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Abstract—In this paper, a vision-based system to detect the 
eyelid closure for driver alertness monitoring is presented. 
Similarity measures with three eye templates (open, nearly 
close, and close) were calculated from many different features, 
such as 1-D and 2-D histograms and horizontal and vertical 
projections, of a big set of rectangular eyes images. Two 
classifiers, Multi-Layer Perceptron and Support Vector 
Machine, were intensively studied to select the best with the 
sequential forward feature selection. The system is based on 
the selected Multi-Layer Perceptron classifier, which is used to 
measure PERCLOS (percentage of time eyelids are close). The 
monitoring system is implemented with a consumer-grade 
computer and a webcam with passive illumination, runs at 55 
fps, and achieved an overall accuracy of 95.75% with videos 
with different users, environments and illumination. The 
system can be used to monitor driver alertness robustly in real 
time. 

Keywords—eyelid closure detection, multi-layer perceptron, 
support vector machine, sequential forward selection, driver 
alertness monitoring. 

I. INTRODUCTION 
Statistics show that between 10% and 20% of all the 

traffic accidents in Europe are due to drivers with a reduced 
vigilance level caused by fatigue [1]. These figures show the 
importance that driver alertness monitoring applications can 
have to decrease the number of traffic accidents. Fatigue 
measurement is a difficult problem as there are few direct 
measures and most of them are measures of the outcomes of 
the fatigue rather than of fatigue itself. An important 
physiological measure that has been studied to detect fatigue 
is eye motion. Several eye motions were used to measure 
fatigue such as blink rate, blink duration, long closure rate, 
blink amplitude, saccade rate and peak saccade velocity. 
PERCLOS measure is the percentage of eyelid closure over 
the time and reflects slow eyelid closures rather than blinks 
[2]. A PERCLOS drowsiness metric was established as the 
proportion of time in a minute that the eyes are at least 80 
percent closed [2] and it is a reliable and widely used driver 
performance and bio-behavioral measure [3]. 

Many vision-based methods have been proposed for eye 
tracking and eyelid closure detection. They can be based on 
active infrared or passive illumination. With infrared 

illumination, pupils can be detected by a simple thresholding 
of the difference between the dark and the bright pupil 
images [4] and factors such as the brightness, size of the 
pupils and the external illumination can influence 
performance. Approaches using standard cameras and 
passive illumination in cluttered scenes have also been 
presented. Orazio et al. [5] proposed a neural classifier to 
recognize the eyes in the image selecting two candidates 
regions that might contain the eyes by using iris geometrical 
information and symmetry. Smith et al. [6] presented a 
system to detect eye blinking and eye closure based on color 
statistics. Królak et al. [7] proposes a system which uses two 
active contours, one from each eye, for eye blink detection 
from previous eye tracking.  

In this paper, we present a robust real-time system to 
detect the eye state of the driver with a consumer-grade 
computer, an inexpensive Universal Serial Bus camera, and 
passive illumination. While previous approaches have 
proposed many different methods and features to fulfill eye 
and eyelid closure detection, our contribution focuses on the 
calculation of multiple features of different nature in the eye 
region to distinguish three eye states, open, nearly close and 
close, in the eye regions. The use of three eye states is 
necessary to calculate PERCLOS as in [2] accurately. We 
accomplished the discrimination among these states of a non-
rigid object with high variability such as the eye with a 
multiple-feature scheme. Another contribution of the work is 
the performance comparison of two classifiers, the Multi-
Layer Perceptron (MLP) and Support Vector Machine 
(SVM), with features selected with Sequential Forward 
Selection (SFS), in the eye state detection task. 

The rest of the paper is organized as follows. Section II 
presents our approach to detect the eye state. Experimental 
results are described in Section III. Finally, Section IV draws 
the conclusions about the proposed driver alertness 
monitoring system. 

