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Abstract—In this paper the problem of trajectory tracking
is studied. Based on the V-stability and Lyapunov theory, a
control law that achieves the global asymptotic stability of the
tracking error between a recurrent neural network and the
state of each single node of a complex dynamical network is
obtained. To illustrate the analytic results we present a tracking
simulation of a simple network with four different nodes and
five non-uniform links.

I. INTRODUCTION

The analysis and control of complex behaviors in complex
networks, which consist of dynamical nodes, have become a
focal point of great interest in recent studies.[1],[2],[3]. The
complexity in networks come from structures and dynamics
but also their topology often affects their function.

Recurrent neural networks have been widely used in the
fields of optimization, pattern recognition, signal processing
and control systems, among others. The trajectory tracking
is a very interesting problem in the field of theory of system
control; it allows us the implementation of important tasks
for automatic control such as: high speed target recognition
and tracking, real-time visual inspection, and recognition
of context sensitive and moving scenes, among others. We
present the results of the design of a control law that guar-
antees the tracking of general complex dynamical networks.

II. MATHEMATICAL MODELS

A. General complex dynamical network
Consider a network consisting of N linearly and diffusively

coupled nodes, with each node being an n-dimensional
dynamical system, described by

ẋi = fi(xi)+
N

∑
j=1
j �=i

ci jai jΓ(x j− xi), i= 1,2, . . . ,N (1)

where xi = (xi1,xi2, . . . ,xin)� ∈ R
n are the state vectors of

node i, fi : R
n �−→ R

n represents the self-dynamics of node
i, constants ci j > 0 are the coupling strengths between node
i and node j, with i, j = 1,2, . . . ,N. Γ = (τi j) ∈ R

n×n is a
constant internal matrix that describes the way of linking the
components in each pair of connected node vectors (x j−xi):
that is to say for some pairs (i, j) with 1≤ i, j≤ n and τi j �= 0
the two coupled nodes are linked through their ith and jth

sub-state variables, respectively, while the coupling matrix
A= (ai j) ∈ R

N×N denotes the coupling configuration of the
entire network: that is to say if there is a connection between
node i and node j(i �= j), then ai j = a ji = 1; otherwise ai j =
a ji = 1.

B. Recurrent neural network
Consider a recurrent neural network in the following form:

ẋin = Ainxin +Winσ(xin)+uin

+
N

∑
j=1
j �=i

cin jnain jnΓ(x jn − xin), i= 1,2, . . . ,N

(2)

where xin = (xin1,xin2, . . . ,xinn)� ∈ R
n is the state vector of

neural network i, uin ∈ R
n is the input of neural network i,

Ain = −λin In×n, i = 1,2, . . . ,N, is the state feedback matrix,
with λin being a positive constant, Win ∈ R

n×n is the con-
nection weight matrix with i = 1,2, . . . ,N, and σ(·) ∈ R

n

is a Lipschitz sigmoid vector function [4],[5], such that
σ(xin) = 0 only at xin = 0, with Lipschitz constant Lσi ,
i= 1,2, . . . ,N and neuron activation functions σi(·) = tanh(·),
i= 1,2, . . . ,n.

III. TRAJECTORY TRACKING

The objetive is to develop a control law such that the
ith neural network (2) tracks to the trajectory of the ith
dynamical system (1). We define the tracking error as ei =
xin − xi, i= 1,2, . . . ,N whose time derivative is

ėi = ẋin − ẋi, i= 1,2, . . . ,N (3)

Substituting (1) and (2) in (3), we obtain

ėi = Ainxin +Winσ(xin)+uin − fi(xi)

+
N

∑
j=1
j �=i

cin jnain jnΓ(x jn − xin) (4)

−
N

∑
j=1
j �=i

ci jai jΓ(x j− xi), i= 1,2, . . . ,N
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Adding and substratingWinσ(xi), αi(t), i= 1,2, . . . ,N, to (4),
where αi to be determined below, and taking into account
that xin = ei+ xi, i= 1,2, . . . ,N, then

ėi = Ainei+Win

(
σ(ei+ xi)−σ(xi)

)
+(uin −αi)

+
(
Ainxi+Winσ(xi)+αi

)
− fi(xi)

+
N

∑
j=1
j �=i

cin jnain jnΓ(x jn − xin) (5)

−
N

∑
j=1
j �=i

ci jai jΓ(x j− xi), i= 1,2, . . . ,N

In order to guarantee that the ith neural network (2) tracks
the ith reference trajectory (1), the following assumption has
to be satisfed:
Assumption 1. There exist functions ρi(t) and αi(t), i =

