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Abstract— Searching for the best possible alignment for a set 
of sequences is not an easy task, mainly because of the size and 
complexity of the search space involved. Genetic algorithms 
are predisposed for optimizing general combinatorial problems 
in large and complex search spaces. We have designed a 
Genetic Algorithm for this purpose, AlineaGA, which 
introduced new mutation operators with local search 
optimization. Now we present the contribution that these new 
operators bring to this field, comparing them with similar 
versions present in the literature that do not use local search 
mechanisms. For this purpose, we have tested different 
configurations of mutation operators in eight BAliBASE 
alignments, taking conclusions regarding population evolution 
and quality of the final results. We conclude that the new 
operators represent an improvement in this area, and that 
their combined use with mutation operators that do not use 
optimization strategies, can help the algorithm to reach quality 
solutions. 

Keywords - Multiple sequence alignments; genetic 
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I.  INTRODUCTION 
DNA, RNA and protein alignment is one of the most 

common tasks in bioinformatics.  
An alignment is a mutual placement of two or more 

sequences which exhibits where the sequences are similar 
and where they differ [1]. Multiple sequence alignment is an 
optimization problem searching for the best alignment from 
large, complex search spaces [2]. 

Genetic Algorithms (GAs) are a biological inspired 
technology which conducts randomized search and 
optimization techniques guided by the principles of natural 
evolution and genetics. They are efficient, adaptive and 
robust search processes which produce near optimal 
solutions, having a large degree of implicit parallelism [1], 
which makes them suitable for solving the problem of 
multiple sequence alignment. 

In our prior investigation, we have developed AlineaGA 
[3, 4], a GA which performs multiple sequence alignment of 
protein sequences. In its implementation, we use mutation 
operators previously introduced by other authors and we 

extend their initial concept by presenting new mutation 
operators with local search mechanisms. This optimization 
allows the improvement of a solution by searching its 
vicinity for fittest individuals and replacing it if a better one 
is found. 

Our purpose is to compare the original mutation 
operators with the new improved ones, in terms of the 
quality of the obtained solutions and of population’s 
evolution. For this matter, we tested AlineaGA with eight 
BAliBASE [5] Reference 1 alignments, using different 
combinations and probabilities of mutation. 

This paper is organized as follows. In the next Section we 
introduce concepts underlying our research. In Section III, 
we present a brief explanation regarding AlineaGA methods. 
Section IV presents the mutation operators used by 
AlineaGA. The experiments performed in order to validate 
and observe the impact of these new operators are discussed 
in Section V. Finally, the concluding Section presents final 
considerations and topics for future work. 

II. BACKGROUND 
Multiple alignments are present in most of the 

computational methods used in molecular biology. They are 
used to study molecular evolution, to help predict the 
secondary or tertiary structure of new sequences, RNA 
folding, gene regulation and polymerase chain reaction 
primer design [6]. They are also applied to different areas 
such as functional genomics, evolutionary studies, structure 
modelling, mutagenesis experiments and drug design.  

Two major methods exist for performing multiple 
sequence alignment. The progressive method gradually 
builds up the alignment by aligning the two most similar 
sequences first, and one after another, adding the more 
distant ones. This is a very fast and simple method; however 
it has a crucial problem: mistakes made at an intermediate 
step cannot be corrected later with the addition of more 
sequences to the alignment. In addition, it does not provide a 
metric which can be used to say that one alignment is 
preferable to another or to say that the best possible 
alignment, given a set of parameters, has been found [7]. On 
the other hand, iterative methods try to optimize a scoring 
function which reflects biological events such that 
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optimization of the score leads to a correct alignment [8]. 
One representative example of iterative methods are GAs, 
other examples may be found in our prior review [9]. 

A. Alignment 
An alignment is a mutual placement of two or more 

sequences which reveal where the sequences are similar, and 
where they differ. An optimal alignment is the one that 
exhibits the most correspondences and the fewest 
differences, but which may or may not be biologically 
meaningful [1]. An example of an alignment of four 
hypothetical protein sequences is presented in Fig. 1. 

 
Figure 1.  Example of a multiple sequence alignment. 

