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Abstract— The paper presents an application 
of genetic algorithms to the problem of input variables 
selection for the design of neural systems. The basic idea 
of the proposed method lies in the use of genetic 
algorithms in order to select the set of variables to be fed 
to the neural networks. However, the main concept 
behind this approach is far more general and does not 
depend on the particular adopted model: it can be used 
for a wide category of systems, also non-neural, and with 
a variety of performance indicators. The proposed 
method has been tested on a simple case study, in order to 
demonstrate its effectiveness. The results obtained in the 
processing of experimental data are presented and 
discussed. 
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I.  INTRODUCTION  
The variables selection is an important task in the 
design of systems for the simulation and control of real 
processes. In function approximation applications, 
when a parametric model is applied to reproduce the 
relationship between a set of input variables and some 
output variables and an experimental database is 
provided for model identification purposes, it is 
essential to find the subset of input variables that are 
actually correlated with the variable(s) to predict. The 
issue of variables selection has been deeply 
investigated in literature for prediction problems [1-2], 
but also for classification [3-7] and clustering [8] tasks. 
A new approach based on the fusion of delta test 
method and genetic algorithm is presented in [9]. This 
method assigns to each variable a parameter to 
determine a subset of variables which is representative 
of a given function.   
 The selection of the relevant input variables is an 
important step to build a model that is capable to 
provide satisfactory performance [10].  
On the other hand, this issue strictly deals with the 
knowledge acquisition on a process or a phenomenon 

that is not yet deeply understood. For instance, in the 
industrial field, commonly a huge number of 
measurements related to the process and to the partially 
manufactured product are usually collected by the 
sensors distributed along the production chain as well 
as through specific analyses and tests, and it is of 
utmost interest to point out which variables actually 
affects e.g. the features and the quality of the final 
product or the occurrence of malfunctioning [11-12].  
In this paper an automatic approach to variables 
selection is described, that exploits genetic algorithm 
and artificial intelligence techniques. The proposed 
method is called : GIVE A GAP (General purpose 
Input Variables Extraction: A Genetic Algorithm based 
Procedure). The genetic algorithm is used to generate 
several combinations of the input variables through the 
mechanisms of natural selection and genetic 
recombination [13], by adopting a fitness function 
aimed at pointing out the input variables that mainly 
affects a target to be predicted. It is important to 
underline that this approach is far more general and 
does not depend on the particular adopted model: it can 
be used for a wide category of systems (also for non-
neural systems) and with a variety of performance 
indicators. 
The main aim of the proposed method is not only the 
development of a system providing acceptable 
performance in the prediction or classification task it is 
designed for, but also the detection of the input 
variables that mainly affect the considered process or 
problem, thus it is a data mining algorithm, in the sense 
that it actually extracts knowledge from data. 
The paper is organized as follows: Sec 2 is devoted to a 
literature survey on the subject of variables selection. 
Sec 3 is describes the proposed method while in Sec 4 
the results obtained in an exemplar case-study are 
presented and discussed. Finally Sec.5 presents some 
final comments and perspectives for the future work. 
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II. BACKGROUND ON VARIABLE SELECTION 
In applications where the correlation among a (usually 
large) number of independent variables and a set of 
variables that are supposed to depend on the previous 
ones is investigated, an important task is the selection 
of the relevant input variables. This problem can be 
faced with two different approaches [14-15]: 

- Feature extraction 
- Variables selection. 

Feature extraction consists in a transformation of the 
original variables to create other features that are more 
significant.  
A popular technique which is widely used for feature 
extraction is the Principal Component Analysis (PCA) 
[16]. PCA consists of a linear transformation of the 
variables. A new reference system is obtained where 
the transformed variables are sorted in decreasing order 
by respect to their influence on target variance. 
The feature or variables selection consists in the 
selection of the a subset of the available initial 
variables.  
Variable subset selection methods can be divided in 
three main different categories [17]: 

- Wrappers. 
- Filters. 
- Embedded. 

Wrapper techniques, diffused by Kohavi and John [18], 
directly optimize the predictor ability and does not 
depend on the knowledge about the learning machine. 
This technique uses the predictive accuracy of the 
applied learning machine to calculate the suitability of 
the selected variables [19]. The disadvantage of this 
approach lies in the fact that, when the available 
dataset include many input variables, the 
computational burden becomes very relevant [20]. In 
2005 Marono et al. developed a new wrapper method 
for feature selection based on ANOVA decomposition 
[21]. 
The filter methods are applied in the pre-processing 
phase and do not depend on the learning algorithm. 
The inputs are chosen by evaluating the relationships 
between each subset of input variables and the target 
[22]. A feature selection filter method is proposed in 
[23]. This algorithm exploits a correlation-based 
heuristic in order to select the suitability of the 
considered subset. Moreover its effectiveness is 
determined by using three traditional Maximum 
Likehood (ML) methods . 
In embedded methods the variable selection is not 
separated from the learning phase [24] but they are 
directly connected. Embedded and wrapper methods 
have the same advantages concerning the interaction 
between the variable selection and the learning 
machine but the embedded method is computationally 

less complex because the selection of the variables is 
included into the learning phase. A novel variable 
selection method is shown in [25], where the most 
relevant features are incrementally added.  

