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Abstract— Despite the sophistication of today's radiochemical 
separation techniques, it often occurs that the peaks in the 
spectra of α-emitting radioactive samples partially overlap. We 
here demonstrate the usefulness of a procedure based on a 
neural network, a multilayer perceptron with backpropagation 
training method, trained with isolated alpha peaks of 
environmental samples in resolving such partially overlapping 
alpha peaks and in predicting the activities of the α-emitters 
detected. 

I. INTRODUCTION 
In nature, there are a number of radionuclides that 

disintegrate emitting radiation. One form of this radiation 
consists of alpha particles, which are helium nuclei (2 
protons and 2 neutrons) with a high kinetic energy, of the 
order of MeV (mega-electron-volts). The emission energies 
are discrete and characteristic of each alpha emitting 
radionuclide, which allows their identification. Because of 
the great mass of these charged particles, they interact 
strongly as they pass through matter. Indeed, they are 
completely stopped by the thickness of a sheet of paper. For 
their measurement, it is necessary to use a radiochemical 
separation process to isolate the radionuclides, which are 
then deposited onto a planchet, forming a layer as thin as 
possible. The alpha particles are usually detected using PIPS 
(Passivated Implanted Planar Silicon) detectors in which the 
energy of the alpha particle is deposited. Due to the strong 
interaction of alpha particles with matter, the distance 
between sample and detector must be as short as possible, 
typically a few millimetres, to avoid losing energy in the 
detection. A certain degree of vacuum is also needed in the 
detection chamber. Despite these precautions, however, it is 
impossible that all the alpha particles emitted will reach the 
detector with their complete energy, and low-energy tails are 
commonly observed in the spectra. These spectra consist of 
plots of the number of alpha particles detected, called counts, 
at defined energy intervals, called channels. The resolution 
of the detectors used is of the order of 0.025 MeV. The low-
energy tails usually pose no problem if the alpha peaks are 
well separated, i.e., their energies are so different that they 
do not overlap. Unfortunately, that is not always possible, as 
in the case of Fig. 1. 

A. Existing solutions 
To resolve this problem, deconvolution processes are 

often used based on the semi-empirical functions of the 
shape of a mono-energetic alpha peak with a large number of 
fitting parameters. Functions based on the convolution of 
several components have been proposed by Bortels and 
Collaers [1] and Westemeier and Van Aarle [2]. The 
parameters of these models are determined by optimizing the 
fit of the corresponding function to the real spectrum. The 
more parameters the function contains, the better the fit, 
although the optimization procedure is more complicated and 
several types of ambiguities arise. There are similar 
applications of the neural networks on chemical problems 
[3], but the main difference is the asymmetric shape of the 
alpha peaks. 

 

 
Figure 1.  Radium alpha spectrum with multiple, partially overlapping 

peaks. 

B. Proposed solution 
The present communication describes a different 

approach to the problem. Using the trained neural network of 
a previous work [4], we developed a procedure based on the 
reconstruction of alpha peaks and their subtraction from the 
original spectrum, obtaining the individual contributions of 
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each of the overlapped peaks. Instead of generating certain 
parameterized model functions to fit the peaks, a 
generalization based on the shape of peaks taken from real 
alpha spectra is used. The purpose of this work is thus the 
application of neural network techniques to the fitting 
analysis of two partially overlapping peaks in alpha spectra. 

II. METHOD 

A. The neural network 
In the previous work, we designed a neural network for 

singlet alpha-peak fitting. That network (see Fig. 2) consists 
of a multilayer perceptron (MLP) feed-forward neural 
network using a back-propagation training algorithm, trained 
on several energetically isolated peaks of polonium. The 
inputs are 7 characteristics of a peak (see Fig. 3) sufficiently 
descriptive to allow the network to determine the peak shape. 
The outputs are the 21 channel values of the alpha-peak 
integral, as shown in Fig. 4. 

 
Figure 2.  The neural network scheme. 

The network was trained on 102 different alpha peaks of 
polonium, using a cross-validation method with Mean 
Squared Error (MSE) cost function to determine the training 
level. The trained network obtained is used in the procedure 
explained in this work. 

B. The procedure 
In order to study the results of the fitting process when 

there are multiple alpha-peaks, we artificially constructed 
some spectra by adding integrals of individual peaks of real 
alpha spectra. These peaks were obtained from the 
measurement of real polonium sources of environmental 
samples. From these spectra are possible to generate 
artificially overlapped peaks at will to share a given 
percentage of channels. This is illustrated in Fig. 5, with the 
overlap being the ratio between areas 3 and 1 expressed as 
percentages. For example, we consider the overlap to be 10% 
when the integral of the right peak adds 10% to the left peak 
integral. 

 
To resolve the two partially overlapped peaks of a 

spectrum, we proceed as follows. The first step is to extract 
the characteristics of the higher energy peak, located on the 
right side in the spectrum. This information is then fed to the 

neural network. We use the neural network output to fit that 
peak and subtract it from the original two peaks spectrum. 
The result is the isolated left peak, which can then be 
analyzed using the single peak fitting procedure again. 