Each input sequence is represented in a different line and 
it can have different lengths. Columns with different symbols 
in the alignment show that several mutation events have 
taken place. Columns with identical symbols, which are 
represented as bold characters, indicate that no mutation 
occurs. The symbol “–” is used to represent a space 
introduced in the sequence in order to improve the alignment 
result. This space is usually referred to as a gap. The 
introduction of gaps in the sequences allows the alignment to 
be extended into regions where one sequence may have lost 
or gained sequence characters not found in the other. 

B. Genetic Algorithms 
GAs, introduced in 1975 by Holland [10], are stochastic 

algorithms whose search methods model some natural 
phenomena: genetic inheritance and Darwinian strife for 
survival [11]. 

In GAs, adaptation proceeds by maintaining a population 
of structures from which new structures are produced by 
means of genetic operators such as crossover and mutation 
[12]. Crossover combines the features of randomly chosen 
individuals (parents) to form two similar offspring by 
swapping corresponding segments of the parents. Mutation 
arbitrarily alters some values within the individual, by a 
random change with a probability defined by a mutation rate 
[6]. Each structure in the population has an associated fitness 
score, and these scores are used in a competition that 
establishes which structures are used to form new ones [12]. 

The capacity to take advantage of gathering information 
about an initially unknown search space, in order to bias 
subsequent search into useful subspaces, is a distinctive 
feature of GAs, making them suitable for problems with 
large, complex, and poorly understood search spaces [12]. 

III. ALINEAGA METHODS 
This section presents a brief explanation regarding 

representation, selection, evaluation crossover and mutation 
in AlineaGA. 

Our algorithm uses a noncodified representation of the 
individuals. This means that real multiple sequence 

alignments, as the one presented in Fig. 1, are used as data 
structures for each individual, resulting in chromosomes 
represented by arrays of characters on which each line 
corresponds to a sequence in the alignment, and each column 
represents a residue at a specific position. 

The individuals are initially randomly generated, and 
then selected, combined and mutated in order to produce 
new solutions through the course of a defined number of 
generations.  

The sum-of-pairs function, presented in (1), is used as a 
fitness measure to evaluate the population. 
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This score is assessed by scoring all of the pairwise 
comparisons between each residue in each column of an 
alignment and adding the scores together [13]. To do this 
calculus, it is necessary to use a scoring matrix which 
determines the cost of substituting a residue for another, and 
also a gap penalty value to determine the cost of aligning a 
residue with a gap. We use the PAM 350 [14] scoring matrix 
with a gap penalty of -10 [3]. 

Parents’ selection is determined by their fitness. We use 
Tournament selection for this purpose. This means that the 
fittest parents have more probability of reproducing 
themselves by means of a crossover operation. 

Two crossover operators are used in AlineaGA: One 
Point crossover, which derives from Goldberg’s standard one 
point crossover operator [15] with an extension that treats the 
existing gaps in each sequence; and RecombineMatchedCol 
[16], on which the fully identical columns of the first parent 
which don’t appear in the second one are identified, and then 
one of these fully aligned columns is randomly selected and 
is generated in the second alignment, originating the 
offspring. These crossover operators are selected randomly 
within each generation. 

Mutations can occur, introducing new characteristics in 
the population and thus, increasing diversity. Each mutation 
operator is randomly selected from a pool of operators and it 
is applied to an individual according to the defined mutation 
probability. If the mutated solution is worst than the original 
one, a new mutation can be applied to the mutated 
individual. This can be repeated until the fitness improves or 
during a certain number of attempts defined by the user. In 
our tests, we perform a maximum of 2 tries because it 
represents a good trade off between speed and robustness, 
without transforming completely the individuals in only one 
generation. 

IV. MUTATION OPERATORS 
We use three popular and effective mutation operators 

present in the literature: the Gap Insertion, Gap Shifting and 
Merge Space operators. We have improved these methods by 
hybridizing a simple local search optimization, resulting in 
three new operators: the “Smart” ones. 

A. Gap Insertion 
The Gap Insertion operator extends the alignments by 

inserting gaps into the sequences. It produces a mutation 

-TISCTGNIGAG-NHVKWYQQLPG 
-RLSCSSIFSS--YAMYWVRQAPG 
L-LTCTVSFDD--YYSTWVRQPPG 
PEVTCVVSHEDPQVKFNWYVQ-PG 
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identical to the GenAlignRefine [13] gap insertion operator 
which simply inserts a gap into every sequence of the 
alignment in a random fashion. In our implementation there 
is a small variation which allows the user to decide the 
number of gaps that he wishes to introduce on each mutation. 