II. OUR APPROACH 
We aimed to monitor the driver alertness with the 

PERCLOS measure. PERCLOS is meaningful in highway 
driving when the driver face is mainly in frontal position 
with respect to a camera placed on the car dashboard and 
there is low head motion. For the face detection, we use the 
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frontal face detector based on the AdaBoost algorithm and 
with Haar-like features available in the framework of the 
Intel Open Source Computer Vision Library (OpenCV) [8]. 
This detector has a great performance with frontal and near 
frontal faces.  

Rectangular pair of eyes region location is determined 
using face and head anthropometry measures from the 
output given by the face detection. As the face detection is 
mainly based on the eyes, they can be accurately located. 
Assuming that eyelid closure is simultaneous in both eyes, 
the eye state has to be determined in each frame of a video 
sequence to compute the PERCLOS measure. Therefore, we 
had to discriminate among open and close eye state and also 
the nearly close state, which is characteristic of a high level 
of drowsiness of the driver. In this state, the proportion of 
visible iris is below 20% of its total height. Due to the large 
variability of the eye appearance and dynamics, our 
approach was not to extract an individual feature or a small 
set of features as individual features are influenced by the 
fact that a feature with a very wide class of invariance 
looses the power to discriminate among other differences. 
On the contrary, we have extracted many features of 
different nature to achieve robustness to illumination, 
presence or absence of structural components such as 
glasses, and facial expression.   

The extracted features were: 1-D grayscale histograms, 
2-D color histograms, horizontal and vertical projections, 
and the entire rectangular eye images. Regarding grayscale 
images, an eye can be characterized by the intensity of two 
regions, one corresponds to the iris and the other to the 
sclera so 1-D grayscale histograms are extracted. 2-D 
histograms of the chromaticity components (HS) of the 
HSV color space were extracted to discriminate between an 
open and a close eye with some illumination invariance as 
skin colors have a certain invariance regarding chromaticity 
components [9]. Horizontal and vertical projection functions 
of a grayscale image I(x,y) in intervals [y1,y2] and [x1,x2] are 
expressed in (1) and (2), respectively. Fig. 1 shows the 
normalized vertical projections of open, nearly close, and 
close eye images in the range [0,255]. Zhou et al. [10] 
proposed the horizontal and vertical generalized projection 
functions as expressed in (3) and (4), where ´

hIPF  and hVPF  
depend on hIPF , ´

vIPF and vVPF depend on vIPF and 
0 1α≤ ≤  is used to control the relative contribution of 

'IPF and VPF . We calculated hIPF , vIPF  and hGPF  and 

vGPF  of the rectangular eye regions with α values of 0, 
0.4, 0.6 and 1. 
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Figure 1.  Vertical projections of open, nearly close, and close eye images. 

The entire image is also used to measure the similarity 
with the templates. 

Once we have the information of an eye image captured 
in a feature set, there are two possibilities from endowing 
them with meaning: make a unilateral interpretation from 
the feature set or compare the feature set with some 
elements on the basis of a similarity function. As proposed 
in [11], the complexity of the eye detection problem makes 
it necessary the use of a similarity function to achieve the 
desired accuracy in analyzing eyelid closure with non-
strictly frontal face, in motion, and with illumination 
changes. The elements to compare the feature set of an eye 
image are the templates of open eye, nearly close eye and 
close eye. 

A. Similarity functions 
With the information obtained from the eye regions, a 

big number of similarity measures between the eye regions 
and the three templates were extracted. Our approach is to 
compute a set of different similarity measures so that the 
best measures be selected later. First, we obtained four 
histogram-based similarity measures: correlation, 2χ , 
intersection and Bhattacharyya distance. For two 
histograms { }iQ q= and { }iD d= , each one containing n 
bins, the similarity measures are defined as follows. 

