
General purpose Input Variables Extraction: A Genetic Algorithm based Procedure
GIVE A GAP

Silvia Cateni, Valentina Colla, Marco Vannucci
Scuola Superiore S.Anna

Viale Rinaldo Piaggio, 34. 56025 Pontedera (PI)

s.cateni@sssup.it, colla@sssup.it, mvannucci@sssup.it

Abstract— The paper presents an application
of genetic algorithms to the problem of input variables
selection for the design of neural systems. The basic idea
of the proposed method lies in the use of genetic
algorithms in order to select the set of variables to be fed
to the neural networks. However, the main concept
behind this approach is far more general and does not
depend on the particular adopted model: it can be used
for a wide category of systems, also non-neural, and with
a variety of performance indicators. The proposed
method has been tested on a simple case study, in order to
demonstrate its effectiveness. The results obtained in the
processing of experimental data are presented and
discussed.

Keywords-genetic algorithm; variables selection; neural

network.

I. INTRODUCTION
The variables selection is an important task in the
design of systems for the simulation and control of real
processes. In function approximation applications,
when a parametric model is applied to reproduce the
relationship between a set of input variables and some
output variables and an experimental database is
provided for model identification purposes, it is
essential to find the subset of input variables that are
actually correlated with the variable(s) to predict. The
issue of variables selection has been deeply
investigated in literature for prediction problems [1-2],
but also for classification [3-7] and clustering [8] tasks.
A new approach based on the fusion of delta test
method and genetic algorithm is presented in [9]. This
method assigns to each variable a parameter to
determine a subset of variables which is representative
of a given function.
 The selection of the relevant input variables is an
important step to build a model that is capable to
provide satisfactory performance [10].
On the other hand, this issue strictly deals with the
knowledge acquisition on a process or a phenomenon

that is not yet deeply understood. For instance, in the
industrial field, commonly a huge number of
measurements related to the process and to the partially
manufactured product are usually collected by the
sensors distributed along the production chain as well
as through specific analyses and tests, and it is of
utmost interest to point out which variables actually
affects e.g. the features and the quality of the final
product or the occurrence of malfunctioning [11-12].
In this paper an automatic approach to variables
selection is described, that exploits genetic algorithm
and artificial intelligence techniques. The proposed
method is called : GIVE A GAP (General purpose
Input Variables Extraction: A Genetic Algorithm based
Procedure). The genetic algorithm is used to generate
several combinations of the input variables through the
mechanisms of natural selection and genetic
recombination [13], by adopting a fitness function
aimed at pointing out the input variables that mainly
affects a target to be predicted. It is important to
underline that this approach is far more general and
does not depend on the particular adopted model: it can
be used for a wide category of systems (also for non-
neural systems) and with a variety of performance
indicators.
The main aim of the proposed method is not only the
development of a system providing acceptable
performance in the prediction or classification task it is
designed for, but also the detection of the input
variables that mainly affect the considered process or
problem, thus it is a data mining algorithm, in the sense
that it actually extracts knowledge from data.
The paper is organized as follows: Sec 2 is devoted to a
literature survey on the subject of variables selection.
Sec 3 is describes the proposed method while in Sec 4
the results obtained in an exemplar case-study are
presented and discussed. Finally Sec.5 presents some
final comments and perspectives for the future work.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.190

1278

II. BACKGROUND ON VARIABLE SELECTION
In applications where the correlation among a (usually
large) number of independent variables and a set of
variables that are supposed to depend on the previous
ones is investigated, an important task is the selection
of the relevant input variables. This problem can be
faced with two different approaches [14-15]:

- Feature extraction
- Variables selection.

Feature extraction consists in a transformation of the
original variables to create other features that are more
significant.
A popular technique which is widely used for feature
extraction is the Principal Component Analysis (PCA)
[16]. PCA consists of a linear transformation of the
variables. A new reference system is obtained where
the transformed variables are sorted in decreasing order
by respect to their influence on target variance.
The feature or variables selection consists in the
selection of the a subset of the available initial
variables.
Variable subset selection methods can be divided in
three main different categories [17]:

- Wrappers.
- Filters.
- Embedded.