1,2, . . . ,N, such that
dρi(t)
dt = Ainρi(t)+Winσ

(
ρi(t)

)
+αi(t)

ρi(t) = xi(t), i= 1,2, . . . ,N (6)

Let define

ũin = uin −αi
φσ (ei,xi) = σ(ei+ xi)−σ(xi), i= 1,2, . . . ,N (7)

Considering (6) and (7), the equation (5) is reduced to

ėi = Ainei+Winφσ (ei,xi)+ ũin

+
N

∑
j=1
j �=i

cin jnain jnΓ(x jn − xin) (8)

−
N

∑
j=1
j �=i

ci jai jΓ(x j− xi), i= 1,2, . . . ,N

Rewriting the summations as
N

∑
j=1
j �=i

cin jnain jnΓ(x jn − xin)

= Γ

(
N

∑
j=1
j �=i

cin jnain jnx jn − xin
N

∑
j=1
j �=i

cin jnain jn

)

N

∑
j=1
j �=i

ci jai jΓ(x j− xi) (9)

= Γ

(
N

∑
j=1
j �=i

ci jai jx j− xi
N

∑
j=1
j �=i

ci jai j

)
, i= 1,2, . . . ,N

also taking into account that cin jn = ci j and ain jn = ai j, then,
with the above (8) becomes

ėi = Ainei+Winφσ (ei,xi)+ ũin

+Γ

(
N

∑
j=1
j �=i

ci jai je j− ei
N

∑
j=1
j �=i

ci jai j

)

= Ainei+Winφσ (ei,xi)+ ũin (10)

+
N

∑
j=1
j �=i

ci jai jΓ(e j− ei), i= 1,2, . . . ,N

It is clear that ei = 0, i= 1,2, . . . ,N is an equilibrium point of
(10), when ũin = 0, i= 1,2, . . . ,N. To this end, the tracking
problem can be restated as a global asymptotic stabilization
problem for system (10)

IV. TRACKING ERROR STABILIZATION AND CONTROL
DESIGN

In order to establish the convergence of (10) to ei = 0,
i = 1,2, . . . ,N, which ensures the desired tracking, first, we
propose the following candidate Lyapunov function

VN(e) =
N

∑
i=1
V (ei) =

N

∑
i=1

1
2
∥∥ei∥∥2

= 1
2

N

∑
i=1
e�i ei, e=

(
e�1 , . . . ,e�N

)� (11)

The time derivative of (11), along the trajectories of (10), is

V̇N(e) =
∂VN(e)

∂e
ė=

N

∑
i=1

∂VN(e)
∂ei

ėi =
(
e�1 , . . . ,e�N

)×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1ne1 +W1nφσ (e1,x1)+ ũ1n +
N

∑
j=1
j �=1

c1 ja1 jΓ(e j− e1)

...

ANneN +WNnφσ (eN ,xN)+ ũNn +
N

∑
j=1
j �=N

cN jaN jΓ(e j− eN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

N

∑
i=1
e�i

(
Ainei+Winφσ (ei,xi)+ ũin +

N

∑
j=1
j �=i

ci jai jΓ(e j− ei)
)

(12)

Reformulating (12) as

V̇N(e) =
N

∑
i=1

(
−λin

∥∥ei∥∥2 + e�i Winφσ (ei,xi)+ e�i ũin

)

+
N

∑
i=1

(
N

∑
j=1
j �=i

ci jai je�i Γe j−
N

∑
j=1
j �=i

ci jai je�i Γei

)

(13)

Next, let consider the following inequality, proved in [6],[7]

X�Y +Y�X ≤ X�ΛX +Y�Λ−1Y (14)
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which holds for all matrices X ,Y ∈ R
n×k and Λ ∈ R

n×n
with Λ = Λ� > 0. Applying (14) with Λ = In×n to the term
ei�Winφσ (ei,xi), i= 1,2, . . . ,N we get

e�i Winφσ (ei,xi) ≤ 1
2e

�
i ei+ 1

2 φ�
σ (ei,xi)W�

in Winφσ (ei,xi)

= 1
2
∥∥ei∥∥2ei+ 1

2 φ�
σ (ei,xi) (15)

×W�
in Winφσ (ei,xi), i= 1,2, . . . ,N

Taking into account that φσ is Lypchitz, then∥∥φσ (ei,xi)
∥∥ =

∥∥σ(ei+ xi)−σ(xi)
∥∥

≤ Lφσi

∥∥ei+ xi− xi∥∥ (16)
= Lφσi

∥∥ei∥∥, i= 1,2, . . . ,N

with Lipschitz constant Lφσi
[4], Applying (16) to

1
2 φ�

σ (ei,xi)W�
in Winφσ (ei,xi) we obtain

1
2 φ�

σ (ei,xi)W�
in Winφσ (ei,xi)