III. METHOD DESCRIPTIONÌ 
In the present paper a variables selection method based 
on genetic algorithm [26-27] is proposed, that is 
applied to function approximation problems, but, in 
principle, can also be used for classification or 
clustering purposes. The model whose input variables 
need to be determined can be implemented with any 
kind of feed-forward neural network [28] and also with 
other artificial intelligence approaches (such as fuzzy 
or neuro-fuzzy inference systems).  
The final aim of the GIVE A GAP approach is to 
optimize the prediction performance, that is evaluated 
in terms of the Normalized Square Root Mean Square 
Error (NSRMSE). This index has been introduced by 
[29] and is given by the following formula:  
 

N
2

i=1

y

ˆ(y(i)-y(i))
1% 100
σ N

NSRMSE = ⋅
∑

                    (1) 

 
Where yσ  is the standard deviation of target in the test 
set (y), ŷ is the output of the model and N is the 
number of samples in the test set. 
It must be underlined that any other kind of 
performance function can be adopted, depending on 
the particular application. 
The chromosomes of the genetic algorithm are binary 
strings whose length is fixed and equal to the number 
of potential input variables: each gene is associated to 
an input variable. A unitary value of a gene means that 
the associated variable is part of the subset of input 
variables that is represented by the chromosome and is 
selected to be fed as input to the model.  
The fitness function (1) is evaluated for each 
chromosome of the population and standard genetic 
operators (such as mutation and crossover) are applied.  
The mutation operator randomly extracts a bit of the 
selected chromosome and switches it from 0 to 1 or 
vice versa. An example is shown in Figure 1.  
The crossover operator selects each gene of the son 
chromosome by randomly taking genes from each one 
of the two parent chromosomes as shown in Figure 2 
where the first two chromosome are the parents while 
the third one represents the son. The dotted arrows 
correspond to the first parent while the continuous ones 
correspond to the second one.  
The available dataset has been divided in three subsets: 
60% of the data are used for the network training, 20% 
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0 1 1 0 1 0 0 1 0 1 

 
0 1 1 0 1 1 0 1 0 1 

 
Figure 1. Mutation operator example 

 
0 1 1 0 1 1 0 1 0 1 

 
1 0 0 1 0 0 1 0 1 1 

 
 

0 0 1 1 1 0 1 0 0 1 

 
Figure 2. Crossover operator example: the line identifies the origin of 

each son gene. 
 
as validation set and the remaining 20% of 
observations is used for testing the network. The use of 
a validation set drastically lowers the training time of 
the network and aims at the improvement of its 
generalization capabilities by avoiding the overfitting. 
The fitness function to minimize is the average 
NSRMSE achieved on the test set at the end of at least 
five different and independent training procedures. 
This repetition aims at counterbalancing the lack of 
repeatability in the training of neural networks even if 
they are characterized by the same structure, the same 
number of neurons and are trained on the same dataset. 
It is therefore an attempt to avoid the possibility to 
award a wrong variable combination that provided by 
chance a good result or, vice versa, to punish a good 
combination due to an unlucky result.  
Figure 3 represents the whole flow diagram of the 
developed genetic algorithm. 
The present analysis is limited to the prediction of a 
single output variable. The adopted neural prediction 
model is a classical two layer perceptron [30] with k 
inputs, n neurons in the hidden layer, that are 
characterized by a sigmoidal activation function, and a 
single linear neuron in the output layer (see Fig. 4).  
The number of neurons in the hidden layer is 
automatically determined for each combination of 
input variables on the basis of the number such: in 
particular, a well-known empirical formula [31] is 
applied, which states that the number of free 
parameters cannot be greater than fourth or fifth part of 
the number Nc of input-output patterns contained in the 
training dataset. For the selected neural structure, the 
number of free parameters is equal to (kn+2n+1). 
Therefore the following inequality: 
 

cN
(kn + 2n +1)  

5
≤                                                  (2) 

implicitly provides an upper bound for n. Once k is 
determined as the sum of unitary bins in the selected 
chromosome, the system automatically fixes the 
number of neurons in the hidden layer according to the 
following formula: 
 

n = int 0,7
5 10

cN
k

⎛ ⎞⋅⎜ ⎟+⎝ ⎠
                                               (3) 

where int(•) means the biggest integer value lower or 
equal to the value within parenthesis and the factor 0.7 
is used to reduce the number of neurons in the hidden 
layer with respect to the empirically estimated  
maximum number, according to what is normally done 
in the practice to the aim of improving the 
generalization capabilities of the network and to reduce 
the training process. 
The genetic algorithm stops when either a fixed 
maximum number of iterations is reached (the 
maximum number of iterations before the algorithm 
halts is setted to 500) or the a plateau of the fitness 
function is achieved. The winner chromosome provides 
the subset of input variables associated to the best 
value of the fitness. 
 

