obviously, the set of nodes in the graph
coincides with the set of items P = V . Now, the problem we
want to solve is to classify (finding homogeneous regions)
the set P when the a priori information that we have is the
characteristic associated to the objects and the graph that
show the relations among them.

In order to solve this classification problem, and following
the ideas described in [10], [11], from P and G we are going
to define a valued graph or a fuzzy graph.

Definition. Given the classification problem previously
defined, and given a distance function d on Rk, the item
valued graph can be defined as the pair

G(P ) = (P,E)

when the value for the edge associated to two adjacent items
p and p′ is the distance between them, i.e.

Ep,p′ = d ((p1, . . . , pk), (p′1, . . . , p
′
k))

Unfortunately, there are some situations (see, e.g., [10] for
more details) in which the distance between two elements
includes some lack of precision or ambiguity. It would be
the case, for example, when we consider the aggregation of
several measures obtained by different experts: a well known
problem in remote sensing is to chose an adequate distance
in order to compare opinions from different experts (the
analysis of ignorance and overlap measures will be extremely
pertinent here, see [2], [3]).

In particular, in order to capture the natural fuzzy uncer-
tainty [21], and in order to give more flexibility to other
existing crisp classification procedures, we shall consider that
a fuzzy distance (in the sense of [12]) expresses the relation
between the measured properties of items,

d : P × P −→ ˜[0,∞)

where ˜[0,∞) will be here the set of fuzzy numbers with
domain in R+ (see [4] and also [13], [19]).

In this paper we will say that a fuzzy set Ã with mem-
bership function μA and domain in R+ is considered as a
fuzzy number if and only if (see [19]):

• Aα = { x ∈ R+ such that μA ≥ α} is a convex set,
denoted by [Aα, Aα]

• μA is an upper semicontinuous functions;

• Ã is normal, i.e. there exists x ∈ R+ such that μA(x) =
1

• supp(A) = {x / μA(x) > 0} is a bounded set of R+

We will denote by

d̃pp′ = d(p, p′)

the fuzzy distance between the items p and p′, and its
membership function will be

μpp′ : R+ → [0, 1]

in such a way that

D̃ = {d̃pp′ / (p, p′) ∈ P × P}
will denote its associated fuzzy distance matrix.

Definition. Given the classification problem previously
defined, and given a fuzzy distance function d, the item fuzzy
graph can be defined as the pair

˜G(P ) = (P, Ẽ)

when the fuzzy value for the edge associated to two adjacent
items p and p′ is the fuzzy distance between them, i.e.,

˜Ep,p′ = d̃pp′

Finally, it is important to note that in this paper we will
used the concept of fuzzy edges greater than a prescribed
threshold. The problem of ordering fuzzy numbers has been
studied by many authors (see, e.g., [5], [8]) and [19]). An
interesting approach is to transform fuzzy numbers into real
numbers by means of a ranking function (see [5]).

Definition Let ℵ be the set of fuzzy numbers and let a, b ∈
ℵ. Then a ≥̃ b ←→ F (a) ≥ F (b) where F is a ranking
function.

III. SEGMENTATION IN A GRAPH

With the final aim of obtaining a classification of the set of
items P and its associated valued-fuzzy graph, in this section
we propose a coloring algorithm of the valued-fuzzy graph
based on an iterative binary coloring algorithm.

In the crisp framework, a c-coloring of a graph G =
(V,E), see [18], is a mapping

C : V −→ {0, . . . , c− 1}
verifying C(v) �= C(v′) if {v, v′} ∈ E. Any c-coloring
induces a crisp classification of the nodes set V , being each
class associated to one color:

VC(k) = {v ∈ V / C(v) = k, k ∈ {0, . . . , c− 1}
As a particular case a binary coloring will be a mapping

col : V → {0, 1}
Our objective is to allow a classification of items through

a c-coloring C of the valued or fuzzy graph, G(P ) or ˜G(P ):
the item p ∈ P will be classified as k ∈ {0, . . . , c− 1} if its
color is C(p) = k (several aspects of the coloring problem
for valued-fuzzy graphs has been studied by the authors in
[16], [10], [11]).

