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Abstract

This paper presents a first approach to try to determine
if a newborn will be macrosomic before the labor, using
a set of data taken from the mother. The problem of
determining if a newborn is going to be macrosomic is
important in order to plan cesarean section and other
problems during the labor. The proposed model to classify
the weight is a Neural Network whose design is based
recent algorithms that will allow the networks to focus
on a concrete class. Before proceeding with the design
methodology to obtain the models, a previous step of
variable selection is performed in order to indentify the
risk factors and to avoid the curse of dimensionality.
Another study is made regarding the missing values in
the database since the data were not complete for all the
patients. The results will show how useful the addition of
the missing values into the original data set can be in
order to identify new risk factors.

Keywords-Macrosomy, weight prediction, newborn, classi-
fication, Mutual information

I. Introduction

The problem of identifying if a newborn will be macro-
somic or not consists of the determination of the final
weight, if the baby is over 3.9 or 4 Kilograms, the newborn
is considered macrosomic [18].

The most important information that could be obtained
is the fetal macrosomia, this is, a birth weight of more
than 4 Kilograms. Macrosomia is difficult to predict and
clinical and ultrasonographic estimates tend to have errors
[1]. Furthermore, the weight of the fetus is a risk factor
for several diseases such as gestational diabetes mellitus
[4]. Therefore, if we are able to determine if the newborn
is macrosomic, we will know in advance one of the many
elements that are used to identify diseases.

The work carried out also considered the identification
of the risk factors that can determine if the newborn
will be macrosomic. The risk factors identification helps
also to design the models since it alleviates the curse of
dimensionality [11]. In addition to this, a priori treatment
of the data was performed: missing values were filled using
recent methodologies, allowing a more complete analysis
of the data.

The rest of the paper is organized as follows, Section 2
describes the model, tools and algorithms used to design
the classifiers and to perform a pre-treatment of the data.
Then Section 3 shows the results of the experiments
considering different subsets of data. Finally, in Section
4, conclusions are drawn.

II. Tools and models applied

This section describes first the type of neural network
employed for the classification task. Then, the Mutual In-
formation (MI) theory used to reduce the dimensionality is

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.251

1263



described. Afterwards, the procedure to deal with missing
values is depicted.

A. Radial Basis Function Neural Networks
(RBFNN) Description

A RBFNN (Figure 1) F with fixed structure to relate
a set of n inputs X = [�xi]; i = 1...n with an output Y =
[yi]; i = 1...n has a set of parameters to be optimized:

F (�xk; C, R, Ω) =
m∑

j=1

φ(�xk;�cj , rj) · Ωj (1)

where C = {�c1, ...,�cm} is the set of RBF centers,
R = {r1, ..., rm} is the set of values for each RBF radius,
Ω = {Ω1, ..., Ωm} is the set of weights and φ(�xk;�c j , rj)
represents an RBF. These networks are widely used in
regression using gaussian neurons [2], [16] although they
have been also applied to classification problems with
unbalanced data sets [?], as the problem described in this
paper.

The procedure to design an RBFNN starts by setting the
number of RBFs in the hidden layer, then the RBF centers
�cj must be placed and a radius rj has to be set for each
of them. Finally, weights Ωj can be optimally calculated
by solving a linear equations system [6].

Figure 1. A Radial Basis Function Neural Net-
work

The algorithms applied in the experiments section [7],
[8], although originally designed for function approxi-
mation, have the ability to weight the output in such a
way that the network is able to establish a preference
in the classification. Thus, we can make the network
more specific and focused on the identification of the
macrosomic infants instead of the normal newborns.

