
Optimizing Multiple Sequence Alignment by Improving Mutation Operators of a
Genetic Algorithm

Fernando José Mateus da Silva
Dept. of Informatics Engineering

Sch. of Tech. and Mgmt., Polytechnic Institute of Leiria
Leiria, Portugal

fernando.silva@estg.ipleiria.pt

Juan Manuel Sánchez Pérez, Juan Antonio Gómez
Pulido, Miguel A. Vega Rodríguez

Dept. Tecnologías Computadores y Comunicaciones
Escuela Politécnica, Universidad de Extremadura

Cáceres, Spain
{sanperez, jangomez, mavega}@unex.es

Abstract— Searching for the best possible alignment for a set
of sequences is not an easy task, mainly because of the size and
complexity of the search space involved. Genetic algorithms
are predisposed for optimizing general combinatorial problems
in large and complex search spaces. We have designed a
Genetic Algorithm for this purpose, AlineaGA, which
introduced new mutation operators with local search
optimization. Now we present the contribution that these new
operators bring to this field, comparing them with similar
versions present in the literature that do not use local search
mechanisms. For this purpose, we have tested different
configurations of mutation operators in eight BAliBASE
alignments, taking conclusions regarding population evolution
and quality of the final results. We conclude that the new
operators represent an improvement in this area, and that
their combined use with mutation operators that do not use
optimization strategies, can help the algorithm to reach quality
solutions.

Keywords - Multiple sequence alignments; genetic
algorithms; local search; optimization; bioinformatics

I. INTRODUCTION
DNA, RNA and protein alignment is one of the most

common tasks in bioinformatics.
An alignment is a mutual placement of two or more

sequences which exhibits where the sequences are similar
and where they differ [1]. Multiple sequence alignment is an
optimization problem searching for the best alignment from
large, complex search spaces [2].

Genetic Algorithms (GAs) are a biological inspired
technology which conducts randomized search and
optimization techniques guided by the principles of natural
evolution and genetics. They are efficient, adaptive and
robust search processes which produce near optimal
solutions, having a large degree of implicit parallelism [1],
which makes them suitable for solving the problem of
multiple sequence alignment.

In our prior investigation, we have developed AlineaGA
[3, 4], a GA which performs multiple sequence alignment of
protein sequences. In its implementation, we use mutation
operators previously introduced by other authors and we

extend their initial concept by presenting new mutation
operators with local search mechanisms. This optimization
allows the improvement of a solution by searching its
vicinity for fittest individuals and replacing it if a better one
is found.

Our purpose is to compare the original mutation
operators with the new improved ones, in terms of the
quality of the obtained solutions and of population’s
evolution. For this matter, we tested AlineaGA with eight
BAliBASE [5] Reference 1 alignments, using different
combinations and probabilities of mutation.

This paper is organized as follows. In the next Section we
introduce concepts underlying our research. In Section III,
we present a brief explanation regarding AlineaGA methods.
Section IV presents the mutation operators used by
AlineaGA. The experiments performed in order to validate
and observe the impact of these new operators are discussed
in Section V. Finally, the concluding Section presents final
considerations and topics for future work.

II. BACKGROUND
Multiple alignments are present in most of the

computational methods used in molecular biology. They are
used to study molecular evolution, to help predict the
secondary or tertiary structure of new sequences, RNA
folding, gene regulation and polymerase chain reaction
primer design [6]. They are also applied to different areas
such as functional genomics, evolutionary studies, structure
modelling, mutagenesis experiments and drug design.

Two major methods exist for performing multiple
sequence alignment. The progressive method gradually
builds up the alignment by aligning the two most similar
sequences first, and one after another, adding the more
distant ones. This is a very fast and simple method; however
it has a crucial problem: mistakes made at an intermediate
step cannot be corrected later with the addition of more
sequences to the alignment. In addition, it does not provide a
metric which can be used to say that one alignment is
preferable to another or to say that the best possible
alignment, given a set of parameters, has been found [7]. On
the other hand, iterative methods try to optimize a scoring
function which reflects biological events such that

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.106

1257

optimization of the score leads to a correct alignment [8].
One representative example of iterative methods are GAs,
other examples may be found in our prior review [9].