1330



In order to obtain a partition through a c-coloring C of the
the graph G(P ) (or a classification of the set P ) we propose
to successively apply a basic binary coloring process, leading
to a hierarchical coloring of the image. A binary coloring of
the graph G(P ) = (P,E) is a 2-coloring, given by a mapping

col P −→ {0, 1}
The first binary coloring analyzes the items set P , assign-

ing to each item p either the value ”0” or the value ”1”.
A second binary coloring can be then applied, separately,
to both the subgraph generated by those items previously
colored as ”0” (obtaining color classes ”00” and ”01”), and
the subgraph generated by those items previously colored as
”1” (obtaining color classes ”10” and ”11”). Repeating this
process t times, a c-coloring C will be defined on G(P ),
where c = 2t−1; for instance, if some item p ∈ P has been
colored three times as ”1”, ”0” and ”1”, then, taking into
account that 5 is the decimal representation of the binary
number 101, the color of item p is C(p) = 5.

A description of the basic binary coloring procedure can
be found in [11], together with a detailed analysis of the
inconsistent assignments, i.e., when there is a cycle in the
graph G(P ) = (P,E) that allows us to color depending
on the path that is chosen (these cycles will be called
inconsistent cycles): if

col : P −→ {0, 1}
is a binary coloring of G(P ), the first binary coloring can
be then obtained assigning an arbitrary color (”0” or ”1”) to
an arbitrary item, and fixing the order in which item will be
colored. Once a initial item has to be colored the remainder
of the items that are in the same connected component of
the graph G(P ) are colored following this rule. If two items
p and q are adjacent then

col(q) =
{

col(p) if E(p,q) or d(p, q) < α
1− col(p) if E(p,q) ≥ α

for all (p, q) adjacent in P .
In case we have modeled the graph of relations among

items by means of a fuzzy graph, the coloring function is
defined as follows: given p and q two adjacent items in the
graph

˜G(P ) = (P, (̃E))

then

col(q) =

{
col(p) if ˜E(p,q)<̃α

1− col(p) if ˜E(p,q)≥̃α

for all (p, q) adjacent in P .
Let us observe that from previous formulas the α value

changes with the iteration.
If the graph is acyclic, we can obtain a consistent coloring

by choosing, randomly, any initial item from every connected
component, and assigning to each one of these items either
color 0 or color 1, arbitrarily. In this case, once a value α
has been fixed, coloring of each adjacent item is unique.
Otherwise, if the connected graph is not acyclic (this is the

case for most of the real situations) this coloring rule could
produce some problems. In general, given an item p already
colored and a fixed valued of α, it could be exist a cycle that
produces an inconsistent coloring, i.e. for a given item on that
cycle, you can used two different colors depending on the
path that you use. In order to deal with these inconsistencies,
in [11] the authors defined an arbitrary spanning tree for
valued graphs. Once a spanning tree T (G) of the graph has
been defined, we can produce a binary coloring of the valued-
fuzzy graph without inconsistencies. Now the question is to
decide for a given valued of α what is the best spanning
tree of the graph for our proposes (a related problem with
this can be seen in [20]). Taking into account that our idea
is to classify the items of P in homogeneous groups we are
going to choose the spanning tree of the valued G(P ) or

fuzzy graph ˜G(P ) as follows:

• 1 Step. We build the graph G(P )∗ = (P,E∗), when
now the associated valued for two adjacent items p and
q is E∗

p,q = E(p,q) if E(p,q) ≤ α and −E(p,q) otherwise.
In the fuzzy framework we build the fuzzy graph
˜G(P ) = (P, Ẽ∗), when the fuzzy value for the edge
associated to two adjacent items p and q is Ẽ∗

p,q = Ẽp,q

if Ẽp,q ≤̃α and ˜−Ep,q otherwise.
• 2 Step. We obtain the minimum spanning tree of the

graph G(P )∗. Let us denote by MST the minimum
spanning tree maintaining the original values of the
edges, i.e. (MST,E) instead of (MST,E∗).
In the fuzzy framework we obtain the minimum span-

ning tree of the graph ˜G(P )
∗
. Let us denote by ˜MST

the minimum spanning tree maintaining the original val-
ues of the edges, i.e. ( ˜MST,E) instead of ( ˜MST,E∗).

The segmentation process induced by the previous binary
coloring can be repeated so that a more refined classification
or partition of the graph can be obtained. For instance, color
classes ”00” and ”01” will be obtained applying the binary
coloring process to the subset

P ′ = {p ∈ P / col(p) = 0}
Analogously, color classes ”10” and ”11” will be obtained
applying the binary coloring process to the subset

P ′ = {p ∈ P / col(p) = 1}
In this way, four color classes are being obtained: ”00”, ”01”,
”10” and ”11”, which are identified by the mapping

C : P −→ {0, 1, 2, 3}
where C(p) is the integer number associated to the binary
number of the color class of p. The binary coloring procedure
can be successively applied to each family of items belonging
to the same color class, meanwhile there are adjacent items
being different.

