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Abstract

Vision information processing is important for robots
that act in human-interactive environments. In this paper,
we propose to acquire visual representation of robot body
and object that is suitable for motion learning in a bottom-
up manner. An advantage of the proposed framework is that
it does not require specific hand-coding depending on the
visual properties of objects or the robot. A subtraction tech-
nique and SOM are used to compose the state space based
on the image with extracted robot body and objects. Mo-
tion of the robot is planned based on reachable set. The
task of moving an object to a target position is divided into
two phases, one to reach a position that is suitable for start-
ing pushing motion and the other to push the object to the
target. The proposed method is verified by experiment of
pushing manipulation of an object with a robot arm.

1. Introduction

Improvement of vision information processing is one of
the problems for robots that act in human-interactive en-
vironment. One of the difficulties in image processing of
those robots is that the applicability of the robot might be
restricted when the image processing methods assume spe-
cific properties of the objects, such as colors and shapes. In
other words, it is important to avoid ‘hand-coded’ process-
ing by human designers to widen the applicability of the
robot. One approach to automatic recognition of object is
known as generic object recognition [9]. The generic ob-
ject recognition aims at enabling a computer to recognize
objects in images with their category names, which is one
of ultimate goals of the computer vision research. Some
approaches on autonomous image processing including the
generic object recognition are independent of robot motion
generation. From the viewpoint of development of robotics,

it is important to consider how the results of image process-
ing can be utilized to robot motion generation. Cognitive
developmental robotics [1] is a promising approach to con-
sider combination of motion generation and autonomous
image processing. Referring the human developmental pro-
cesses, one can get an idea that autonomous recognition of
objects for robots might be realized through concurrent de-
velopment of robot motion learning and image features ac-
quisition.
There are some approaches which aim body image acquisi-
tion. As an approach of cognitive developmental robotics,
Fuke et al. proposed an acquisition method of the body im-
age with tactile sensors [4]. The relation between the hand
position and the sensors on the robot face is obtained using
Self Organizing Map (SOM) [1]. However, how to generate
motion based on the body representation was not discussed.
Stoytchev realized recognition of robot body in video im-
age using synchronousness of action command and motions
of markers equipped with the robot arm [7]. However, the
designer gave knowledge of the robot body by using the
marker in the robot.
On the other hand, there are approaches to acquire ob-
ject representation autonomously as well as the robot body.
Fitzpatrick et al. proposed to learn how objects move when
a robot arm pushes them by extracting the object and the
robot arm from the image [3]. This research realized to ex-
tract the object autonomously without teaching the shape
and size of the object by the designer. Hikita et al. re-
alized learning of relation between image features and a
robot arm postures without hand-coded image processing
using saliency map [10]. Kato et al. proposed a frame-
work of manipulation learning that can reduce the amount
of calculation of the image processing by adjusting the res-
olution of the image by clustering and principal component
analysis [6]. Ridge et al. proposed to learn distinctions of
the kinds of objects by pushing with a robot arm [2]. In
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their approach, the affordance of the object was acquired by
extracting how the objects can be moved by pushing with
the robot arm. Compared with those approaches, we focus
more on motion generation including planning, while ob-
ject representations are autonomously acquired (with single
kind of object).
In this paper, a state space construction is proposed with
autonomous extraction of robot body and an object. The
acquisition of object representation is connected to motion
planning and generation framework, which realizes con-
current learning of object manipulation and building image
representations of robot body and the object.
The paper is organized as follows. In section 2, problem set-
tings are introduced. The proposed method for motion gen-
eration with image representation acquisition is described in
section 3. Section 4 describes verification in experiments,
followed by conclusion in section 5.

2. Problem settings

The system is composed of a camera and a robot arm,
where the camera is fixed. The robot’s movements are re-
stricted to the vertical plane. It is assumed that the robot can
detect the contact between a certain part of the robot body
and an obstacle.
The task for the robot is to move an object to a desired posi-
tion. The followings are unknown information to the robot,
i.e., not utilized by the robot in the proposed framework.

• Colors, shapes and sizes of the components of the
robot arm and the object.

• The distinction among objects, obstacles and parts of
the robot arm.

• The dynamics of the object caused by the contact with
the robot arm in the image.

Instead of using image features of the robot arm and the ob-
ject, we use synchronousness of motion in image and motor
command to the robot to extract them. For detecting the
synchronousness, the subtraction technique is used in this
research. An advantage of the subtraction technique is sim-
plicity. A limitation of this approach is that the subtraction
technique assumes that the object to be extracted has some
texture. Therefore it is impossible to apply this method
when the robot arm or the object has no texture (uniform
surface). It is also assumed that the posture and the shape
of the object do not change, i.e., the object does not rotate
and it is a rigid body, and the case with multiple objects is
omitted
An advantage of the proposed method is that the robot
constructs object representation (state space) autonomously
without specific knowledge on the properties of the object
image and acquires controllers for manipulating the object
based only on actual motion experiences.

3. Motion planning with acquisition of image
representation

The four procedures of the proposed framework are de-
scribed in the followings.