The correlation distance is defined as 
n
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The 2χ  distance is a statistical index showing how 
likely is for one distribution to get drawn from the 
population represented by the other and is defined as  
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The histogram intersection is defined as 
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A modified version of the Bhattacharyya distance was 
used, defined as 
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The following four template matching methods to 
measure the similarity are applied to the entire eye regions 
and the projection functions of the regions: correlation 
matching, correlation coefficient matching and the 
normalized versions of the two matching methods. Unlike 
the histogram-based measures, these methods compute the 
spatial distribution of pixels. The correlation matching 
method multiplicatively matches the template T against the 
image I to obtain the matching result as expressed in (10). 
The correlation coefficient matching method ccoeffR  matches 
a template relative to its mean against the image relative to 
its mean. The normalized version of the correlation and the 
correlation coefficient matching methods are obtained 
dividing them by the same normalization coefficient. They 
are useful as they can help reduce the effects of lighting 
differences between the template and the image. Fig. 2 
shows the correlation (Rcor) and the correlation coefficient 
matching (Rccoeff) similarity measures between the vertical 
projections of 150 open eye video frames and the three 
templates. Only the correlation matching method has clear 
discriminative values depending on the template (open, 
nearly close and close) for almost all the frames in Fig. 2. 

Each similarity measure between an eye region and a 
template represents an eye region feature.  

2
cor

x',y'
R ( x, y ) [T( x', y') I( x x', y y')]= ⋅ + +∑  (10) 

B. Feature Selection and Classifiers 
After computing a big number of features, 

dimensionality reduction is necessary. Many features are not 
suitable to classify eye images because noisy and redundant 
inputs can have a bad influence on the classification 
performance [12]. Dimensionality reduction approaches can 
be classified in feature extraction and feature selection 
algorithms. Unlike feature extraction, feature selection 

allows to make inferences on how input variables affect the 
model results. We have adopted the suboptimal SFS 
method, which selects the best single feature and then adds 
one feature at a time which in combination with the 
previously selected features maximizes the criterion 
function. SFS is computationally efficient [13]. 

 

 

 
 

Figure 2.  Rcor and Rccoeff similarity measures between the vertical 
projections of 150 open eye images and the three templates. 

We used and compared two classifiers widely used in 
data classification and pattern recognition: MLP and SVM. 
MLP is a type of Artificial Neural Network (ANN). ANNs, 
which are inspired by biological neural networks, are 
composed of neural-like units connected together through 
input and output paths which have adjustable weights [14]. 
The MLP is an ANN which has been very successful in a 
variety of applications, producing results that are at least 
competitive and often exceed other existing approaches. 
SVM is an algorithm based on the margin-maximization 
principle which has become increasingly popular for a wide 
range of machine learning tasks, such as face recognition 
and text categorization, and has good generalization ability.  

III. EXPERIMENTAL RESULTS 
The experimental results include several phases: the 

calculation of features of a big number of eye images, the 
performance comparison of MLP and SVM classifiers with 
the SFS, and finally the testing of the eye state monitoring 
system.  

A. MLP and SVM comparative results 
We collected 792 rectangular eye images with different 

people and illumination conditions in the three states: open, 
nearly close and close. Fig. 3 shows examples of images in 
the three states. 1-D and 2-D histograms, horizontal and 
vertical projection functions ( hIPF and vIPF ), and horizontal 
and vertical generalized projection functions ( hGPF  and 

vGPF with α values of 0, 0.4, 0.6 and 1) of these eye 
images were calculated. Then, 180 similarity measures 
between the image histograms, image projection functions, 
and the entire images and those from the templates of open, 
nearly close and close eye regions were computed. Different 
templates were selected for each person presented in the 792 
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eye images. The 180 similarity measures are divided in: 24 
similarity measures (#1-24) between the 1-D histograms of 
the grayscale eye images and templates, 24 similarity 
measures (#25-48) between the 2-D histograms of the HS 
components in the HSV color space of the eye images and 
templates, 120 similarity measures (#49-168) between the 
projection functions of the grayscale eye images and 
templates, and 12 similarity measures (#169-180) from the 
matching of the eye images and the templates. The 180 
similarity measures are the features of each rectangular eye 
image.  
 

  
  

 

Figure 3.  Eyes images in the three states: open, nearly close and close. 

