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Abstract—We proceed from a method for protein structure
comparison in which information about the geometry and
physico-chemical properties of such structures are represented
in the form of labeled point clouds, that is, a set of labeled
points in three-dimensional Euclidean space. Two point clouds
are then compared by computing an optimal spatial super-
position. This approach has recently been introduced in the
literature and was shown to produce very good similarity
scores. It does not, however, establish an alignment in the
sense of a one-to-one correspondence between the basic units
of two or more protein structures. From a biological point
of view, alignments of this kind are of great interest, as they
offer important information about evolution, heredity, and the
mutual correspondence between molecular constituents. In this
paper, we therefore developed a method for computing pairwise
or multiple alignments of protein structures on the basis of
labeled point cloud superpositions.

Keywords-protein binding sites; labeled point clouds; align-
ment; conserved patterns;

I. INTRODUCTION

Geometric representations of objects in the form of point
sets in three-dimensional Euclidean space can be found in
many fields, including structural bioinformatics. A well-
known example of a representation of this kind is the Molfile
format [6], where molecules are described in terms of the
spatial coordinates of all atoms. However, since not only
the position but also the type of an atom is of interest, this
representation is not a simple point cloud. Likewise, other
biomolecular structures, such as proteins and protein binding
sites, are not only characterized by their geometry but also
by additional features, such as physico-chemical properties.
In [4], we therefore introduced the concept of a labeled point
cloud. A labeled point cloud is a finite set of points, where
each point is not only associated with a position in three-
dimensional space, but also with a discrete class label that
represents a specific property. Based on this representation,
the method of labeled point cloud superposition (LPCS) has
been developed [4], which, by finding an optimal spatial
superposition, allows for the computation of a similarity
score between two objects.

LPCS was shown to produce very good similarity scores

in the context of comparing protein binding sites. Besides, it
has a number of advantages over alternative methods that are
commonly employed for protein structure comparison [11,
9, 13, 8, 1], such as graph-based approaches. In particular,
LPCS is quite efficient from a computational point of view.
Yet, in contrast to methods for multiple graph alignment
as recently introduced in [14], LPCS does not establish a
one-to-one correspondence between the basic units of two
or more protein structures. From a biological point of view,
alignments of this kind are of great interest, as they offer
important information about evolution, heredity, and the
mutual correspondence between molecular constituents. In
this paper, we therefore develop a method for computing
pairwise or multiple alignments of protein structures on the
basis of labeled point cloud superpositions.

The remainder of the paper if organized as follows. Sub-
sequent to a brief introduction to protein binding sites and
their representation in Section II, we introduce the concept
of multiple geometric alignment in Section III. Section IV
is devoted to the experimental validation of the approach,
and Section V concludes the paper.

II. MODELING PROTEIN BINDING SITES

In this paper, our special interest concerns the modeling
of protein binding sites. More specifically, our work builds
upon CavBase [12], a database for the automated detection,
extraction, and storing of protein cavities (hypothetical bind-
ing sites) from experimentally determined protein structures
(available through the PDB). In CavBase, a set of points is
used as a first approximation to describe a binding pocket.
The database currently contains 113,718 hypothetical bind-
ing sites that have been extracted from 23,780 publicly
available protein structures using the LIGSITE algorithm [7].

The geometrical arrangement of the pocket and its
physicochemical properties are first represented by prede-
fined pseudocenters – spatial points that represent the center
of a particular property. The type and the spatial position
of the centers depend on the amino acids that border the
binding pocket and expose their functional groups. They are
derived from the protein structure using a set of predefined
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rules [12]. As possible types for pseudocenters, hydrogen-
bond donor, acceptor, mixed donor/acceptor, hydrophobic
aliphatic, metal ion, pi (accounts for the ability to form π–π
interactions) and aromatic properties are considered.

Pseudocenters can be regarded as a compressed represen-
tation of areas on the cavity surface where certain protein-
ligand interactions are experienced. Consequently, a set of
pseudocenters is an approximate representation of a spatial
distribution of physicochemical properties. Obviously, just
like in the case of Molfile, this representation is already
in the form of a labeled point cloud: pseudocenters are
given with their coordinates and labels, so that no further
transformation is needed.

III. MULTIPLE GEOMETRICAL ALIGNMENT

When comparing homologs from different species in
protein cavity space, one has to deal with the same mu-
tations that are also given in sequence space. Corresponding
mutations, in conjunction with conformational variability,
strongly affect the spatial structure of a binding site as
well as its physicochemical properties and, therefore, its
point cloud descriptor. For example, a pseudocenter can
be deleted or introduced due to a mutation in sequence
space. Likewise, if a mutation replaces a certain functional
group by another type of group at the same position, the
physicochemical property of a pseudocenter can change.
Finally, the distance between two pseudocenters can change
due to conformational differences.

Due to the above reasons, one cannot expect that point
clouds of two related binding pockets match exactly. When
looking for an alignment of two structures in the form
of a one-to-one correspondence between pseudocenters, it
is therefore necessary to allow for mismatches as well as
pseudocenters for which no matching partner is defined.
This situation is quite similar to sequence alignment, where
mismatches between symbols and the insertion of blanks
(to compensate for non-existing matching partners) is also
allowed.