 

 
Figure 3.  Characteristics of a peak. (1) first half of FWHM; (2) second 

half of FWHM; (3) first half of FWTM; (4) second half of FWTM; (5) first 
half of FW2TM; (6) second half of FW2TM; (7) maximum number of 

counts of the peak in a channel. 

 
Figure 4.  Neural network output example (21 values). 
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Figure 5.  Overlapping peaks. (1) Left peak integral; (2) right peak 

integral; (3) overlapping area. 

Figure 6 illustrates the process followed on the 
experiments. The continuous line represents the original 
artificially constructed spectrum. The dashed line, number 2 
in the figure, is the first neural network output, i.e., the 
isolated right peak's contribution to the spectrum. The dotted 
line, number 3 in the figure, is the result of subtracting that 
output from the initial spectrum, i.e., the isolated left peak's 
contribution, which is then analyzed by the network again. 

 
Figure 6.  Peak overlap decomposition. (1) Continuous line; (2) dashed 

line; (3) dotted line. 

III. RESULTS 
The spectra we used in this work were constructed with 

two isolated alpha-peaks obtained from the measurement of 
environmental samples. These peaks are unknown by the 
neural network. To construct the test spectra, we selected by 

way of example a 590-count 208Po alpha peak, with a 
measurement uncertainty of 23.4 counts (4.26 %), and a 127-
count 210Po alpha peak, with a measurement uncertainty of 
11.2 counts (8.92 %). These compositions contain two peaks 
that overlap by a determined percentage in the range 1% – 
95%.  

 
In order to study the quality of the procedure's results, we 

tested three different configurations of the artificially 
constructed spectra: (1) the integrals of both peaks are equal, 
(2) the left peak is smaller, and (3) the right peak is smaller. 

In the first case (see Fig. 7), we used the same 590-count 
alpha peak of 208Po in both the right and left positions. In the 
second and third cases, we used the 127-count 208Po alpha 
peak as the smaller, and the 590-count 210Po peak as the 
larger (see Figs. 8 and 9, respectively). 

 
We tested the procedure on each of the three 

configurations, varying the percentage overlap in the 
aforementioned range of 1% – 34%. Figures 7–9 present the 
results. To facilitate the visual appraisal of the resulting 
percentage deviations, the values are represented overlain on 
top of the intrinsic error of measurement (the “measurement 
uncertainty”) of each alpha spectrum (shaded zones in the 
figures). 

 

 
Figure 7.  Configuration 1. (a) Example of the two partially overlapping 

peaks (8% in the figure). (b) Percentage deviation of the integrals predicted 
by the neural network for different degrees of overlap of the peaks versus 

the integrals predicted by the network for the same two isolated peaks. 
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Figure 8.  Configuration 2. (a) Example of the two partially overlapping 
peaks (35% in the figure).  (b) Percentage deviation of the integrals 

predicted by the neural network for different degrees of overlap of the peak 
on the right (larger) versus the integrals predicted by the network for the 
same isolated peak. (c) Percentage deviation of the integrals predicted by 
the neural network for different degrees of overlap of the peak on the left 

(smaller) versus the integrals predicted by the network for the same isolated 
peak. 

 
Figure 9.  Configuration 3. (a) Example of the two partially overlapping 

peaks (10% in the figure). (b) Percentage deviation of the integrals 
predicted by the neural network for different degrees of overlap of the peak 
on the right (smaller) versus the integrals predicted by the network for the 
same isolated peak. (c) Percentage deviation of the integrals predicted by 
the neural network for different degrees of overlap of the peak on the left 

(larger) versus the integrals predicted by the network for the same isolated 
peak. 

In the first configuration (Fig. 7), with peaks of equal 
integrals, the percentage deviation of the integrals predicted 
by the neural network for different degrees of overlap of the 
peaks versus the integrals predicted by the network for the 
same two isolated peaks is almost always less than the 
measurement uncertainty until 10% of overlapping area. 
Beyond this value, the shape of the spectra has only one 
visible peak, and the prediction become worst. Hence, for a 
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wide range of overlap, the quality of the predicted integral is 
such that its uncertainty is even smaller than the intrinsic, 
and totally unavoidable, error of measurement. 

 
In the second configuration (Fig. 8), the quality of the fit 

is the same as in the previous configuration when equal 
integral peaks overlapped. However, now the overlap affects 
more the smaller integral peak (on the left). Although the 
percentage deviation shows a greater dispersion, it is 
generally still less than the intrinsic error of measurement, 
when the overlapping area is less than 5%. In the other cases, 
the shape of the peak shape becomes single, and the 
prediction is worst again. 

 
In the third configuration (Fig. 9), the quality of fit is the 

same as in the previous case, with percentage deviations less 
than the intrinsic error of measurement with overlapping area 
below the 25%, despite the smaller integral peak having a 
greater uncertainty. 

IV. CONCLUSIONS 
The present procedure allows one to solve the two 

overlapping peaks problem successfully, over a wide range 
of situations of overlap. 

 
Nonetheless, notwithstanding the results described above, 

it is necessary to extend the work to test the procedure on 
multiplets of three or more overlapping alpha peaks as 
frequently occurs in real samples (as one observes in Fig. 1), 
in order to determine what are the potential limits, if any, of 
the application of this procedure. 
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