A. Alignment
An alignment is a mutual placement of two or more

sequences which reveal where the sequences are similar, and
where they differ. An optimal alignment is the one that
exhibits the most correspondences and the fewest
differences, but which may or may not be biologically
meaningful [1]. An example of an alignment of four
hypothetical protein sequences is presented in Fig. 1.

Figure 1. Example of a multiple sequence alignment.

Each input sequence is represented in a different line and
it can have different lengths. Columns with different symbols
in the alignment show that several mutation events have
taken place. Columns with identical symbols, which are
represented as bold characters, indicate that no mutation
occurs. The symbol “–” is used to represent a space
introduced in the sequence in order to improve the alignment
result. This space is usually referred to as a gap. The
introduction of gaps in the sequences allows the alignment to
be extended into regions where one sequence may have lost
or gained sequence characters not found in the other.

B. Genetic Algorithms
GAs, introduced in 1975 by Holland [10], are stochastic

algorithms whose search methods model some natural
phenomena: genetic inheritance and Darwinian strife for
survival [11].

In GAs, adaptation proceeds by maintaining a population
of structures from which new structures are produced by
means of genetic operators such as crossover and mutation
[12]. Crossover combines the features of randomly chosen
individuals (parents) to form two similar offspring by
swapping corresponding segments of the parents. Mutation
arbitrarily alters some values within the individual, by a
random change with a probability defined by a mutation rate
[6]. Each structure in the population has an associated fitness
score, and these scores are used in a competition that
establishes which structures are used to form new ones [12].

The capacity to take advantage of gathering information
about an initially unknown search space, in order to bias
subsequent search into useful subspaces, is a distinctive
feature of GAs, making them suitable for problems with
large, complex, and poorly understood search spaces [12].

III. ALINEAGA METHODS
This section presents a brief explanation regarding

representation, selection, evaluation crossover and mutation
in AlineaGA.

Our algorithm uses a noncodified representation of the
individuals. This means that real multiple sequence

alignments, as the one presented in Fig. 1, are used as data
structures for each individual, resulting in chromosomes
represented by arrays of characters on which each line
corresponds to a sequence in the alignment, and each column
represents a residue at a specific position.

The individuals are initially randomly generated, and
then selected, combined and mutated in order to produce
new solutions through the course of a defined number of
generations.

The sum-of-pairs function, presented in (1), is used as a
fitness measure to evaluate the population.

),(
1

1 1
j

n

i

n

ij
i llrixScoringMatPairsofSum ∑∑

−

= +=

=−− (1)

This score is assessed by scoring all of the pairwise
comparisons between each residue in each column of an
alignment and adding the scores together [13]. To do this
calculus, it is necessary to use a scoring matrix which
determines the cost of substituting a residue for another, and
also a gap penalty value to determine the cost of aligning a
residue with a gap. We use the PAM 350 [14] scoring matrix
with a gap penalty of -10 [3].

Parents’ selection is determined by their fitness. We use
Tournament selection for this purpose. This means that the
fittest parents have more probability of reproducing
themselves by means of a crossover operation.

Two crossover operators are used in AlineaGA: One
Point crossover, which derives from Goldberg’s standard one
point crossover operator [15] with an extension that treats the
existing gaps in each sequence; and RecombineMatchedCol
[16], on which the fully identical columns of the first parent
which don’t appear in the second one are identified, and then
one of these fully aligned columns is randomly selected and
is generated in the second alignment, originating the
offspring. These crossover operators are selected randomly
within each generation.

Mutations can occur, introducing new characteristics in
the population and thus, increasing diversity. Each mutation
operator is randomly selected from a pool of operators and it
is applied to an individual according to the defined mutation
probability. If the mutated solution is worst than the original
one, a new mutation can be applied to the mutated
individual. This can be repeated until the fitness improves or
during a certain number of attempts defined by the user. In
our tests, we perform a maximum of 2 tries because it
represents a good trade off between speed and robustness,
without transforming completely the individuals in only one
generation.

IV. MUTATION OPERATORS
We use three popular and effective mutation operators

present in the literature: the Gap Insertion, Gap Shifting and
Merge Space operators. We have improved these methods by
hybridizing a simple local search optimization, resulting in
three new operators: the “Smart” ones.