B. Reducing the dimensionality

In order to reduce the dimensionality, the Mutual Infor-
mation (MI) theory has been used. Given a single-output
multiple input function approximation or classification
problem, with input variables X = [x1, x2, . . . , xn] and

output variable Y = y, the main goal of a modelling
problem is to reduce the uncertainty on the dependent
variable Y . According to the formulation of Shannon, and
in the continuous case, the uncertainty on Y is given by
its entropy defined as

H(Y ) = −
∫

μY (y) log μY (y)dy, (2)

considering that the marginal density function μY (y) can
be defined using the joint probability density function
μX,Y of X and Y as μY (y) =

∫
μX,Y (x, y)dx. Given that

we know X , the resulting uncertainty of Y conditioned to
known X is given by the conditional entropy, defined by

H(Y |X) = −
∫

μX(x)
∫

μY (y|X = x) log μY (y|X = x)dydx.

(3)
The joint uncertainty on the [X, Y ] pair is given by the

joint entropy, defined by

H(X, Y ) = −
∫

μX,Y (x, y) log μX,Y (x, y)dxdy. (4)

The mutual information (also called cross-entropy) be-
tween X and Y can be defined as the amount of infor-
mation that the group of variables X provide about Y ,
and can be expressed as I(X, Y ) = H(Y ) − H(Y |X).
In other words, the mutual information I(X, Y ) is the
decrease of the uncertainty on Y once we know X . Due
to the mutual information and entropy properties, the
mutual information can also be defined as I(X, Y ) =
H(X) + H(Y ) − H(X |Y ), leading to

I(X, Y ) =
∫

μX,Y (x, y) log
μX,Y (x, y)

μX(x)μY (y)
dxdy. (5)

Thus, only the estimate of the joint Probability Density
Function (PDF) between X and Y is needed to estimate
the mutual information between two groups of variables.

Estimating the joint probability distribution can be
performed using a number of techniques. As mentioned
already, histograms and kernel density estimators have
been used for this purpose although this paper uses the
method based on the k-nearest neighbours presented in
[13]. As it is recommended in [9] for a tradeoff between
variance and bias, in the examples, a mid-range value for
k (k = 6) will be used.

C. Dealing with missing values

The incomplete-data problem, in which certain feature
values are missing from particular observations, exists in
a wide range of fields, including social sciences [14],
biological systems [15], [12], [3], and remote sensing [10].
Missing data are often avoided by filling with specific
values.
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In this paper we use a novel proposed imputation
framework [5] which aims to improve the performance of
single imputation methods. It is the combination of four
main modules: mean pre-imputation, base imputation, con-
fidence intervals and boosting. This process is graphically
depicted in Figure 2.

In module 1, the missing values are temporarily filled
with the mean (for numerical attributes) or mode (for
nominal attributes) of the corresponding attribute. Then,
in module 2, each missing pre-filled value is completed
by using a base imputation method, which in our case
is Hot Deck [17]. The next step is to perform a filtering
process of the filled values by using confidence intervals
(module 3). This filter selects those filled values that
have high probability of being correct, which are close
to the mean or mode of an attribute, and removes possible
outlier imputations. Finally, the boosting module (module
4) accepts or rejects the imputed values, based on a
threshold. This threshold is defined as the average distance
between the records with missing data and the records from
which the imputed values were taken (closest records). As
a result, a partially filled database is created and fed back
to the base imputation algorithm. The process repeats until
10 iterations when the completed database is produced.

III. Experimental Results

The data used for the experiments were provided by
the Preventive Medicine Department at the University of
Granada, and consists of a cohort of 1962 pregnant women
considering 50 variables. These variables were measured
by doctors during the periodic visits of the pregnant
women.

A. Considering missing values

The method for handling missing values has been
implemented taking into account information provided by
the target class attribute of supervised database used, with
the aim of improving the accuracy of the imputation. So,
the distances calculated in the Hot Deck method and the
confidence intervals were computed from records of the
same class.

In our database, the target class attribute is a continuous
variable, so two classes have been defined allowing the
imputation method to be applied from the viewpoint of
the classification. This fact produces two types of records,
those in which the weight of the fetus is less than 3.9
Kilograms (class a) and those in which the weight is equal
to or greater than 3.9 Kilograms (class b).