With the 180 similarity measures of the 792 rectangular 
eye images and SFS, an MLP was trained and validated 
using the leave-one-out method, which consists in averaging 
the result of doing as many training stages as images, 
leaving out only one image from the training set which is 
used to cross-validate. Backpropagation training algorithm 
and one hidden layer were used. In the training stage, the 
nearly close and close eyes are assigned the same output 
(close eye output) according to the PERCLOS measure. Fig. 
4(a) shows the performance of the MLP as a function of the 
number of selected features. Three performance measures 
appear in Fig. 4(a): overall accuracy, specificity, and 
sensitivity, which characterize a binary classification. True 
positives are the nearly close or close eyes correctly 
classified by the network and false positives are the open 
eyes wrongly classified by the network. The maximum 
overall accuracy is achieved with 17 features. These 17 
features have numbers from the most to the least 
discriminative: #15, 11, 30, 40, 44, 17, 21, 101, 121, 177, 4, 
125, 123, 157, 126, 165, and 127. We used 501 additional  
images, different from the previous 792, to select the 
optimal number of features using the Receiver Operating 
Characteristics (ROC) curves. Fig. 5 shows two ROC curves 
and their Area Under the ROC Curve (AUC), which is the 
common method to compare classifiers [15]. The biggest 
value of AUC (0.9389) occurs with 15 features. The most 
sensitive parameters that influenced the MLP performance 
were the number of neurons in the hidden layer and the 
number of training iterations. Fig. 4(b) shows the MLP 
performance as a function of the number of neurons in the 
hidden layer. With 15 features selected with the SFS and 
five iterations, the best performance was 95.91%, achieved 
with five neurons in the hidden layer. 

Then, SVM was trained and validated with the 180-
feature set of the first 792 rectangular eye images using the 
leave-one-out method and SFS. Fig. 6(a) shows the 
performance of SVM as a function of the number of 
selected features. Unlike the 15 features selected with the 
MLP, only 6 features, with numbers #16, 12, 32, 28, 27, and 
4, reached an SVM overall accuracy not significantly 

improved with more features. The SVM classifier requires 
the choice of kernel, the kernel-associated parameter (γ) and 
the ν parameter. In the same way as with MLP, 501 eye 
images, different from the previous 792, were used to select 
the SVM parameters. We chose the RBF as the kernel 
function. A set of classifiers were created with a range of 
values of γ, ν and the number of training iterations. Fig. 6(b) 
shows the SVM performance as a function of the γ 
parameter. Optimal value of γ was 56. Optimal value of ν 
was 0.1. The number of training iterations is important to 
avoid overfitting and 32 was the optimal value. Finally the 
SVM classifier achieved an overall accuracy of 94.28% with 
leave-one-out cross validation, which is outperformed by 
the 95.91% overall accuracy of the MLP classifier with 15 
features.  

The MLP classifier with 15 features was selected for the 
eye state monitoring system. 
 

 
(a) (b) 

 

Figure 4.  MLP performance for the eye state detection as a function of: 
(a) the number of features selected with SFS; (b) the number of neurons in 

the hidden layer. 

 

 
 

Figure 5.  ROC curves of the MLP classifier for eye state detection using 
17 and 15 features. 

 

 
(a) (b) 

 

Figure 6.  SVM performance for the eye state detection as a function of: 
(a) the number of features selected with the SFS; (b) gamma (γ) parameter. 
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B. Eye state monitoring system 
We tested the system with eight videos, four from our 