A. Gap Insertion
The Gap Insertion operator extends the alignments by

inserting gaps into the sequences. It produces a mutation

-TISCTGNIGAG-NHVKWYQQLPG
-RLSCSSIFSS--YAMYWVRQAPG
L-LTCTVSFDD--YYSTWVRQPPG
PEVTCVVSHEDPQVKFNWYVQ-PG

1258

identical to the GenAlignRefine [13] gap insertion operator
which simply inserts a gap into every sequence of the
alignment in a random fashion. In our implementation there
is a small variation which allows the user to decide the
number of gaps that he wishes to introduce on each mutation.

B. Gap Shifting
Shifting gaps is another way to introduce new alignment

configurations. In RAGA’s gap shifting operator, a gap is
randomly chosen in an alignment and it is moved to another
position [17]. We use the same concept.

C. Merge Space
This operator merges together two or three spaces of a

sequence [18]. This is accomplished by randomly selecting
two or three consecutive gaps of a sequence, which may or
may not be adjacent, and then merging these gaps together.
After that, they are shifted to a randomly chosen position in
the same sequence, as Fig. 2 illustrates.

Figure 2. Merge Space mutation operator.

D. Smart Gap Insertion
This variation of the Gap Insertion operator only

produces the mutation if the fitness of the mutated alignment
is greater than the fitness of the original one. To do so, a
random position in the alignment matrix (line and column
indexes) is chosen. Then, a desired number of gaps is
inserted on that position and all the other lines are filled with
gaps until they all have the same size, as Fig. 3 exemplifies.

Figure 3. Smart Gap Insertion mutation operator.

A direction probability determines the insertion of
additional gaps at the beginning or at the end of the sequence
lines. This probability is initially set to 50% at the beginning
of each generation, and according to the results it will be
increased (increasing the possibility of the gap insertion at
the beginning of the remaining sequences), or decreased
(increasing the possibility of the gap insertion at the end of
the remaining sequences). However, the mutation and the
change on the direction probability will only occur if the
fitness of the generated alignment is greater than the original
one. If the operator is unable to improve the alignment at the
first attempt, it tries to choose another random position and
repeats the whole process. The defined number of maximum
attempts is set to 3 but it can be customized according to
user’s needs.

E. Smart Gap Shifting
The Smart Gap Shifting exemplified in Fig. 4, tries to

move the gaps of an alignment until its fitness improves. As
in the Smart Gap Insertion operator, the shift direction is
determined by a direction probability which initially is set to
50% and it is updated when better alignments are found.
Also, the mutation occurs only if the fitness of the generated
alignment is better than the original one.

Figure 4. Smart Gap Shifting mutation operator.

F. Smart Merge Space
The Smart Merge Space is similar to the Merge Space

operator but, it only applies the mutation if the fitness of the
mutated solution is greater than the fitness of the original
one.

G. Gap Column Remover
The Gap Column Remover (Fig. 5) removes gap columns

that can be generated by crossover and mutation operations
[3]. It is not influenced by the mutation probability and it is
applied at the end of each generation.

Figure 5. Gap Column Remover.

V. TESTING AND RESULTS
Our objective is to evaluate the impact of the new

“Smart” operators in the quality of the obtained solutions and
to understand their influence in population’s evolution. For
this purpose we test different combinations of mutation
operators as well as different mutation probabilities,
maintaining all the remaining parameters unchanged.

In our tests, we use eight datasets from the Reference 1
alignments of BAliBASE [5]. Four of these datasets (1aho,
1fmb, 1plc, 2mhr) have more than 35% of identity among its
sequences and the other half (1fjlA, 1hpi, 1pfc, 1ycc) have
20% to 40% of identity. We have measured the sum-of-pairs
score of each one of these datasets. Later we use these
reference results to evaluate the different test configurations.

A. Test Configurations
Although we vary the combinations of mutation

operators and its probabilities, we maintain the remaining
parameters stable. In all our tests the population size is 100,
the number of generations is 2000, and the crossover
probability is 0.8. The number of inserted gaps by the Gap
Insertion and Smart Gap Insertion operators is 10 and the
tournament size is 2. The remaining parameters for each one
of the configurations is presented in Table I.