B. Gap Shifting 
Shifting gaps is another way to introduce new alignment 

configurations. In RAGA’s gap shifting operator, a gap is 
randomly chosen in an alignment and it is moved to another 
position [17]. We use the same concept. 

C. Merge Space 
This operator merges together two or three spaces of a 

sequence [18]. This is accomplished by randomly selecting 
two or three consecutive gaps of a sequence, which may or 
may not be adjacent, and then merging these gaps together. 
After that, they are shifted to a randomly chosen position in 
the same sequence, as Fig. 2 illustrates. 

 

 
Figure 2.  Merge Space mutation operator. 

D. Smart Gap Insertion 
This variation of the Gap Insertion operator only 

produces the mutation if the fitness of the mutated alignment 
is greater than the fitness of the original one. To do so, a 
random position in the alignment matrix (line and column 
indexes) is chosen. Then, a desired number of gaps is 
inserted on that position and all the other lines are filled with 
gaps until they all have the same size, as Fig. 3 exemplifies. 

 
Figure 3.  Smart Gap Insertion mutation operator. 

A direction probability determines the insertion of 
additional gaps at the beginning or at the end of the sequence 
lines. This probability is initially set to 50% at the beginning 
of each generation, and according to the results it will be 
increased (increasing the possibility of the gap insertion at 
the beginning of the remaining sequences), or decreased 
(increasing the possibility of the gap insertion at the end of 
the remaining sequences). However, the mutation and the 
change on the direction probability will only occur if the 
fitness of the generated alignment is greater than the original 
one. If the operator is unable to improve the alignment at the 
first attempt, it tries to choose another random position and 
repeats the whole process. The defined number of maximum 
attempts is set to 3 but it can be customized according to 
user’s needs. 

E. Smart Gap Shifting 
The Smart Gap Shifting exemplified in Fig. 4, tries to 

move the gaps of an alignment until its fitness improves. As 
in the Smart Gap Insertion operator, the shift direction is 
determined by a direction probability which initially is set to 
50% and it is updated when better alignments are found. 
Also, the mutation occurs only if the fitness of the generated 
alignment is better than the original one. 

 
Figure 4.  Smart Gap Shifting mutation operator. 

F. Smart Merge Space 
The Smart Merge Space is similar to the Merge Space 

operator but, it only applies the mutation if the fitness of the 
mutated solution is greater than the fitness of the original 
one. 

G. Gap Column Remover 
The Gap Column Remover (Fig. 5) removes gap columns 

that can be generated by crossover and mutation operations 
[3]. It is not influenced by the mutation probability and it is 
applied at the end of each generation. 

 

 
Figure 5.  Gap Column Remover. 

V. TESTING AND RESULTS 
Our objective is to evaluate the impact of the new 

“Smart” operators in the quality of the obtained solutions and 
to understand their influence in population’s evolution. For 
this purpose we test different combinations of mutation 
operators as well as different mutation probabilities, 
maintaining all the remaining parameters unchanged. 

In our tests, we use eight datasets from the Reference 1 
alignments of BAliBASE [5]. Four of these datasets (1aho, 
1fmb, 1plc, 2mhr) have more than 35% of identity among its 
sequences and the other half (1fjlA, 1hpi, 1pfc, 1ycc) have 
20% to 40% of identity. We have measured the sum-of-pairs 
score of each one of these datasets. Later we use these 
reference results to evaluate the different test configurations. 

A. Test Configurations 
Although we vary the combinations of mutation 

operators and its probabilities, we maintain the remaining 
parameters stable. In all our tests the population size is 100, 
the number of generations is 2000, and the crossover 
probability is 0.8. The number of inserted gaps by the Gap 
Insertion and Smart Gap Insertion operators is 10 and the 
tournament size is 2. The remaining parameters for each one 
of the configurations is presented in Table I. 
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TABLE I.  TEST PARAMETERS CONFIGURATION 

Configuration Type of Mutation Operators 
(Probability) 

MxNormal20 Normal (0.2) 
MxSmart20 Smart (0.2) 
MxN&S20 Normal (0.2) and Smart (0.2) 
MxNormal40 Normal (0.4) 
MxSmart40 Smart (0.4) 
MxN&S40 Normal (0.4) and Smart (0.4) 
MxN20&S40 Normal (0.2) and Smart (0.4) 

 
To simplify the description we separate the mutation 

operators into two categories: “Normal”, which refers to Gap 
Insertion, Gap Shifting and Merge Space operators; and 
“Smart”, which include the Smart Gap Insertion, Smart Gap 
Shifting and Smart Merge Space operators. In both cases, the 
mutation operators are randomly chosen with equal 
probability of selection. 