 
Figure 3.  Flow Diagram for Genetic Algorithm 
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Figure 4. Net Architecture 

 
However the problem of genetic algorithm is that the 
initial population is randomly chosen and also some 
selection steps include a component of randomness. 
Thus it can happen that a variable is included in the 
winner chromosome although it is not correlated with 
the target to predict.  
In order to solve this problem, the genetic algorithm is 
run several times (typically ten) and all winner 
chromosomes are stored. In a final step, the 
presentation frequency of each variable in the winning 
chromosomes is calculated and only the variables that 
are presented in more than the 90% of the winning 
chromosomes are considered as actually affecting the 
output variable. 

IV. RESULTS 
In order to test the effectiveness of the proposed 
approach, a database including 1000 samples and 15 
independent variables vi (with 1≤i≤15) has been 
created. Three different targets, as non-linear 
combinations of input variables, have tested, moreover 
random noise with gaussian distribution was added to 
the target variable in different proportions with respect 
to average value of the target to predict as specified in 
Tab. 1.  
Table 1 shows for each target the selected variables 
and the prediction error in term of NSRMSE. It is clear 
that the error increases with increasing levels of the 
additive noise. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1 . Results of different functions and addive noise levels.  
Theoretical function Addive 

Noise 
level 

Selected 
Variables 

NSRMSE 
     (%) 

sin(2 V2) + (V4)2 2% 2, 4 4 % sin(2 V2) + (V4)2 5% 2, 4 12% sin(2 V2) + (V4)2 10% 2, 4 23% 

10
6 83    Ve V V⋅ +  

2% 6, 8, 10 3% 

10
6 83    Ve V V⋅ +  

5% 6, 8, 10 9% 

10
6 83    Ve V V⋅ +  

10% 6, 8, 10 17% 

7 13(V  + V ) 2
1 4V   e  + V  ⋅

 

2% 1, 4, 7, 13 4,8% 

7 13(V  + V ) 2
1 4V   e  + V  ⋅

 

5% 1, 4, 7, 13 10% 

7 13(V  + V ) 2
1 4V   e  + V  ⋅

 

10% 1, 4, 7, 13 19% 

Table 2 shows the details of the variables which are 
selected by each complete run of the genetic algorithm 
considering the example reported in the first row of 
Tab.1. The columns correspond to the iterations while 
the rows correspond to the input variables. For each 
iteration, a cross has been put in correspondence of the 
selected variables. It clearly appears that only variables 
v2 and v4 are present in all the winning subsets. 
The prediction result obtained with the two layer 
neural network with 35 hidden neurons, according to 
eq (3), and the two extracted variables as inputs is 
shown in Figure 5 and Figure 6.  
In particular, Figure 5 represents the plot of the 
predicted versus measured target while Figure 6 shows 
the surface of the predicted target function with respect 
to the selected input variables. 
 

Table 2.  Results of 10 GA runs 
 
 1 2 3 4 5 6 7 8 9 10 
V1         X X 
V2 X X X X X X X X X X 
V3 X    X X  X X  
V4 X X X X X X X X X X 
V5    X X X X X X X 
V6 X X X     X   
V7 X X X  X X X  X X 
V8 X      X  X  
V9  X   X X X X X X 
V10 X X X X  X X X   
V11     X X  X  X 
V12  X    X     
V13    X X X   X X 
V14 X  X X  X X X X X 
V15 X  X X    X X  
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FIGURE 5. PREDICTION RESULT USING THE SELECTED VARIABLES. 

  

 
FIGURE 6. PREDICTION RESULT USING THE SELECTED VARIABLES  
 
The achieved value of the NSRMSE on the validation 
set is about 4%. 
By running only once the genetic algorithm and by a-
priori fixing the neural network dimension (as in [1]), 
the order of the obtained NSRMSE decreases to 5% 
but, most of all, the winning subset of input variables 
does not contain only v2 and v4. 
In fact, by considering the first column of Tab. 2, the 
first run of the GA selects as inputs the following 
variables: v2, v3, v4, v6, v7, v10, v8, v10, v14, v15 the 
variables that really affect the target prediction are not 
pointed out.  
If the purpose of the developed work is not only to 
design a good and reliable predictor of the target 
variable, but also to acquire knowledge on the input 
variables that actually affect the target, this latter 
aspect is essential and the proposed method showed to 
be more effective than [1].  
The price to be paid for the achievement of this result 
is an increase in the computation time (in the proposed 
examples the computation time is about 20 minutes). 
However this method has been elaborated to be 

performed una tantum off line to the aim of extracting 
the variables that mainly affect the target. For this 
reason this limit is acceptable but future work will 
concern the algorithm optimization in order to reduce 
the computation time and improve its on-line 
implementation. 

V. CONCLUSION AND FUTURE WORK 
A very effective algorithm for feature selection is 

presented in a context of function approximation 
applications (although its main idea is applicable to 
several common contexts such as classification or 
clustering). 

This approach is capable not only to improve 
prediction accuracy but also to select only the variables 
that really affect the phenomenon under consideration, 
by contributing to improve its knowledge. 

The future work is focused on the algorithm 
optimization, in order to improve its computational 
efficiency especially for very large databases used in 
real applications. 
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