1259

TABLE I. TEST PARAMETERS CONFIGURATION

Configuration Type of Mutation Operators
(Probability)

MxNormal20 Normal (0.2)
MxSmart20 Smart (0.2)
MxN&S20 Normal (0.2) and Smart (0.2)
MxNormal40 Normal (0.4)
MxSmart40 Smart (0.4)
MxN&S40 Normal (0.4) and Smart (0.4)
MxN20&S40 Normal (0.2) and Smart (0.4)

To simplify the description we separate the mutation

operators into two categories: “Normal”, which refers to Gap
Insertion, Gap Shifting and Merge Space operators; and
“Smart”, which include the Smart Gap Insertion, Smart Gap
Shifting and Smart Merge Space operators. In both cases, the
mutation operators are randomly chosen with equal
probability of selection.

B. Results
Next we present the results of our tests. All the results

were obtained by averaging the sum-of-pairs score from 30
runs of AlineaGA for each configuration/dataset.

1) Population’s Evolution: Figures 6 to 13 compare the
population evolution on the test datasets for the different
configurations. The “Normal” operators have worse
performances than the “Smart” ones on all datasets. It is
notorious that the configuration with higher probability of
“Normal” mutation, “MxNormal40” has the worst
performance. This may be because of the random nature of
the operators.

Configuration “MxNormal20”, with a lower mutation
probability, presents a slow consistent evolution; however, it
does not achieve the higher scoring values that the remaining
configurations do in the same number of generations.

“MxSmart20” presents a great improvement in
comparison with the “Normal” configurations; however, in
the majority of the datasets, “MxSmart40” behaves better
than the remaining configurations in the first 200
generations. Nevertheless, after population’s stabilization,
we can observe that there are some difficulties for this
configuration to explore the search space for better solutions.

To increase the capacity of exploring different search
spaces, we tested three combinations of “Normal” and
“Smart” operators. Comparing “MxN&S20” and
“MxN&S40”, we can observe that although the first
configuration evolves faster than the second, the slower
convergence of “MxN&S40” allows it to find better
solutions. In fact, this configuration presents the best
performance for the half of the datasets: 1fmb, 2mhr, 1fjlA
and 1pfc.

By combining low values of “Normal” mutations with
high values of the “Smart” ones, “MxN20&S40” presents a
fast convergence, only beaten by “MxSmart40”. Yet, in this
case, the faster convergence does not disable the capacity for
exploring interesting spaces, allowing this configuration to
achieve the best results for the remaining datasets: 1aho,
1plc, 1hpi and 1ycc.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 201 401 601 801 1001 1201 1401 1601 1801 2001
Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 6. Population evolution for dataset 1aho.

500

700

900

1100

1300

1500

1700

1900

1 201 401 601 801 1001 1201 1401 1601 1801 2001
Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 7. Population evolution for dataset 1fmb.

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

1 201 401 601 801 1001 1201 1401 1601 1801 2001
Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 8. Population evolution for dataset 1plc.

1000

1500

2000

2500

3000

3500

4000

1 201 401 601 801 1001 1201 1401 1601 1801 2001
Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 9. Population evolution for dataset 2mhr.

1260

-500

-250

0

250

500

750

1000

1250

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 10. Population evolution for dataset 1fjlA.

-400

-200

0

200

400

600

800

1000

1200

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 11. Population evolution for dataset 1hpi.

-250

250

750

1250

1750

2250

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 12. Population evolution for dataset 1pfc.

-500

-300

-100

100

300

500

700

900

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Generation

SO
P

MxNormal20 MxSmart20 MxN&S20 MxNormal40 MxSmart40 MxN&S40 MxN20&S40
Figure 13. Population evolution for dataset 1ycc.

2) Performance: Table II summarizes the performance
of all the configurations on the test datasets.