B. Results 
Next we present the results of our tests. All the results 

were obtained by averaging the sum-of-pairs score from 30 
runs of AlineaGA for each configuration/dataset. 

1) Population’s Evolution: Figures 6 to 13 compare the 
population evolution on the test datasets for the different 
configurations. The “Normal” operators have worse 
performances than the “Smart” ones on all datasets. It is 
notorious that the configuration with higher probability of 
“Normal” mutation, “MxNormal40” has the worst 
performance. This may be because of the random nature of 
the operators. 

Configuration “MxNormal20”, with a lower mutation 
probability, presents a slow consistent evolution; however, it 
does not achieve the higher scoring values that the remaining 
configurations do in the same number of generations. 

“MxSmart20” presents a great improvement in 
comparison with the “Normal” configurations; however, in 
the majority of the datasets, “MxSmart40” behaves better 
than the remaining configurations in the first 200 
generations. Nevertheless, after population’s stabilization, 
we can observe that there are some difficulties for this 
configuration to explore the search space for better solutions.  

To increase the capacity of exploring different search 
spaces, we tested three combinations of “Normal” and 
“Smart” operators. Comparing “MxN&S20” and 
“MxN&S40”, we can observe that although the first 
configuration evolves faster than the second, the slower 
convergence of “MxN&S40” allows it to find better 
solutions. In fact, this configuration presents the best 
performance for the half of the datasets: 1fmb, 2mhr, 1fjlA 
and 1pfc.  

By combining low values of “Normal” mutations with 
high values of the “Smart” ones, “MxN20&S40” presents a 
fast convergence, only beaten by “MxSmart40”. Yet, in this 
case, the faster convergence does not disable the capacity for 
exploring interesting spaces, allowing this configuration to 
achieve the best results for the remaining datasets: 1aho, 
1plc, 1hpi and 1ycc. 
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Figure 6.  Population evolution for dataset 1aho. 
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Figure 7.  Population evolution for dataset 1fmb. 
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Figure 8.  Population evolution for dataset 1plc. 
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Figure 9.  Population evolution for dataset 2mhr. 

1260



-500

-250

0

250

500

750

1000

1250

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40  
Figure 10.  Population evolution for dataset 1fjlA. 
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Figure 11.  Population evolution for dataset 1hpi. 
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Figure 12.  Population evolution for dataset 1pfc. 
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Figure 13.  Population evolution for dataset 1ycc. 

2) Performance: Table II summarizes the performance 
of all the configurations on the test datasets. 

TABLE II.  RESULTS FOR THE TEST CONFIGURATIONS 

Dataset SOP of 
BAliBASE  Configuration Average 

Best SOP 
Best 
SOP 

1aho 2015 

MxNormal20 1659,43 1850 
MxSmart20 1757,70 2063 
MxN&S20 1857,27 2115 
MxNormal40 259,60 581 
MxSmart40 1837,13 2097 
MxN&S40 1923,47 2143 
MxN20&S40 1974,93 2134 

1fmb 1706 

MxNormal20 1742,97 1816 
MxSmart20 1756,80 1850 
MxN&S20 1810,47 1848 
MxNormal40 888,70 1196 
MxSmart40 1743,07 1836 
MxN&S40 1834,20 1861 
MxN20&S40 1803,47 1855 

1plc 2403 

MxNormal20 2041,57 2328 
MxSmart20 2199,43 2516 
MxN&S20 2283,40 2577 
MxNormal40 842,67 1505 
MxSmart40 2285,80 2594 
MxN&S40 2293,17 2574 
MxN20&S40 2338,50 2536 