Wrapper techniques, diffused by Kohavi and John [18],
directly optimize the predictor ability and does not
depend on the knowledge about the learning machine.
This technique uses the predictive accuracy of the
applied learning machine to calculate the suitability of
the selected variables [19]. The disadvantage of this
approach lies in the fact that, when the available
dataset include many input variables, the
computational burden becomes very relevant [20]. In
2005 Marono et al. developed a new wrapper method
for feature selection based on ANOVA decomposition
[21].
The filter methods are applied in the pre-processing
phase and do not depend on the learning algorithm.
The inputs are chosen by evaluating the relationships
between each subset of input variables and the target
[22]. A feature selection filter method is proposed in
[23]. This algorithm exploits a correlation-based
heuristic in order to select the suitability of the
considered subset. Moreover its effectiveness is
determined by using three traditional Maximum
Likehood (ML) methods .
In embedded methods the variable selection is not
separated from the learning phase [24] but they are
directly connected. Embedded and wrapper methods
have the same advantages concerning the interaction
between the variable selection and the learning
machine but the embedded method is computationally

less complex because the selection of the variables is
included into the learning phase. A novel variable
selection method is shown in [25], where the most
relevant features are incrementally added.

III. METHOD DESCRIPTIONÌ
In the present paper a variables selection method based
on genetic algorithm [26-27] is proposed, that is
applied to function approximation problems, but, in
principle, can also be used for classification or
clustering purposes. The model whose input variables
need to be determined can be implemented with any
kind of feed-forward neural network [28] and also with
other artificial intelligence approaches (such as fuzzy
or neuro-fuzzy inference systems).
The final aim of the GIVE A GAP approach is to
optimize the prediction performance, that is evaluated
in terms of the Normalized Square Root Mean Square
Error (NSRMSE). This index has been introduced by
[29] and is given by the following formula:

N
2

i=1

y

ˆ(y(i)-y(i))
1% 100
σ N

NSRMSE = ⋅
∑

 (1)

Where yσ is the standard deviation of target in the test
set (y), ŷ is the output of the model and N is the
number of samples in the test set.
It must be underlined that any other kind of
performance function can be adopted, depending on
the particular application.
The chromosomes of the genetic algorithm are binary
strings whose length is fixed and equal to the number
of potential input variables: each gene is associated to
an input variable. A unitary value of a gene means that
the associated variable is part of the subset of input
variables that is represented by the chromosome and is
selected to be fed as input to the model.
The fitness function (1) is evaluated for each
chromosome of the population and standard genetic
operators (such as mutation and crossover) are applied.
The mutation operator randomly extracts a bit of the
selected chromosome and switches it from 0 to 1 or
vice versa. An example is shown in Figure 1.
The crossover operator selects each gene of the son
chromosome by randomly taking genes from each one
of the two parent chromosomes as shown in Figure 2
where the first two chromosome are the parents while
the third one represents the son. The dotted arrows
correspond to the first parent while the continuous ones
correspond to the second one.
The available dataset has been divided in three subsets:
60% of the data are used for the network training, 20%

1279

0 1 1 0 1 0 0 1 0 1

0 1 1 0 1 1 0 1 0 1

Figure 1. Mutation operator example

0 1 1 0 1 1 0 1 0 1

1 0 0 1 0 0 1 0 1 1

0 0 1 1 1 0 1 0 0 1

Figure 2. Crossover operator example: the line identifies the origin of

each son gene.