TABLE II. RESULTS FOR THE TEST CONFIGURATIONS

Dataset SOP of
BAliBASE Configuration Average

Best SOP
Best
SOP

1aho 2015

MxNormal20 1659,43 1850
MxSmart20 1757,70 2063
MxN&S20 1857,27 2115
MxNormal40 259,60 581
MxSmart40 1837,13 2097
MxN&S40 1923,47 2143
MxN20&S40 1974,93 2134

1fmb 1706

MxNormal20 1742,97 1816
MxSmart20 1756,80 1850
MxN&S20 1810,47 1848
MxNormal40 888,70 1196
MxSmart40 1743,07 1836
MxN&S40 1834,20 1861
MxN20&S40 1803,47 1855

1plc 2403

MxNormal20 2041,57 2328
MxSmart20 2199,43 2516
MxN&S20 2283,40 2577
MxNormal40 842,67 1505
MxSmart40 2285,80 2594
MxN&S40 2293,17 2574
MxN20&S40 2338,50 2536

2mhr 4002

MxNormal20 3571,73 3849
MxSmart20 3636,50 4021
MxN&S20 3827,87 4038
MxNormal40 1821,93 2695
MxSmart40 3786,37 4004
MxN&S40 3889,60 4051
MxN20&S40 3866,07 4038

1fjlA 1740

MxNormal20 976,40 1247
MxSmart20 1141,77 1598
MxN&S20 1206,83 1441
MxNormal40 -73,40 431
MxSmart40 1215,73 1451
MxN&S40 1238,50 1574
MxN20&S40 1219,63 1768

1hpi 1208

MxNormal20 954,33 1102
MxSmart20 996,03 1183
MxN&S20 1047,10 1194
MxNormal40 106,10 298
MxSmart40 1038,73 1193
MxN&S40 1090,40 1212
MxN20&S40 1140,73 1207

1pfc 2216

MxNormal20 1973,43 2328
MxSmart20 2371,50 2508
MxN&S20 2424,13 2521
MxNormal40 194,77 843
MxSmart40 2417,53 2515
MxN&S40 2471,13 2559
MxN20&S40 2438,27 2540

1ycc 963

MxNormal20 652,73 941
MxSmart20 770,10 1006
MxN&S20 844,63 1105
MxNormal40 -163,13 200
MxSmart40 799,07 1113
MxN&S40 826,77 1101
MxN20&S40 887,70 1114

SOP, sum-of-pairs; Average Best SOP was obtained by averaging the results of 30 runs of each test.

The “SOP of BAliBASE Alignment” column presents

the sum-of-pairs score for the different datasets and it was
computed using PAM 350 scoring matrix and a gap penalty

1261

of -10. Column “Average Best SOP” shows the average
sum-of-pairs score obtained in 30 runs of AlineaGA, and
column “Best SOP” presents the best solution found in those
30 runs.

The best average results for all datasets are obtained by
“MxN&S40” and “MxN20&S40” configurations. However,
comparing with the BAliBASE score, the average
sum-of-pairs of the test configurations are better in only two
datasets: 1fmb and 1pfc. In the remaining cases the average
sum-of-pairs value does not reach BAliBASE’s score.

The majority of the configurations allow the algorithm to
find better fitness values for the best solution. The exceptions
are the “MxNormal20” and “MxNormal40”, which use only
the “Normal” operators.

“MxSmart40” obtains the best score in the dataset 1plc,
but in general, it has a worst performance than the
configurations that combine both “Normal” and “Smart”
mutations.

Despite the fact that the “Smart” operators are superior to
the “Normal” ones, their combined use in “MxN&S20”,
“MxN&S40” and “MxN20&S40” configurations, proved to
be the best solution for finding the best multiple sequence
alignment on the test datasets. In these cases, a high
probability of using the “Smart” operators leads to better
results, but we cannot establish a similar relation for the use
of the “Normal” ones. Probably, this may be due to the
random fashion that is used in operator’s selection.

VI. CONCLUSIONS
Mutation operators have an important role in introducing

new patterns in the population, being decisive for exploring
solution’s search space. Our “Smart” operators have proved
that they can influence the search for better solutions, leading
to better results than the “Normal” ones.

Configuration “MxSmart40”, which uses only “Smart”
operators with a probability of 0.4, has proven that in the
first 200 generations can achieve better results than any other
configuration, with gains that in some cases are superior to
100%. Though, if the number of generations is not a
problem, the best option is to use a combination of “Smart”
and “Normal” mutations. Our best results were attained with
configurations “MxN&S40” and “MxN20&S40”. It is not
easy to choose the best one, but “MxN20&S40” can
converge faster than “MxN&S40” towards the solution
without presenting premature convergence.