However, and in order to avoid the exponential growth
of the binary coloring processes, this process (that we will
denote as bincol ) will be successively applied only t times,
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being t previously fixed, obtaining in this way 2t color
classes.

It is important to note that the color classes are not nec-
essary connected. We will define the term of homogeneous
region or group in the graph as a set of connected items with
the same color class. This homogeneous regions will be the
final partition or classification of the items in the graph.

Definition. Given a set P with associate graph G(P )
and let C be the previous coloring C process, a connected
component of each color class induced by C will be said a
region.

A. Computational complexity analysis

The coloring algorithm here proposed tries to classify
the nodes in the graph obtaining a result similar to a
dendogram in which in the first iteration all nodes are in
the same homogeneous region and in the last iteration each
nodes represent a homogeneous region. Obviously, from a
computational point of view is not necessary to reach to this
final iteration since is not relevant and not informative.

So, once the number of iterations is fixed (and that we can
denote as it) we realize that the basic coloring procedures
are polynomial, so the final algorithm is polynomial.

Hence, to choose an appropriate decreasing scheme of
parameter α is the key issue.

B. About the election of α

First at all, let us observe that the value of α is bounded
by the following two extreme cases:

• α = maxp,q∈P {E(p,q)}: if we fix a threshold α > α,
then the whole graph is considered as a unique color
class (col(p) = col(q),∀(p, q) ∈ P ).

• α = minp,q∈P {E(p,q)}: in case α ≤ α, all differences
are considered in the graph but the result is the same
choosing α = α.

How to determine an appropriate intermediate α level is
not a trivial task. But it is clear that only the interval

[α, α]

should be considered. Once the number of iterations (or
divisions ) has been fixed, we have decided to choose the
decreasing scheme of parameter α in the following way.

Taking into account that in the first iteration we want to
consider only the big differences between items, and doing
that progressively, if it is the number of iterations, then
α1 will be the value that leaves to the right the 100

it+1% of
the distances (i.e., considering only the big differences to
partitioning the graph), α2 will be the value that leaves the
2 100

it+1% of the distances and so on. Finally, αit will be the
value that leaves only the it 100

it+1% of the distances in the
graph. Obviously, α1 ≥ α2 . . . ≥ αit.

IV. APPLICATION TO A REMOTE SENSING IMAGE

Let us consider an image as a bidimensional map of
pixels, each one of them being characterized by a fixed
number of measurable attributes. These attributes can be, for

example, the values of the three bands of the visible spectrum
(red, green and blue), the whole family of spectrum band
intensities, or any other family of physical measurements.
Hence,

P = {(i, j) / 1 ≤ i ≤ r , 1 ≤ j ≤ s}
will denote the set of pixel positions of an r × s image.

If each pixel is characterized by b numerical measures, the
whole image I can be characterized as

I =
{
(x1

i,j , . . . , x
b
i,j) / (i, j) ∈ P

}
For a given image I , the information of the b measures of
any pixel

(x1
i,j , . . . , x

b
i,j)

can be represented by its position, p = (i, j) ∈ P , without
confusion.

Given such an image I , a standard crisp classification
problem pursues a partition in crisp regions, being each one
a subset of pixels, to be considered a candidate for a class
(in case such a region is homogeneous enough). In this way,
a crisp classification approach looks for a family of subsets
of pixels

{A1, . . . , Ac}
such that

P = ∪c
k=1Ak

but
Ai ∩Aj = ∅,∀i �= j

where A1, . . . Ac are the family of crisp classes explaining
the image.

A certain uncertainty arrives when we consider a dissimi-
larity measure between pixels in order to identify possible ho-
mogeneous regions in the image. In crisp image classification
problems, the selection of an adequate distance is a difficult
issue that has been studied by many authors. Obviously,
any classification process will be strongly dependent on the
selection of the appropriate distance, to be chosen taking
into account all features of the image under consideration,
together with our particular classification objectives. Further-
more, in many instances the distance between two elements
includes some lack of precision or ambiguity (it would be
the case, for example, when we consider the aggregation of
several measures obtained by different experts: a well known
problem in remote sensing is to chose an adequate distance
in order to compare opinions from different experts).