1. Initially the robot moves its arm randomly. During ran-
dom operations, the robot arm is extracted as concur-
rently moving regions from the image as depicted in
Fig.1.

2. The object is extracted by excluding the robot’s body
in the image, when the robot arm contacts with the ob-
ject (see Fig.2). Joint angles of the robot arm are mem-
orized, if the robot arm does not move (see Fig.3).

3. When the object moves by contact with the robot arm,
the robot memorizes sequences of the joint angles and
the images for reachable set estimation.

4. By using the reachable set, the robot performs the mo-
tion planning and motion generation to achieve the ma-
nipulation task.

The data sets which realize these procedures are described
in the followings.

Robot body image
Images of the robot arm with various postures are
memorized.

Object image map
An object is extracted while robot explores contact
area with the object. The result of extraction is stored
in SOM.

Obstacle joint angles set
The joint angles are memorized when the robot arm
does not move by contact with the objects.

Object reachable set
Reachable set is estimated by memorizing the se-
quences of the object positions expressed by the object
image map and the joint angles of the robot arm.

In the proposed approach, the task is divided into two
phases. In the first phase the robot plans where to touch the
object based on object reachable set and generates reach-
ing motion to the target contact position without colliding
with obstacles. Obstacle joint angles set is used for this
collision avoidance. In the second phase, the robot moves
its arm so that the object reaches the target. Here joint an-
gles contained in object reachable set are utilized to realize
the robot arm motion.
The following sections illustrate object image map, obsta-
cle joint angles set, object reachable set and the motion
planning in the two phases with those data sets.
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tion of the object
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Figure 3. Extraction of the obstacle

3.1. Object image map

The images of the object extracted by the subtraction
technique are used to construct a state representation (state
space) of the object, which will be used in learning of ma-
nipulation. The method to extract objects is shown in the
followings.

1. Let θ(t) and I(t) denote the joint angle and image
input at time t, respectively, where θ denotes the
joint angles of the three degree freedom and θ =
[θ1, θ2, θ3]T . After a contact with the object occurs
at t, two subtraction images are generated. One using
I(t− 1) and I(t) and the other with I(t + 1) and I(t).
Note that the object is supposed to have moved in the
both subtraction images.

2. The object and the robot arm are extracted for time
t by taking the logical product of the two subtraction
object-arm images obtained by procedure 1.

3. The robot arm is excluded from the object-arm image
by taking exclusive-OR between the image obtained
by procedure 2 and the robot body image.

The robot arm moves at random until contacting with the
object while searching the object. When the robot arm
comes in contact with the object, the robot stops pure-
random motion and sets a target joint angle that is close
to the angle where contact has been occurred with a small
disturbance. SOM with one dimensional topology is used
to represent the object images. Let Wi ∈ R

N (i = 1, ..., l)

denote the weight vector of i-th node, where N = x × y
and x and y are the sizes of the image.

3.2. Obstacle joint angles set

The robot arm explores the space randomly and stores
images and joint angles when contact with the obstacles
such as tables, floors and object1 occurs under the assump-
tion that it can detect contact with the obstacle. Let O de-
note the obstacle joint angles set. When the robot detects
that the robot arm is contacting with an obstacle at time t,
O is updated as

O ← O ∪ {[θ(t)T , I(t)T ]T }. (1)

In motion planning which will be described later, negative
reward for contact between the robot arm and the obstacle
is generated by O.

3.3. Object reachable set

The object reachable set is used to estimate where the
object can reach by manipulation of the robot arm. Let k
denote the node number which corresponds to the current
input image as

k(t) = argmin
i

||Wi − I(t)||. (2)

Suppose that contact with an object occurred at time t and
(n − 1) matrices have been stored in the object reachable
set, that is, n-th matrix which describes the reachable region
will be added. After a sequential movement of the robot
arm, suppose that contact has been kept until (t+mn). The
object reachable set is defined as L and updated as

L ← L ∪ Ln, (3)

where Ln is defined as

Ln =
[

θ(t) θ(t + 1) · · · θ(t + mn)
k(t) k(t + 1) · · · k(t + mn)

]
. (4)

Fig.4 shows the idea of the object reachable set. Note that
the object reachable set contains the information of transi-
tion. Arrows in the figure indicate the unilateral transitions
which corresponds to the order of vectors in matrices Lp.

3.4. Online: motion generation

To achieve the task, the task is divided into two phases.
In the first phase, the robot plans a path from the initial po-
sition of the robot arm to a position that is suitable for push-
ing the object and moves the robot arm along the path (see

1Note that the situation where the robot arm contacts with the upper
side of the object is regarded as collision with an obstacles, because the
robot arm can not move downward in such case.
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Figure 4. Object reachable set
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Figure 5. Motion generation of the robot

phase1 of Fig.5). The phase is switched from phase one
to two when the robot arm reaches the suitable position for
pushing. In the second phase, the robot pushes the object to
the target position (see phase2 of Fig.5).

