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Abstract 
 

In this paper, a fuzzy wavelet neural network model 
is proposed for system identification problems. The 
proposed model is obtained from the traditional 
Takagi-Sugeno-Kang (TSK) fuzzy system by replacing 
the consequent part of fuzzy rules with wavelet basis 
functions that have time-frequency localization 
properties. We use a radial function of Mexican Hat 
wavelet in the consequent part of each rule. A fast 
gradient algorithm based on quasi-Newton methods is 
used to obtain the optimal values for unknown 
parameters of the model. Simulation results of some 
benchmark problems in the literature are also given to 
illustrate the effectiveness of the model.  

 
 
1. Introduction 
 

Models of real systems are of fundamental 
importance in virtually all disciplines. In engineering, 
models are required for the design of new processes 
and for the analysis of existing process [1]. System 
identification involves finding a relation between the 
input and output of the system [2, 3]. In the literature, 
several methods are applied to solve system 
identification problems such as polynomials [4], neural 
networks [3, 5], and neuro-fuzzy systems [6, 7].  

In recent years, wavelets have become very popular 
and have been applied in many scientific and 
engineering research areas such as system 
identification, signal processing and function 
approximation. They have very important properties 
such as time-frequency localization property. With this 
property, wavelets can capture global (low frequency) 
and local (high frequency) behavior of any function 
easily [8].  

Wavelet neural networks (WNN) which combine 
neural networks with wavelet functions are also used in 
function approximation and system identification 
problems [9]-[11]. In WNNs, wavelet functions are 

used in hidden layers of neural networks as activation 
functions instead of local functions in time such as 
Gaussian and sigmoid functions. WNNs can converge 
quickly, can be easily trained and give high accuracy. 

Fuzzy wavelet neural networks (FWNN) combine 
neuro-fuzzy systems with wavelet functions. In the 
literature, several FWNN models are proposed for time 
series prediction, system identification and control 
problems [2], [8] and [12]-[14]. The FWNN proposed 
in [2] uses summation of dilated and translated versions 
of wavelet functions in consequent part of fuzzy rules 
for system identification and control purposes. In [8] 
and [12], each fuzzy rule is represented by a sub-WNN 
which consists of single-scaling wavelets that has same 
dilation parameters for all dimensions and orthogonal 
least-square algorithm is used to select important 
wavelets. The resulting network is used for function 
approximation in [8] and control of nonlinear systems 
in [12].  In [13], the proposed model consists of a set of 
IF–THEN rules and, THEN parts are series expansion 
in terms of wavelets functions and this model is applied 
to system modeling. In [14], the inputs enter into 
discrete wavelet transform block, then the output of this 
block is fuzzified and it forms the input to a single 
neural network. 

A FWNN model which is called as radial FWNN 
(RFWNN) in this paper is proposed for system 
identification problems. In this model, a radial function 
of wavelets is used in consequent part of fuzzy rules 
whereas generally constant function or linear 
combination of inputs is used in TSK fuzzy systems. 
Gaussian type functions are used as membership 
functions in the premise part of the rules. 

The rest of this paper is organized as follows. The 
structure of proposed RFWNN model is explained in 
Section 2. The training algorithm and parameter update 
rules are given in Section 3. To illustrate and compare 
the performance of the RFWNN, three simulation 
examples are provided in Section 4. Finally, a brief 
conclusion is drawn in Section 5. 
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2. Fuzzy wavelet neural network model 
structure  
 

The proposed RFWNN combines TSK fuzzy 
system with wavelet functions. In the RFWNN, 
constant or linear functions in consequent part of the 
rules in TSK fuzzy system are substituted with wavelet 
functions in order to increase computational power of 
neuro-fuzzy system by using the fact that wavelets have 
time-frequency localization property. In this paper, 
translated and dilated version of Mexican Hat wavelet 
function is used which is given by the following 
equation: 

 2 21( ) (1 ( ) )exp( ( ) )
2

i i i

i i i

x b x b x b
c c c

      (1) 

Translation parameter (bi) determines the center 
position of the wavelet, whereas dilation parameter (ci) 
controls the spread of the wavelet. 