as validation set and the remaining 20% of
observations is used for testing the network. The use of
a validation set drastically lowers the training time of
the network and aims at the improvement of its
generalization capabilities by avoiding the overfitting.
The fitness function to minimize is the average
NSRMSE achieved on the test set at the end of at least
five different and independent training procedures.
This repetition aims at counterbalancing the lack of
repeatability in the training of neural networks even if
they are characterized by the same structure, the same
number of neurons and are trained on the same dataset.
It is therefore an attempt to avoid the possibility to
award a wrong variable combination that provided by
chance a good result or, vice versa, to punish a good
combination due to an unlucky result.
Figure 3 represents the whole flow diagram of the
developed genetic algorithm.
The present analysis is limited to the prediction of a
single output variable. The adopted neural prediction
model is a classical two layer perceptron [30] with k
inputs, n neurons in the hidden layer, that are
characterized by a sigmoidal activation function, and a
single linear neuron in the output layer (see Fig. 4).
The number of neurons in the hidden layer is
automatically determined for each combination of
input variables on the basis of the number such: in
particular, a well-known empirical formula [31] is
applied, which states that the number of free
parameters cannot be greater than fourth or fifth part of
the number Nc of input-output patterns contained in the
training dataset. For the selected neural structure, the
number of free parameters is equal to (kn+2n+1).
Therefore the following inequality:

cN
(kn + 2n +1)

5
≤ (2)

implicitly provides an upper bound for n. Once k is
determined as the sum of unitary bins in the selected
chromosome, the system automatically fixes the
number of neurons in the hidden layer according to the
following formula:

n = int 0,7
5 10

cN
k

⎛ ⎞⋅⎜ ⎟+⎝ ⎠
 (3)

where int(•) means the biggest integer value lower or
equal to the value within parenthesis and the factor 0.7
is used to reduce the number of neurons in the hidden
layer with respect to the empirically estimated
maximum number, according to what is normally done
in the practice to the aim of improving the
generalization capabilities of the network and to reduce
the training process.
The genetic algorithm stops when either a fixed
maximum number of iterations is reached (the
maximum number of iterations before the algorithm
halts is setted to 500) or the a plateau of the fitness
function is achieved. The winner chromosome provides
the subset of input variables associated to the best
value of the fitness.

Figure 3. Flow Diagram for Genetic Algorithm

1280

Figure 4. Net Architecture

However the problem of genetic algorithm is that the
initial population is randomly chosen and also some
selection steps include a component of randomness.
Thus it can happen that a variable is included in the
winner chromosome although it is not correlated with
the target to predict.
In order to solve this problem, the genetic algorithm is
run several times (typically ten) and all winner
chromosomes are stored. In a final step, the
presentation frequency of each variable in the winning
chromosomes is calculated and only the variables that
are presented in more than the 90% of the winning
chromosomes are considered as actually affecting the
output variable.

IV. RESULTS
In order to test the effectiveness of the proposed
approach, a database including 1000 samples and 15
independent variables vi (with 1≤i≤15) has been
created. Three different targets, as non-linear
combinations of input variables, have tested, moreover
random noise with gaussian distribution was added to
the target variable in different proportions with respect
to average value of the target to predict as specified in
Tab. 1.
Table 1 shows for each target the selected variables
and the prediction error in term of NSRMSE. It is clear
that the error increases with increasing levels of the
additive noise.

Table 1 . Results of different functions and addive noise levels.
Theoretical function Addive

Noise
level

Selected
Variables

NSRMSE
 (%)

sin(2 V2) + (V4)2 2% 2, 4 4 % sin(2 V2) + (V4)2 5% 2, 4 12% sin(2 V2) + (V4)2 10% 2, 4 23%

10
6 83 Ve V V⋅ +

2% 6, 8, 10 3%

10
6 83 Ve V V⋅ +

5% 6, 8, 10 9%

10
6 83 Ve V V⋅ +

10% 6, 8, 10 17%

7 13(V + V) 2
1 4V e + V ⋅

2% 1, 4, 7, 13 4,8%

7 13(V + V) 2
1 4V e + V ⋅

5% 1, 4, 7, 13 10%

7 13(V + V) 2
1 4V e + V ⋅

10% 1, 4, 7, 13 19%

Table 2 shows the details of the variables which are
selected by each complete run of the genetic algorithm
considering the example reported in the first row of
Tab.1. The columns correspond to the iterations while
the rows correspond to the input variables. For each
iteration, a cross has been put in correspondence of the
selected variables. It clearly appears that only variables
v2 and v4 are present in all the winning subsets.
The prediction result obtained with the two layer
neural network with 35 hidden neurons, according to
eq (3), and the two extracted variables as inputs is
shown in Figure 5 and Figure 6.
In particular, Figure 5 represents the plot of the
predicted versus measured target while Figure 6 shows
the surface of the predicted target function with respect
to the selected input variables.