We believe that the results can be improved if the choice
of operators is not made in a random fashion. Also, the
number of generations and other scoring matrixes can have
influence in the results for different datasets, but in this study
we kept these parameters unchanged in order to establish a
similar environment for all test configurations.

A straightforward development of our investigation is to
determine a set of rules that can evaluate the evolution of the
population, and that choose the correct type of operator at a
given time.

REFERENCES
[1] S. K. Pal, S. Bandyopadhyay, and S. S. Ray, "Evolutionary

computation in bioinformatics: A review," IEEE Transactions on
Systems Man and Cybernetics Part C-Appl and Rev, vol. 36, pp. 601-
615, 2006.

[2] J. Horng, L. Wu, C. Lin, and B. Yang, "A genetic algorithm for
multiple sequence alignment," Soft Computing, vol. 9, pp. 407-420,
2005.

[3] F. J. M. Silva, J. M. Sánchez Pérez, J. A. Gómez Pulido, and M. Á.
Vega Rodríguez, "AlineaGA: A Genetic Algorithm for Multiple
Sequence Alignment," in New Challenges in Applied Intelligence
Technologies, vol. 134, Studies in Computational Intelligence, N. T.
Nguyen and R. Katarzyniak, Eds.: Springer-Verlag, 2008, pp. 309-318.

[4] F. J. M. Silva, J. M. Sánchez Pérez, J. A. Gómez Pulido, and M. Á.
Vega Rodríguez, "Un Algoritmo Genético para Alineamiento Múltiple
de Secuencias," presented at VI Congreso Español sobre
Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB 09),
Málaga, Spain, 2009.

[5] J. D. Thompson, F. Plewniak, and O. Poch, "BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment programs,"
Bioinformatics, vol. 15, pp. 87-88, 1999.

[6] L. A. Anbarasu, P. Narayanasamy, and V. Sundararajan, "Multiple
molecular sequence alignment by island parallel genetic algorithm,"
Current Science, vol. 78, pp. 858-863, 2000.

[7] C. Notredame and D. G. Higgins, "SAGA: sequence alignment by
genetic algorithm," Nucleic Acids Research, vol. 24, pp. 1515-1524,
1996.

[8] T. Lassmann and E. L. L. Sonnhammer, "Quality assessment of
multiple alignment programs," FEBS Letters, vol. 529, pp. 126-130,
2002.

[9] F. J. M. Silva, J. M. Sánchez Pérez, J. A. Gómez Pulido, and M. Á.
Vega Rodríguez, "Alineamiento Múltiple de Secuencias utilizando
Algoritmos Genéticos: Revisión," presented at Segundo Congreso
Español de Informática, Zaragoza, Spain, 2007.

[10] J. H. Holland, "Adaptation in natural and artificial systems, Univ Mich
Press," Ann Arbor, 1975.

[11] Z. Michalewicz, Genetic algorithms + data structures = evolution
programs - Third, Revised and Extended Edition, 3 ed: Springer, 1996.

[12] K. De Jong, "Learning with genetic algorithms: An overview," Mach
Learning, vol. 3, pp. 121-138, 1988.

[13] C. Wang and E. J. Lefkowitz, "Genomic multiple sequence alignments:
refinement using a genetic algorithm," BMC Bioinformatics, vol. 6,
2005.

[14] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, "A Model of
Evolutionary Change in Proteins," in Atlas of Protein Sequence and
Structure, vol. 5: National Biomedical Research Foundation, 1978, pp.
345-352.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning Reading, MA: Addison-Wesley Publishing
Company, 1989.

[16] K. Chellapilla and G. B. Fogel, "Multiple sequence alignment using
evolutionary programming," presented at Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, Washington DC,
USA, 1999.

[17] C. Notredame, E. A. O'Brien, and D. G. Higgins, "RAGA: RNA
sequence alignment by genetic algorithm," Nucleic Acids Research,
vol. 25, pp. 4570-4580, 1997.

[18] J.-T. Horng, C.-M. Lin, B.-J. Liu, and C.-Y. Kao, "Using Genetic
Algorithms to Solve Multiple Sequence Alignments," presented at
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), Las Vegas, Nevada, USA, 2000.

1262