2mhr 4002 

MxNormal20 3571,73 3849 
MxSmart20 3636,50 4021 
MxN&S20 3827,87 4038 
MxNormal40 1821,93 2695 
MxSmart40 3786,37 4004 
MxN&S40 3889,60 4051 
MxN20&S40 3866,07 4038 

1fjlA 1740 

MxNormal20 976,40 1247 
MxSmart20 1141,77 1598 
MxN&S20 1206,83 1441 
MxNormal40 -73,40 431 
MxSmart40 1215,73 1451 
MxN&S40 1238,50 1574 
MxN20&S40 1219,63 1768 

1hpi 1208 

MxNormal20 954,33 1102 
MxSmart20 996,03 1183 
MxN&S20 1047,10 1194 
MxNormal40 106,10 298 
MxSmart40 1038,73 1193 
MxN&S40 1090,40 1212 
MxN20&S40 1140,73 1207 

1pfc 2216 

MxNormal20 1973,43 2328 
MxSmart20 2371,50 2508 
MxN&S20 2424,13 2521 
MxNormal40 194,77 843 
MxSmart40 2417,53 2515 
MxN&S40 2471,13 2559 
MxN20&S40 2438,27 2540 

1ycc 963 

MxNormal20 652,73 941 
MxSmart20 770,10 1006 
MxN&S20 844,63 1105 
MxNormal40 -163,13 200 
MxSmart40 799,07 1113 
MxN&S40 826,77 1101 
MxN20&S40 887,70 1114 

SOP, sum-of-pairs; Average Best SOP was obtained by averaging the results of 30 runs of each test. 

 
The “SOP of BAliBASE Alignment” column presents 

the sum-of-pairs score for the different datasets and it was 
computed using PAM 350 scoring matrix and a gap penalty 
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of -10. Column “Average Best SOP” shows the average 
sum-of-pairs score obtained in 30 runs of AlineaGA, and 
column “Best SOP” presents the best solution found in those 
30 runs. 

The best average results for all datasets are obtained by 
“MxN&S40” and “MxN20&S40” configurations. However, 
comparing with the BAliBASE score, the average 
sum-of-pairs of the test configurations are better in only two 
datasets: 1fmb and 1pfc. In the remaining cases the average 
sum-of-pairs value does not reach BAliBASE’s score.  

The majority of the configurations allow the algorithm to 
find better fitness values for the best solution. The exceptions 
are the “MxNormal20” and “MxNormal40”, which use only 
the “Normal” operators.  

“MxSmart40” obtains the best score in the dataset 1plc, 
but in general, it has a worst performance than the 
configurations that combine both “Normal” and “Smart” 
mutations. 

Despite the fact that the “Smart” operators are superior to 
the “Normal” ones, their combined use in “MxN&S20”, 
“MxN&S40” and “MxN20&S40” configurations, proved to 
be the best solution for finding the best multiple sequence 
alignment on the test datasets. In these cases, a high 
probability of using the “Smart” operators leads to better 
results, but we cannot establish a similar relation for the use 
of the “Normal” ones. Probably, this may be due to the 
random fashion that is used in operator’s selection. 

VI. CONCLUSIONS 
Mutation operators have an important role in introducing 

new patterns in the population, being decisive for exploring 
solution’s search space. Our “Smart” operators have proved 
that they can influence the search for better solutions, leading 
to better results than the “Normal” ones.  

Configuration “MxSmart40”, which uses only “Smart” 
operators with a probability of 0.4, has proven that in the 
first 200 generations can achieve better results than any other 
configuration, with gains that in some cases are superior to 
100%. Though, if the number of generations is not a 
problem, the best option is to use a combination of “Smart” 
and “Normal” mutations. Our best results were attained with 
configurations “MxN&S40” and “MxN20&S40”. It is not 
easy to choose the best one, but “MxN20&S40” can 
converge faster than “MxN&S40” towards the solution 
without presenting premature convergence.  

We believe that the results can be improved if the choice 
of operators is not made in a random fashion. Also, the 
number of generations and other scoring matrixes can have 
influence in the results for different datasets, but in this study 
we kept these parameters unchanged in order to establish a 
similar environment for all test configurations.  

A straightforward development of our investigation is to 
determine a set of rules that can evaluate the evolution of the 
population, and that choose the correct type of operator at a 
given time. 
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