≤ 1
2
∥∥φ�

σ (ei,xi)W�
in Winφσ (ei,xi)

∥∥ (17)

≤ 1
2

(
Lφσi

)2∥∥Win∥∥2∥∥ei∥∥2
, i= 1,2, . . . ,N

Next (15) is reduced to

e�i Winφσ (ei,xi)

≤ 1
2
∥∥ei∥∥2 + 1

2

(
Lφσi

)2∥∥Win∥∥2∥∥ei∥∥2 (18)

= 1
2

(
1+L2

φσi

∥∥Win∥∥2
)∥∥ei∥∥2

, i= 1,2, . . . ,N

Then we have that

V̇N(e) ≤ −
N

∑
i=1

(
λin

∥∥ei∥∥2 +
N

∑
j=1
j �=i

ci jai je�i Γei

)

+ 1
2

N

∑
i=1

((
1+L2

φσi

∥∥Win∥∥2
)∥∥ei∥∥2

+2
N

∑
j=1
j �=i

ci jai je�i Γe j

)
+

N

∑
i=1
e�i ũin (19)

We define ũin = ˜̃ui+ ˜̃ui j , i= 1,2, . . . ,N, then (19) becomes

V̇N(e) ≤ −
N

∑
i=1

(
λin

∥∥ei∥∥2 +
N

∑
j=1
j �=i

ci jai je�i Γei

)

+ 1
2

N

∑
i=1

(
e�i

((
1+L2

φσi

∥∥Win∥∥2)ei+2˜̃ui)
)

+
N

∑
i=1

(
e�i

(
N

∑
j=1
j �=i

ci jai jΓe j+ ˜̃ui j
))

(20)

Now, we propose to use the following control law:

ũin = ˜̃ui+ ˜̃ui j
− 1

2

(
1+L2

φσi

∥∥Win∥∥2
)
ei (21)

−
N

∑
j=1
j �=i

ci jai jΓe j, i= 1,2, . . . ,N

then V̇N(e) < 0 for all e �= 0. This means that the proposed
control law (21) can globally and asymptotically stabilize the
ith error system (10), thereby ensuring the tracking of (1) by
(2).

Finally, the control action driven the recurrent neural
networks is given by

uin = ũin +αi
= − 1

2

(
1+L2

φσi

∥∥Win∥∥2
)
ei

−
N

∑
j=1
j �=i

ci jai jΓe j+ fi(xi)+λinxi (22)

−Winσ(xi), i= 1,2, . . . ,N

V. SIMULATIONS

In order to illustrate the applicability of the discussed
results, we consider a simple network with four different
nodes and five non-uniform links. The node self-dynamics
are described by [8],[9].

ẋ1 = x2
1, ẋ2 = −3x2, ẋ3 = sinx3, ẋ4 = −|x4|, (23)

and the coupling strengths are c12 = c21 = 1.3, c14 = c41 =
1.0, c13 = c31 = 2.7, c24 = c42 = 2.1, c34 = c43 = 1.5. Fig. 1
shows the divergent phenomenon of network (23) with initial
state X(0) = (0,0,10,0)� and a three-time stronger coupling
strength. The neural network was selected as
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Fig. 1. The evolution of network states with initial state X(0) =
(0,0,10,0)�

Ain = −I1×1, Win = (1)1×1, σ(·) = (tanhxin)1×1

Lφσi
� ni = 1, i= 1,2,3,4 (24)

with initial state Xn(0) = (0,0,−10,0)� and Γ = I1×1.
The simulation was as follows: for the first 0.5 seconds,

the two systems evolute by themselves; in this moment the
control law (22) is applied. The results are displayed in the
Fig. 2, Fig. 3, Fig. 4 and Fig. 5, and they shown the time
evolution for network states respectively. As can be seen the
desired tracking is obtained.
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VI. CONCLUSIONS

We have presented the controller design for trajectory
tracking determined by general complex dynamical network.
This framework is based on the dynamic neural networks and
the methodology is based on V-stability and the Lyapunov
theory. The proposed control is applied to a simple network
with four different nodes and five non-uniform links, being
able to manage to stabilize in a asymptotic form the tracking
error between two systems. The results of the simulation
show clearly the desired tracking. In a future work it will
be considered to be the stochastic case for the complex
dynamical network.
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Fig. 2. Time evolution for state 1
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Fig. 3. Time evolution for state 2
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