In this paper, we derive alignments from labeled point
cloud superpositions and, therefore, refer to the latter as
geometric alignments. Formally, a labeled point cloud P is
a set of points {p1, . . . , pn} with two associated functions:
lc : P → R

3 maps points to coordinates in the Euclidean
space, and lt : P → L assigns a label to each point.

Definition 1 (Multiple Geometrical Alignment): Let
P be a set of m point clouds Pi = {pi

1, . . . , p
i
ni
},

i = 1, . . . , m. A multiple geometrical alignment of these
point clouds is a subset A ⊆ (P1∪{⊥})×· · ·×(Pm∪{⊥})
with the following properties:

1) for all i = 1 . . . m and for each p ∈ Pi there exists
exactly one a = (a1 . . . am) ∈ A such that p = ai;

2) for each a = (a1 . . . am) ∈ A there exists at least one
1 ≤ i ≤ n such that ai �=⊥.

Here, the symbol ⊥ denotes a “dummy point” which is
needed to compensate for non-existing matching partners.

Each tuple in the alignment represents a mutual assign-
ment of m points, one from each point cloud Pi (possibly a
dummy). Thus, the second property in the above definition
requires that each tuple of the alignment contains at least
one non-dummy point, and the first property means that
each point of each point cloud occurs exactly once in the
alignment. While these properties can be satisfied by a large
number of alignments, we are of course looking for an
alignment in which mutually assigned points have the same
label and nearby spatial positions.

A. Construction of pairwise alignments

To construct a pairwise alignment of two point clouds P1

and P2, we reduce the alignment problem to a problem of
optimal assignment. To this end, we need a square matrix
M = (mi,j), where mi,j ∈ R defines the costs for assigning
point pi ∈ P1 to point pj ∈ P2. According to definition 1,
the maximal length of a pairwise alignment is n = n1+n2 =
|P1| + |P2|. Therefore, to consider all possible alignments,
the matrix M has size n× n.

The entries mi,j are derived from the optimal super-
position of point clouds P1 and P2 as produced by our
LPCS method. Roughly speaking, this method searches for
a superposition which, as far as possible, guarantees the
following property: For each point in one structure, there
exists a point in the other cloud which is spatially close and
has the same label. To this end, P1 is held fix while P2 is
moved via a translation vector δ = (δ1, δ2, δ3) ∈ R

2 (which
means that δ is added to each point p ∈ P2) and rotated by
three angles θ1, θ2, and θ3 (the label information is of course
left unchanged). The quality of a spatial superposition is
specified by means of a proper measure, taking into account
both label and distance information, and this objective
function is maximized using an evolution strategy.

Given an optimal spatial superposition, it makes sense
to define mi,j by the distance between point pi ∈ P1 and
pj ∈ P2 in the superimposed point clouds. To account for
point-to-dummy mappings, the distance between a point and
a dummy is specified by a parameter k. Finally, dummy-
dummy assignments are scored by zero, so that these map-
pings will not influence the construction of the alignment.
As an illustration, Table I shows a matrix M for two point
clouds P1 = {a, b, c, d} and P2 = {a′, b′, c′}.

Formally, an assignment (weighted bipartite matching)
problem is specified by a graph G = (V,E) with V =
V1 ∪ V2 (V1 ∩ V2 = ∅) and E = {{u, v} |u ∈ V1, v ∈ V2}.
The problem is to find a subset of edges M ⊆ E such that
e ∩ e′ = ∅ for all e, e′ ∈ M (i.e., one point has exactly one
mapping partner),⋃

(v1,v2)∈M

{v1} = V1,
⋃

(v1,v2)∈M

{v2} = V2,
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Table I
MATRIX REPRESENTATION OF THE OPTIMAL ASSIGNMENT PROBLEM.

a′ b′ c′ ⊥ ⊥ ⊥ ⊥
a d(a, a′) d(a, b′) d(a, c′) k k k k
b d(b, a′) d(b, b′) d(b, c′) k k k k
c d(c, a′) d(c, b′) d(c, c′) k k k k
d d(d, a′) d(d, b′) d(d, c′) k k k k
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0
⊥ k k k 0 0 0 0

and ∑
e∈M

c(e) → min,

where c(e) is the cost associated with edge e. In our case,
the sets V1 and V2 represent, respectively, the points in point
cloud P1 with additional |P2| dummy points and the points
in cloud P2 with additional |P1| dummy points. Moreover,
the costs c(e) are given by the corresponding matrix entries
mi,j . See Figure 1 for an illustration.

To solve the weighted bipartite matching problem, we use
the Hungarian algorithm [10] that needs time O(n3). Once
a cost-minimal assignment has been found, the geometric
alignment is defined by the corresponding node-to-node
and node-to-dummy assignments, while dummy-to-dummy
assignments are ignored.
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Figure 1. Illustration of the weighted bipartite graph matching problem.