Table 2. Results of 10 GA runs

 1 2 3 4 5 6 7 8 9 10
V1 X X
V2 X X X X X X X X X X
V3 X X X X X
V4 X X X X X X X X X X
V5 X X X X X X X
V6 X X X X
V7 X X X X X X X X
V8 X X X
V9 X X X X X X X
V10 X X X X X X X
V11 X X X X
V12 X X
V13 X X X X X
V14 X X X X X X X X
V15 X X X X X

1281

FIGURE 5. PREDICTION RESULT USING THE SELECTED VARIABLES.

FIGURE 6. PREDICTION RESULT USING THE SELECTED VARIABLES

The achieved value of the NSRMSE on the validation
set is about 4%.
By running only once the genetic algorithm and by a-
priori fixing the neural network dimension (as in [1]),
the order of the obtained NSRMSE decreases to 5%
but, most of all, the winning subset of input variables
does not contain only v2 and v4.
In fact, by considering the first column of Tab. 2, the
first run of the GA selects as inputs the following
variables: v2, v3, v4, v6, v7, v10, v8, v10, v14, v15 the
variables that really affect the target prediction are not
pointed out.
If the purpose of the developed work is not only to
design a good and reliable predictor of the target
variable, but also to acquire knowledge on the input
variables that actually affect the target, this latter
aspect is essential and the proposed method showed to
be more effective than [1].
The price to be paid for the achievement of this result
is an increase in the computation time (in the proposed
examples the computation time is about 20 minutes).
However this method has been elaborated to be

performed una tantum off line to the aim of extracting
the variables that mainly affect the target. For this
reason this limit is acceptable but future work will
concern the algorithm optimization in order to reduce
the computation time and improve its on-line
implementation.

V. CONCLUSION AND FUTURE WORK
A very effective algorithm for feature selection is

presented in a context of function approximation
applications (although its main idea is applicable to
several common contexts such as classification or
clustering).

This approach is capable not only to improve
prediction accuracy but also to select only the variables
that really affect the phenomenon under consideration,
by contributing to improve its knowledge.

The future work is focused on the algorithm
optimization, in order to improve its computational
efficiency especially for very large databases used in
real applications.

VI. REFERENCES

[1] D. A. Sofge and D.L. Elliot, “Improved Neural
Modeling of Real-World Systems using Genetic
Algorithm based Variable Selection”, Proocedings
Conference on Neural Networks & Brain, Oct 1998.
[2] D.A. Sofge, “Using Genetic Algorithm Based
Variable Selection to Improve Neural Network Models
for Real-World Systems”, Proocedings of the 2002
International Conference on Machine Learning &
Applications, 2002.
[3] N. Kwak, C.H. Choi, “Input feature selection for
classification problems”, IEEE Trans. On Neural
Networks, Vol. 13, pp. 143-159, 2002.
[4] R.Battiti, “Using mutual information for selecting
features in supervised neural net learning”, IEEE
Trans. On Neural Networks, Bruges,Belgium, 2005.
[5] L. Li, R.D. Cook and C.J. Nachtsheim, “Model-free
variable selection”, J.R. Statist. Soc.B, 67, Part2, pp.
285-299, 2005.
[6] L. Xu and W.J. Zhang, “Comparison of different
methods for variable selection”, Analytica Chimica
Acta, 446, pp.477-483, 2001.
[7] J.Y. Lin, H.R Ke, B.C. Chien, W.P. Yang,
“Classifier design with feature selection and feature
extraction using layered genetic programming”, Expert
System with Applications, N. 34, pp. 1384-1393, 2008.
[8] S. Wang and J. Zhu, “Variable selection for model-
based high dimensional clustering and its application to
microarray data”, Biometrics N.64, pp.440-448, June
2008.