After this transformation, the database is composed of
1009 complete records (908 in class a and 100 in class b)

and 954 records with missing values (877 in class a, and
77 in class b).

The number of boosting iterations should be the least
giving enough accuracy, assuming that an increase in the
number of iterations leads to more computations. In our
experiment, the selected number of iterations has been 10.
This selection is based on comparison of results when the
method is boosted at different number of times. It has
been observed that after approximately 10 iterations the
number of accepted filled values don’t increase because
their quality is not appropriate under the threshold set.

Finally, the database is composed of 1570 complete
records (1421 in class a, and 148 en class b) and 392
records with missing values (364 in class a, and 28 in
class b). The remaining completed values that have been
rejected are filled with the value obtained by the initial
pre-imputation mean process.

Thus, all missing values have been filled and a com-
pleted database is obtained.

B. Identifying risk factors

The values of MI for each variable and the output were
computed with both data sets: filled, having the missing
values added (1962 instances), and original, which consist
in a subset (1008 instances) of the original instances
without the vectors containing missing values.

The absolute values of MI are shown in Tables I and
II. In order to make the table easily readable, only the
variables with a MI value over 0.01 are shown. Figure 3
represents the normalized (between 0 and 1) values of MI
for the original and filled data sets. A remarkable fact is
that the MI values for the filled data set are much higher
than for the original one. Furthermore, among the 15 most
important variables, they only match in 3 variables: 7
(pregnancy duration), 21 (inital mother’s weight), and 28
(final mother’s weight).

These results were analyzed by a medical expert, who
agreed with the variables selected using the filled data
set. This indicates that the addition of the missing values
was succesfully performed.

C. Classification accuracy

After the preprocessing of the input, the networks were
designed to perform the classification. Due to the scarce
number of input vectors for macrosomic infants, several
training and test sets were defined using a Leave One Out
(LOO) validation, but only considering the macrosomic
instances. The results are shown in Table III.

The results show how difficult is the identification of
macrosomic babies. However, the accuracy in the clas-
sifications during the training process was low, as the
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Figure 2. Missing values treatment procedure.

MI value Var number
0.0154 36
0.0155 44
0.0191 48
0.0197 29
0.0206 3
0.0207 14
0.0241 22
0.0279 25
0.0282 21
0.0284 40
0.0288 38
0.0294 46
0.0311 39
0.0326 15
0.0326 49
0.0334 27
0.0351 11
0.0355 26
0.0392 28
0.0400 37
0.0404 7
0.0450 16
0.0460 47
0.0493 17

Table I. MI value (> 0.01) for each variable for
the filled data set.

MI value Var number
0.0111 10
0.0115 20
0.0122 21
0.0161 29
0.0223 36
0.0466 28

Table II. MI value (> 0.01) for each variable for
the original data set.

data set Training Test
original 90.9 % 10 %
filled 91.2 % 11.3 %

Table III. Classification accuracy using the
different data sets.

networks seem to overfit the data. This is a consequence
of having a low number of input vectors of macrosomic
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Figure 3. Normalized Mutual Information val-
ues for the original and filled data sets.

infants.

IV. Conclusions

This work has presented an application of RBFNNs to
a real world problem: the classification of newborns to
predict if they will be or not macrosomic. This task could
be quite useful in the preventive treatment of the labor
and its planning, considering hospitalization and cesarean
section. The methodology used considered the addition of
missing values and a previous step of variable selection
that could provide several indicators to determine the risk
factors. The accuracy of the results was not as good as
desired due to the highly unbalanced data set, even after
the addition of the missing values. Therefore, the networks
focus in the identification of normal infants. However, it
was noted how the use of specific algorithms can improve
the performance. Further work will consider new data
where the two classes are more balanced. Nonetheless, it
is remarkable to check that the addition of the missing
values was useful to determine the risk factors through the
variable selection.
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