private database taken in the laboratory and inside a car 
while a user is driving in real conditions and four from the 
publicly available ZJU Eyeblink database [16]. There are 
not public databases with videos recorded inside a car in 
real conditions to our knowledge. The eight videos have an 
image resolution of 320×240 pixels, with a face in frontal or 
near frontal position and a wide range of conditions: 
translation and scale changes, some people wear glasses and 
different illumination conditions.  Fig. 7 shows the output of 
the eye state monitoring system for two videos, one from 
our private database and the other from the ZJU Eyeblink 
database. The dashed lines indicate the threshold value of 
the MLP classifier, which is -0.375. If the output is bigger 
than the threshold, the eyes are classified as close, otherwise 
they are classified as open. In Fig. 7, the manually ground 
truth eye state is indicated with a triangle, if the eyes are 
closed or nearly closed, or with an asterisk, if the eyes are 
open, in each frame of the video sequences. Overall 
accuracy, sensitivity and specificity are also indicated in 
Fig. 7. Errors mainly occur in the transitions between the 
close or the nearly close and the open eye state due to the 
inherent difficulty in classifying an eye when it is not 
completely open. This type of errors will not be significant 
for the driver alertness monitoring with the PERCLOS 
measure, unlike the situation of nearly close eyes being 
wrongly detected as open eyes in many consecutive frames. 
The average overall accuracy, sensitivity and specificity are 
95.75%, 93.38%, 96.50%, respectively, for all the eight 
videos. 

Processing times were taken with an Intel Core 2 Duo 
processor at 3 GHz and 4 GB RAM, with the software 
implemented in Visual C++. Each frame takes 18 ms on 
average, out of which 14 ms are taken for the face detection 
and the remaining time is mainly devoted to the eye region 
feature calculation and the classification. AdaBoost-based 
face detection is applied to image subwindows varying in 
position and size from a minimum size. We adapted this 
minimum size depending on the face size in the previous 
frame, with width and height 2/3 the face width and height 
in the previous frame. These processing times give rise to a 
frame rate of 55 frames per second (fps) so that real-time 
driver vigilance monitoring is achieved. Frame rate was 
limited by the 30 fps given by the two cameras used in the 
experiments: Logitech Quick Cam Zoom and Philips 
SPC315NC. 

Fig. 8 shows frames of two video sequences, one from 
the Eyeblink database and one in real driving conditions. 
Face detection and eye region location are drawn in the 
frames together with the output of our eye state monitoring 
system. Our system monitors the driver alertness through 
the PERCLOS measure. The maximum value of the 
PERCLOS measure allowed for secure driving can be 
adapted to each driver and the level of alertness required for 
driving (high, medium, low). As soon as the threshold value 

is overcome, alarm state will be triggered. The driver will 
have to react and return to a secure driving state to abandon 
the alarm state. 

 
 

 
Overall Accuracy=97.33%

Sensitivity=94.54% 
Specificity=98.48% 

 
Overall Accuracy= 95.89%

Sensitivity=88.88% 
Specificity=96.43% 

(a) (b) 
 

Figure 7.  Output of the eye state classifier for two video sequences: (a) a 
frame from the video sequences and system performance figures; (b) output 

of the eye state monitoring system. 

 

 

 

 

 
 

Figure 8.  Output of the driver alertness monitoring system with two video 
sequences. 

IV. CONCLUSIONS 
In this paper, a robust real-time computer vision-based 

system to detect the eyelid closure for driver alertness 
monitoring is presented. Eye state detection is based on an 
MLP classifier using as pattern features different similarity 
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measures between the eye region and one of the three 
templates: open, nearly close and close eyes. The 
calculation of the PERCLOS drowsiness measure makes it 
necessary the use of the three templates. 15 features were 
selected with the SFS and the AUC of the ROC curves: one 
is image-based, eight are histogram-based, and six are 
projection-based similarity measures. MLP outperforms 
SVM in our classification problem. It shows the MLP 
competitiveness in a wide range of applications. The 
selection of features of different nature stressed the 
complexity of characterizing such a deformable and highly 
variable object as the eye.  

Our driver alertness monitoring system was tested with 8 
videos. Average overall accuracy was 95.75% with no 
significant decrease in accuracy with oriental people of the 
videos from the ZJU Eyeblink database and the videos 
recorded in real driving conditions. This states the 
robustness of the system to changes of people, illumination, 
and environment. The system can be used to compute 
PERCLOS measure together with the consecutive time of 
non-face and close eye state detection for monitoring driver 
vigilance. It takes 18 ms per frame with 320×240 pixels. 
Our system runs in a standard computer and camera, which 
makes it easy the implementation of the vision-based 
security system inside a car. 
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