1282

[9] A. Guillèn, D.S. Lendasse, F. Mateo and I. Rojas,
“Minimising the delta test for variable selection in
regression problems”, International Journal High
Performance Systems Architecture, Vol. 1, N°4, 2008.
[10] J. Hao, “Input selection using mutual information
– applications to time series prediction”, Helsinki
University of Technology, M.S. thesis, Dep. Of
Computer Science and Engineering, September 2005.
[11] V. Colla, R. Valentini, G. Bioli: “Mechanical
properties prediction for Aluminium-Killed and
Interstitial-Free steels,” Revue de Metallurgie, Special
Issue JSI Dicembre 2004, pp.100-101.
[12] V. Colla, M. Vannucci, S. Fera, R. Valentini: “Ca-
treatment of Al-Killed steels: inclusion modification
and application of Artificial Neural Networks for the
prediction of clogging,”, Proc. 5th European Oxigen
Steelmaking Conference EOSC’06, 26-28 June 2006,
Aachen, Germany, pp. 387-394.
[13] L.Y. Zhai, L.P. Khoo and S.C. Fok, “Feature
extraction using rough set theory and genetic
algorithms – an application for the simplification of
product quality evaluation”, Computers and Industrial
Engineering, N.43, pp. 661-676, 2002.
[14] G. Castellano and A.M. Fanelli, “Variable
selection using neural-network models”,
Neurocomputing, 31, pp.1-13, 2000.
[15] T.S. Lin and J.Meador, “Statistical feature
extraction and selection for IC test pattern analysis”,
ISCAS, May 1992.
[16] I.T. Jolliffe, “Principal Component Analysis”,
Springer Series in Statistics, 2nd ed. Springer, New
York, 2002.
[17] I.Guyon and A. Elisseeff, “An introduction to
Variable and Feature Selection”, Journal of Machine
Learning Research, N. 3, pp.1157-1182, 2003.
[18] R. Kohavi and G. John, “Wrappers for feature
selection”, Artificial Intelligence, N. 97, pp.273-324,
December 1997.

[19] B.M Vidyavathu and C. N. Ravikumar, “A novel
hybrid filter feature selection method for data mining”,
Ubliquitous Computing and Communication Journal,
Vol. 3, N° 3, 2008.
[20] A. Blum and P.Langley. “Selection of relevant
features and examples in machine learning”, Artificial
Intelligence, pp.245-271, 1997.
[21] N.S. Marono, A.A. Betanzos and E. Castillo, “A
new wrapper method for feature subset selection”,
European Symposium on Artificial Neural Network,
Bruges, 27-29 April 2005.
[22] R. N. Khushaba, A. Al-Ani and A. A Al-Jumaily,
“Differential Evolution based Feature Subset
Selection”, IEEE, 2008.
[23] M. A. Hall and L. A. Smith, “Feature Subset
Selection : A Correlation Based Filter Approach”,
Springer, 1997.
[24] Holland, J.H. “Adaptation in Natural and
Artificial Systems”, University of Michigan press, Ann
Arbor, MI, 1975.
[25] Z.Xiao, E. Dellandrea, W. Dou and L. Chen,
“ESFS: A new embedded feature selection method
based on SFS”, Rapports de recherché, September
2008.
[26] M. L. Schmitt, Theory of Genetic Algorithms,
Theoretical Computer Science 259: 1-61, 2001.
[27] Goldberg, D.E. “Genetic Algorithms in Search
Optimization and Machine Learning”, Addison-Wiley
Pubblishing Company, Reading, MA, pp.412, 1989.
[28] Patterson, D., “Artificial Neural Networks”,
Prentice Hall, Singapore, 1996.
[29] Q. Zhang, A. Benveniste: “Wavelet Networks,”
IEEE Transactions on Neural Networks, Vol. 3, No. 6,
pp. 889–898, November 1992.
[30] Fausett, L., “Foundamentals of Neural Networks”,
Prentice Hall, New York, 1994.
[31] Haykin, S., “Neural Networks: a Comprehensive
Foundation”, MacMillman Publishing, New York,
1994

1283