The structure of two input one output RFWNN 
model with two membership functions for each input is 
shown in Figure 1. In this model, the first rule is in the 
following form: 

IF x1 is A11 AND x2 is A21 THEN Ψ11 

where x1 and x2 are input variables, A11 and A21 are 
Gaussian type membership functions and Ψ11 is a radial 
function of wavelets in consequent part of the rule. 

The six layer structure of two input one output 
RFWNN model is explained layer by layer below for 
i=1,2 and j=1,2. 

 Layer 1: This layer is the input layer. Each 
neuron in this layer transmits external crisp 
input signals (x1 and x2) directly to the next 
layer. 

 Layer 2: This layer is fuzzification layer. 
Neurons in this layer represent fuzzy sets used 

in the antecedents of fuzzy rules. The outputs 
of this layer are the values of the membership 
functions. The jth Gaussian type membership 
function for the ith input is given by: 

21( ) exp( ( ) )
2

i ij
ij i

ij

x
A x              (2) 

 Layer 3: This layer is the fuzzy rule layer. Each 
node in this layer represents a fuzzy rule. In 
order to calculate the firing strength of each 
rule, multiplication is used as AND (t-norm) 
operator. 

1 1 2 2( ) ( )ij i jA x A x              (3)
  

  

 Layer 4: This layer is normalization layer. 
Each neuron in this layer calculates the 
normalized activation strength of a given rule 
by: 

2 2

1 1

ij
ij

ij
i j

              (4) 

 
 Layer 5: This layer calculates the weighted 

consequent value of a given rule as follows: 

ijij ijf                (5) 

 2 21(1 )exp( )
2ij ij ij ij ijw p       (6) 
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               (7) 

 

 
Figure 1. The fuzzy wavelet neural network model structure 
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Here, x is input vector, bij and cij are translation 
and dilation parameters of radial wavelet 
function respectively, and wij and pij are weight 
and bias parameters respectively. In each rule, 
single dilation parameter is used for all input 
dimensions whereas different translation 
parameters are used for each input. 

 Layer 6: This layer is output layer. It computes 
the overall output of system as follows: 

2 2

1 1
ij

i j

y f               (8) 

 
3. Training algorithm 
 

The RFWNN training is to encapsulate a given 
function or input-output pairs by adjusting network 
parameters. Unknown parameters are center parameters 
(μ) and scaling parameters (σ) of Gaussian membership 
functions in antecedent part of the rules, and translation 
(b), dilation (c) parameters of wavelet functions and 
weight (w) and bias (p)  parameters in the consequent 
part of the rules. 

The RFWNN training is done by minimizing a 
performance index. For this purpose, mean square error 
(MSE) is selected as performance index which is given 
by: 

2

1

1 ( )
N

d
k

E y y
N

               (9)           

where N is the total number of input-output pairs of the 
function to be approximated, yd is the desired output, 
and y is the RFWNN output. 

In this paper, unknown parameters of the RFWNN 
model are adjusted by using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) gradient method. BFGS 
method is derived from Newton’s method in 
optimization which is a class of hill-climbing 
optimization techniques. It tries to seek the stationary 
point of a function, where the gradient is zero [15]. It is 
assumed that at the each iteration of the training 
algorithm, gradients of the performance index with 
respect to all unknown parameters (p) of RFWNN, 

Eg
p

 is computed. Parameter update rules of BFGS 

algorithm is given by: 
1k k k kp p d              (10) 

kmin  J(p )k kd             (11) 

k k kd H g p              (12) 

   Here p is the parameter to be updated, d is the search 
direction,  is the optimal step size along the search 
direction, g is the cost gradient with respect to 

parameter p and 1( )H Jp  is the inverse of the 

approximate Hessian matrix given by: 
T

( ) ( )1 kH
( ) ( )

( ) 0           +   ,   H
( )

k k T k k Tp g p gp pkH I Ik T k k T kp g p gp p
k k Tp p

Ik T kp g p

      (13) 

p and g are the backward differences of the 
parameter and gradient vectors, respectively. They 
provide the history of parameter and gradient changes 
yielding approximate second order information. 