3.4.1 Phase1: path planning of the robot arm

Fig.6 shows the flow of processing in the first phase. The
minimum norm node k(t) is decided by (2), which corre-
sponds to recognition of the current position of the object.
Similarly kgoal is obtained by Igoal, where Igoal is the im-
age with the object at the target position. A trajectory can
be found in the object reachable set as

Lp∗ =
[

θ1 θ2 · · · θ(mp∗+1)

k1 k2 · · · k(mp∗+1)

]
,

k1 = k(t), ∃kj = kgoal (5)

where p∗ denotes index of trajectory that reaches kgoal start-
ing from k(t). θ1 in Lp∗ is set as a subgoal to start the push-
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tion in phase1
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tion in phase2

ing operation. The subgoal information is interpreted as a
positive reward in the reinforcement learning framework.
The positive reward is defined as

r1(θ) =
{

Rgoal ≥ 0 if ||θ1 − θ|| ≤ β1

−1 otherwise
. (6)

where r1 denotes the positive reward and β1 is a threshold
value. For motion planning for obstacle avoidance, a set of
joint angles with collision is defined as

Oθ(t) =
{

θi

∣∣∣∣||Ii − Wk(t)|| ≤ βI , [θT
i , IT

i ]T ∈ O
}

, (7)

where βI is a threshold value. The negative reward is de-
fined as

r2(θ) =
{

Robst < 0 if ∃θi ∈ Oθ(t), ||θi − θ|| ≤ β2

0 otherwise
,

(8)

where β2 is a threshold value. The total reward is given as
r = r1 + r2 and used for reinforcement learning. Dyna-Q
[8] is applied for motion planning. The action value func-
tion update is the same as Q-learning. State s for reinforce-
ment learning is defined by discretizing [θ1,θ2,θ3]. Action
a denotes a small displacement of [θ1,θ2,θ3]. The update of
the action value function in Dyna-Q is given as

Q(s, a) = (1 − α)Q(s, a) + α[r + γmaxa′Q(s′, a′)]. (9)

α and γ are learning coefficient and discount factor, respec-
tively. s′ is the next state when action a is taken.

3.4.2 Phase2: object pushing

In the second phase, the robot refers Lp∗ and follows the
sequence of joint angles in Lp∗ until θ(t) = θj , where kj =
kgoal.
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4. Experiment

The experimental setup for the verification of the pro-
posed learning method is shown in Fig.8. All experiments
were performed using the robot arm (Mitsubishi PA-10) and
a CCD camera (640 × 480, gray scale). The robot has six
degrees of freedom and controls three joints while fixing
three other joints. The robot detects contact with objects or
obstacles using the information of the force sensor installed
at the wrist of the robot arm. The threshold value is set so
that the case when the object notates is detected as collision
with an obstacle.

4.1. Extraction of body and object

The images obtained by the subtraction technique with
time (t − 1) and time (t + 1) for the image at t are shown
in Fig.9 and Fig.10. Fig.11 shows the result of extrac-
tion of the object and the robot arm. Some images of the
robot body image are shown in Fig.12 with various pos-
tures. Fig.13 shows an example of the extracted object by
the proposed procedure. An example of the image in the
object reachable set is shown in Fig.14 .

4.2. Generation of object image map

The number of nodes of SOM is set as l = 25. Some
weight vectors in SOM are shown in Fig.15. It can be

Figure 11. Image
of the robot and
the object

Figure 12. Image
of the robot

Figure 13. Image
of the extracted
object

Figure 14. Image
of the object and
the robot

seen that close nodes in SOM have similar image vectors.
The maximum displacement of the object in the image is
190[pixel](575[mm]), which implies that one node in SOM
corresponds to 7.6[pixel]. Fig.16 shows the minimum norm
node for three images inputs. The obtained SOM could
identify images with different object positions.

4.3. Planning and motion generation for
pushing manipulation

The data number of the object reachable set is set as
n = 20. Fig.17 shows a trajectory of reaching and pushing
manipulation realized by the proposed planning and control
method. The number of the images that are collected for the
experiment are described in the following.

• The number of the images of the robot body image

���

Figure 15. Result of learning of SOM
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Figure 16. Identification of object position
with SOM

are 9788 (with range of 0 ≤ θ1 ≤ 60, 0 ≤ θ2 ≤ 120,
0 ≤ θ3 ≤ 150).

• The number of the images which are collected for gen-
eration of the object image map are 30.

• The number of the joint angles of the obstacle joint
angles set are 30.

• The number of the matrices which are collected for
generation of the object reachable set are 25.

5. Conclusion

This paper proposed a method for motion planning and
generation of the object manipulation that does not require
any specific hand-coded image processing. The proposed
framework integrates state representation by subtraction
and SOM, estimation of the object reachable set and mo-
tion generation learning with reinforcement learning. The
state space is constructed by extracted images of the robot
body and the object. In the experiment, the robot realized
pushing manipulation of the object toward a target position
including appropriate reaching motion toward the object. In
the experiment, pushing from right to left was realized. It
is possible to learn pushing of the opposite direction, which
was not implemented due to the limitation of the work space
of the robot arm. One of the future works is that the frame-
work is extended to the case with various objects. In ad-
dition, it will be important to effectively explore the space
where ‘curious’ behavior can be observed, that is, effective
identification of robot-object interaction dynamics.
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