In order to capture the natural fuzzy uncertainty [21], and
in order to give more flexibility to other already existing
crisp classification procedures, we shall consider that a fuzzy
distance (see [12] or section 2) expresses the relation between
the measured properties of pixels.

Given a r×s image, a planar graph (P,E) can be defined
considering P as the set of nodes and E the set of edges
linking any couple of adjacent pixels. Two pixels

p = (i, j), p′ = (i′, j′) ∈ P
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are adjacent if
|i− i′|+ |j − j′| = 1

that is, if they share one coordinate being the other one
contiguous.

Let us now denote by

˜G(I) = (P, Ẽ)

the graph associated to our image I , where

Ẽ = {d̃pp′ / (p, p′) adjacents}
and

d̃pp′

are fuzzy numbers with domain in R+.
Definition. Given the image I and a fuzzy distance d, the

pixels fuzzy graph is defined as the pair

˜G(I) = (P, Ẽ)

Notice that our pixels fuzzy graph

˜G(I)

can be also characterized by the set P plus two r× s fuzzy
matrices, D̃1 and D̃2, where

D̃1
i,j = d((i, j), (i + 1, j))

for all (i, j) ∈ {1, . . . , r − 1} × {1, . . . , s}, and

D̃2
i,j = d((i, j), (i, j + 1))

for all ∈ {1, . . . , r} × {1, . . . , s− 1}.
Since our coloring procedure will be based upon this

alternative representation, from now on we shall denote our
pixels fuzzy graph

˜G(I)

by
(r, s, D̃1, D̃2)

The above algorithm has been applied to an orthoimage
of Sevilla Province (south Spain) that was taken on Au-
gust 18, 1987, by the LANDSAT 5 satellite (Worldwide
Reference System Spain (WRS) image 202-34-4) see [7]
for a detailed description of this image and Fig.1). In this
case we have consider two crisp distances (Euclidean and
Manhattan), normalized in order to build a fuzzy distance. In
this example we consider tetrahedral fuzzy numbers, that can
be characterized by four numbers (a1, a2, a3, a4) (see [13]).
The chosen ranking function for this example has been

F (a) =
√

a2
x + a2

y

where ax and ay are respectively, the horizontal and the
vertical coordinates of the centroid of a. The coloring al-
gorithm with it = 4 in the second iteration is shown in Fig.
2. Let us observe that the results here obtained coincides
with the results given in [10] where main features seem to
be captured. It is important to note that the new algorithm
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Fig. 1. Orthoimage of Sevilla Province.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

Fig. 2. Visualization of the Sevilla image segmentation in the second
iteration.

required less computational effort and can be extended to
any class of graph.

The above algorithm has been also applied to several
standard images, and with few iterations we obtain similar
results to those analyzed in [11]. But the approach presented
in this paper is ready to be implemented in other problems
where the distance is not deduced from crisp measurements
(for example, in order to get an aggregated classification
from several proposals obtained with different classification
methods).

V. CONCLUSIONS

The main contribution of this paper is to obtain a poly-
nomial algorithm that allows us to classify step by step (by
means of a dendogram) a set of items that are related by
means of a graph. This problem was partially addressed in
[11], [10] for a special class of graphs and in this paper it
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has been extended to arbitrary graphs.

REFERENCES

[1] A. Bechara, D. Tranel and H. Damasio, “Characterization of the
decision-making deficit of patients with ventromedial prefrontal cortex
lesions.” Brain 123, 2189-2202 (2000).

[2] H. Bustince, M. Pagola, E. Barrenechea, J. Fernndez, P. Melo-Pinto,
P. Couto, H.R. Tizhoosh and J. Montero: “Ignorance functions, an
application to the calculation of the threshold in prostate ultrasound
images.” Fuzzy Sets and Systems (to appear).

[3] H. Bustince, J. Fernández, R. Mesiar and J. Montero: “Overlap func-
tions.” Submitted.

[4] D. Dubois and H. Prade: Fuzzy sets and Systems, Theory and Applica-
tions (Academic Press, Orlando, Florida, 1997).

[5] D. Dubois, H. Prade: “Ranking fuzzy numbers in the setting of
possibility theory.” Information Sciences 30, 183-224 (1983).

[6] A. del Amo, J. Montero, G. Biging and V. Cutello, “Fuzzy classification
systems.” European Journal of Operational Research 156, 459-507
(2004).

[7] A. del Amo, J. Montero, A. Fernández, M. López, J. Tordesillas
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