The gradients of the parameters in membership 
functions can be calculated by following formulas for 
i=1,2 and j=1,2: 
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 For above calculations, partial derivative of the 
output y with respect to membership functions of each 
input variable is needed. For example, for the first 
membership function of the first input variable, this can 
be calculated as: 

11 21 12 22 21 22
2 2

11
1 2

1 1

( ) ( )

i j
i j

A A y A Ay
A A A

         (17)

           
The gradients of the parameters of wavelet function 

in the consequent part of the rules are given by 
following formulas for i=1,2,  j=1,2 and k=1,2: 

2 211 exp
2ij ij ij

ij

E E
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                     (18) 
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where 
2

2 2

1

|| || ( )k
i ij

k

x bijx b  and ij is (7). 

 
4. Simulation examples 
 

The proposed RFWNN model is applied to a 
function approximation, to a system identification 
problem and to a prediction problem in order to show 
the performance of the model. 

  
4.1. Approximation of a piecewise function 

 
A piecewise function studied by Zhang [16] and 

Chen [17] is used to compare the RFWNN with some 
other wavelet-based networks. This function is defined 
as 

( )

2.186 12.864 10 2
4.246 2 0

0.05 0.510 sin[(0.03 0.7) ] 0 10

y f xd

x x
x x

xe x x x

      (22) 

For the training process, N = 200 sample points are 
drawn from the data uniformly distributed over [-10, 
10]. In order to compare the proposed model with other 
works, the measure in [8] is used: 

   

2

1

2

1

( )

( )

N

d
i

N

d av
i

y y
J

y y
            (23) 

where yd is actual output, y is predicted output 

and
1

1 N

av d
i

y y
N

.  

In Table 1, it is seen that the performance of the 
proposed model is superior to that of the other WNNs. 
Figure 2 illustrates the validity of the RFWNN model 
with smallest performance measure value among the 
simulations. 

Table 1. Comparison of RFWNN model with other 
models for the piecewise function 

Models 
Network 
Param.  

J 

RFWNN 42 0.0031 
RFWNN 36 0.0041 
RFWNN 30 0.0116 
FWN [8] 28 0.021 
WNN[16] 22 0.05057 
WNN[17] 23 0.0480 
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Figure 2. Actual and predicted values with RFWNN 

for the piecewise function 
 

4.2. System identification example 
 

System identification involves finding the relation 
between the input and output of the system [2,3]. In 
this example, the plant to be identified is given by 
following equation: 

    
2

( ) 0.72 ( 1) 0.025 ( 2) ( 2)

0.01 ( 3) 0.02 ( 4)

y k y k y k u k

u k u k
     (24) 

The output of the system depends on two previous 
output values and three previous input values. 
However, only u(k-1) and y(k) are used as inputs to the 
FWNN models to predict y(k+1). Two membership 
functions are selected for each input of the RFWNN 
model. In order to train the RFWNN, 900 inputs are 
used similar to the inputs used in [18] and [19]. The 
half of the inputs is independent and identically 
distributed (i.i.d.) uniform sequence over [-2, 2] and 
the remaining is a sinusoid given by 1.05sin(πk/45). 
The RFWNN is trained for 200 epochs (Figure 3). 
After training, the following input signal which is same 
test signal with other compared models is used for 
testing the performance of the RFWNN. 

sin( / 25) 250
1.0 250 500

( ) 1.0 500 750
0.3sin( / 25) 0.1sin( / 32)

0.6sin( /10) 750 1000

k k
k

u k k
k k

k k

 (25) 

Root mean square error (RMSE) is taken as 
measure for system identification example. Figure 4 
shows the actual and predicted output of the plant for 
test signal with RFWNN model. From Table 2, it can 
be seen that the proposed RFWNN model illustrates 
much better performance than the models in [18]-[20] 
with less parameters. The proposed RFWNN gives 
better training results than FWNN[2] and almost same 
test result with FWNN[2].     
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Figure 3. RMSE values during training and testing  for 

system identification example 

  
Table 2. Comparison of RFWNN model with other 

models for system identification example 

Models 
Network 
Param. 

RMSE 
Training 

RMSE 
Testing 

ERNN[20] 54 0.036 0.078 

RSONFIN[18] 49 0.03 0.06 

TRFN-S[19] 33 0.0067 0.0313 

FWNN[2] 27 0.01973 0.02260 

FWNN[2] 43 0.01871 0.02016 

RFWNN 28 0.00968 0.02220 

 

 
Figure 4. Actual and predicted values with RFWNN 

for system identification example 
 

4.3. Sunspot number prediction 

    In this section, annually recorded sunspot time series 
for the years 1700-1979 is considered to show the 
performance of RFWNN model. These numbers show 
the yearly average relative number of sunspots 
observed. To make meaningful comparisons, the 
dataset is divided into three parts. The data points 
between years 1700-1920 are used for training the 
models. The data points for years 1921-1955 and 1956-

1979 form the first and the second test sets 
respectively. The y(t-4), y(t-3), y(t-2) and y(t-1) are 
used as inputs to our models in order to predict the 
output y(t). Two membership functions are selected for 
each input and the model trained for 200 epochs. 
Normalized mean square error (NMSE) is used to 
compare the RFWNN with other models. 

2

1

2

1

( )

( )

N

d
k
N

d d
k

y y
NMSE

y y

     where 
1

1 N

dd
k

y y
n

 

Training and testing error values are given in Table 3 
with comparison of other models in the literature. In 
Figure 5, actual output of time series and prediction 
results of RFWNN are shown. 
 

Table 3. Comparison of RFWNN model with other 
models for sunspot number prediction 

Model Network 
Param. 

NMSE 
training 

NMSE 
testing 1 

NMSE 
testing 2 

Tong [21] 16 0.097 0.097 0.28 
Weigend 
[22] 

43 0.082 0.086 0.35 

Svarer [23] 12-16 0.090 0.082 0.35 
Transversal 
Net[24] 

14 0.0987 0.0971 0.3724 

Recurrent 
net[24] 

22 0.1006 0.0972 0.4361 

RFNN[25] - - 0.074 0.21 

RFWNN 128 0.0796 0.1099 0.2549 
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Figure 5. Actual and predicted values with RFWNN 

for sunspot number prediction 
5. Conclusion 
 

In this paper, a RFWNN model is introduced. This 
model combines neuro-fuzzy model with wavelet basis 
functions which have time frequency localization 
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properties. The presented RFWNN model has 
advantages of high approximation accuracy and good 
generalization performance for system identification 
problems.   

This study is one of the parts of our ongoing 
research on FWNN models [26] and [27]. It is believed 
that the RFWNN model can also be applied to a wider 
range of real-world problems such as speech and image 
processing, financial data analysis and prediction and 
other system identification and control applications. 
Other optimization techniques such as particle swarm 
optimization can also be used for training unknown 
parameters of the RFWNN. 

   
6. References 
 

[1] Oliver Nelles, Nonlinear System Identification: From 
Classical Approaches to Neural Networks and Fuzzy 
Models, Springer, December  2000. 

[2] R. H. Abiyev, O. Kaynak, “Fuzzy Wavelet Neural 
Networks for Identification and Control of Dynamic 
Plants-A Novel Structure and Comparative Study,” 
IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3133 – 
3140, Aug. 2008. 

[3] K. S. Narendra and K. Parthasarathy, “Identification 
and control dynamical systems using neural networks,” 
IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 4–27, 
1990. 

[4] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least 
squares methods and their application to nonlinear 
system identification,” Int. J. Control, vol. 50, pp. 
1873–1896, Nov. 1989. 

[5] P. S. Sastry,G. Santharam, and K. P. Unnikrishnan, 
“Memory Neuron Networks for Identification and 
Control of Dynamical Systems,” IEEE Trans. Neural 
Netw., vol. 5, no. 2, pp. 306-319, March 1994. 

[6] J. Kim, and N. Kasabov, “HyFIS: adaptive neuro-fuzzy 
inference systems and their application to nonlinear 
dynamical systems,” Neural Networks, vol. 12, pp. 
1301-1319, 1999. 

[7] Mahdi Jalili-Kharaajoo, “Nonlinear System 
Identification Using ANFIS Based on Emotional 
Learning,” Lecture Notes in Computer Science, vol. 
3315, pp. 697-707, 2004 

[8] D.W.C. Ho, Ping-Au Zhang,  Jinhua Xu, “Fuzzy 
wavelet networks for function learning,” IEEE Trans. 
Fuzzy Syst., vol. 9, no. 1, pp. 200-211, Feb. 2001. 

[9] J. Zhang, G.G. Walter, and W.N.W. Lee, “Wavelet 
neural networks for function learning,” IEEE Trans.  
Signal Process, vol. 43, no.6, pp. 1485-1497, June 
1995. 

[10] A. Billings Stephen, Hua-Liang Wei, “A New Class of 
Wavelet Networks for Nonlinear System 
Identification,” IEEE Trans. Neural Netw., vol. 16, no. 
4, July 2005. 

[11] Y. Chen, B. Yang, and J. Dong, “Time-series 
prediction using a local linear wavelet neural 

network,” Neurocomputing, vol. 69, pp. 449-465, 
2006. 

[12] Maryam Zekri, Saeed Sadri, Farid Sheikholeslam, 
“Adaptive fuzzy wavelet network control design for 
nonlinear systems,” Fuzzy Sets and Systems, vol. 159, 
pp. 2668 – 2695, Oct. 2008. 

[13] Engin Karatepe, Musa Alçı, “A new approach to fuzzy 
wavelet system modeling,” International Journal of 
Approximate Reasoning, vol. 40, no.3, pp. 302-322,  
Nov. 2005. 

[14] S. Srivastavaa, M. Singha, M. Hanmandlub, A.N. Jha, 
“New fuzzy wavelet neural networks for system 
identification and control,” Applied Soft Computing, 
vol. 6, pp. 1–17, 2005. 

[15] P.E. Gill, W. Murray, and M.H. Wright, Practical 
Optimization, Academic Press Ltd, 1993. 

[16] Q. Zhang, and A. Benveniste, “Wavelet networks,” 
IEEE Trans. Neural Netw., 3, 889-898, 1992. 

[17] J. Chen, and D.D. Bruns, “WaveARX neural network 
development for system identification using a 
systematic design synthesis,” Ind. Eng. Chem. Res., 
vol. 34, pp. 4420-4435, 1995. 

[18] C. F. Juang and C. T. Lin, “A recurrent self-organizing 
neural fuzzy inference network,” IEEE Trans. Neural 
Netw., vol.10, no. 4, pp. 828–845, 1999. 

[19] C. F. Juang, “A TSK-type recurrent fuzzy network for 
dynamic systems processing by neural network and 
genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 10, 
no. 2, pp. 155–170, 2002. 

[20] J. L. Elman, “Finding structure in time,” Cognit. Sci., 
vol. 14, pp. 179–211, 1990. 

[21] H. Tong and K. S. Lim, “Threshold autoregression, 
limit cycles and cyclical data,” Journal Royal 
Statistical Society B, vol. 42, pp. 245–292, 1980. 

[22] A. S. Weigned, D. E. Rumelhart, and B. A. Huberman, 
“Predicting the future: A connectionist approach,” 
Techn. Rep. Stanford-PDP-90- 01 or PARC-SSL-90-
20, 1990. 

[23] C. Svarer, L. K. Hansen, and J. Larsen, “On design and 
evaluation of tapped-delay neural network 
architectures,” in Proc. IEEE Int. Conf. Neural Netw., 
1992, San Francisco. 

[24] J. R. McDonnell, D. Waagen, “Evolving Recurrent 
Perceptrons for Time-Series Modeling,” IEEE Trans. 
Neural Netw., vol. 5, no. 1, 1994. 

[25] R.A. Alieva, B.G. Guirimov, Bijan Fazlollahi, R.R. 
Aliev, “Evolutionary algorithm-based learning of fuzzy 
neural networks. Part2: Recurrent fuzzy neural 
networks,” Fuzzy Sets and Systems, vol. 160, no. 17, 
pp. 2553–2566, 2009.  

[26] Sevcan Yılmaz, “A New Fuzzy Wavelet Neural 
Network Design for Time Series Prediction,” Master’s 
Thesis, Anadolu University, Eskişehir, Turkey, June 
2009.  

[27] Sevcan Yılmaz, Yusuf Oysal, “Fuzzy Wavelet Neural 
Network Models for Prediction and Identification of 
Dynamical Systems,” IEEE Trans. Neural Netw, 
submitted, 2009.  

1289