B. Construction of Multiple Alignments

Pairwise alignments can be used, for example, to derive a
measure of similarity between two objects. From a biological
point of view, however, it is even more interesting to look
for a multiple alignment, that is, the simultaneous alignment
of a set of m > 2 structures. Alignments of this type are
of interest, for example, to discover conserved patterns in a
family of evolutionary related proteins.

To derive a multiple geometrical alignment (3DA) of m
point clouds, we resort to the star alignment approach [14]:
One of the point clouds, say, P1, is selected and aligned
in a pairwise way with all other clouds Pi, i = 2, . . . , m.
The pairwise alignments are then “merged” by using P1 as a
pivot structure. Thus, if pij ∈ Pi denotes the point (possibly
a dummy) aligned with pj ∈ P1 in the alignment of P1 and

Pi, then a single assignment in the multiple alignment is of
the form

(pj , p2j , p3j , . . . , pmj).

Since the quality of a multiple alignment is strongly influ-
enced by the choice of the pivot structure, we try each point
cloud as a pivot and adopt the best result. Thus, m(m−1)/2
pairwise alignments have to be computed in total.

IV. EXPERIMENTAL RESULTS

In our experimental study, we compare the method of mul-
tiple geometrical alignment as introduced above (3DA) with
the method of multiple graph alignment (MGA) proposed in
[14]. Roughly speaking, we thus compare a geometrical with
a graph-based approach to aligning protein binding sites.

A. Data Sets

For a first proof-of-concept, we analyzed a data set con-
sisting of 87 compounds that belong to a series of selective
thrombin inhibitors and were taken from a 3D-QSAR study
[2]. The data set is suitable for conducting experiments in
a systematic way, as it is quite homogeneous and relatively
small (the graph descriptors contain 47 - 100 nodes, where
each node corresponds to an atom). Moreover, as the 87
compounds all share a common core fragment (which is
distributed over two different regions with a variety of
substituents), the data set contains a clear and unambiguous
target pattern.

Additionally, we used a data set consisting of 74 struc-
tures derived from the Cavbase database. Each structure
represents a protein cavity belonging to the protein family
of thermolysin, bacterial proteases frequently used in struc-
tural protein analysis and annotated with the E.C. number
3.4.24.27 in the ENZYME database. The data set is well-
suited for our purpose, as all cavities belong to the same
enzyme family and, therefore, evolutionary related, highly
conserved substructures ought to be present. On the other
hand, with cavities (hypothetical binding pockets) ranging
from about 30 to 90 pseudocenters and not all of them being
real binding pockets, the data set is also diverse enough to
present a real challenge for graph matching techniques.

B. Alignment Quality

In the first study, we compared the quality of the align-
ments calculated, respectively, by 3DA and MGA. To this
end, 100 graph alignments of size 2 were calculated for
randomly chosen structures. Restricting to pairwise align-
ments is justified since both 3DA and MGA use the star
alignment procedure to derive multiple alignments. The
quality of a pairwise alignment A is evaluated in terms of
two criteria. The first criterion is the fraction of assignments
of pseudocenters preserving the label information:

s1 =
1

|A|

∑
(a1,a2)∈A

{
1, lt(a1) = lt(a2))
0, lt(a1) �= lt(a2))

,
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where lt(a1) is the label of the pseudocenter a1. Similarly,
the second criterion evaluates to what extent the geometry of
the structures is preserved. Since an MGA does not include
information about the position of single psedocenters, this
has to be done by looking at distances between pairs of
pseudocenters in each structure:

s2 =
1

N

∑
(a1,a2),(b1,b2)∈A

{
1, |d(a1, b1)− d(a2, b2)| ≤ ε
0, |d(a1, b1)− d(a2, b2)| > ε

,

where d(a1, b1) = |lc(a1)−lc(b1)| and N = |A|(|A|−1)/2.
We summarize the evaluation by the vector

�s = (s1, s2) ∈ [0, 1]× [0, 1] .

To measure the improvement of our method, we calculate
the relative improvement

�ri =

⎛
⎜⎜⎜⎝

[�s3DA]1 − [�sMGA]1
[�sMGA]1

[�s3DA]2 − [�sMGA]2
[�sMGA]2

⎞
⎟⎟⎟⎠ (1)

where �s3DA and �sMGA denote, respectively, the evaluations
of 3DA and MGA and where [s]i gives the i-th element of
a vector �s.

1) Results: For our calculations we parameterized MGA
as proposed in [14], for 3DA we set k = 6 and performed
experiments like described above. The results for the ben-
zamidine data set are shown in Figure 2, where the relative
improvement vectors are plotted. As one can see, most of
the ri vectors are lying in the first quadrant, indicating a
positive improvement for both criteria.
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Figure 2. relative improvement (ri) on the benzamidine dataset

The corresponding results for the thermolysin data set
are depicted in Figure 3. Here, the picture is not as clear,
and the number of negative improvements is even slightly
higher than the number of positive ones. Apparently, 3DA
performs especially good on highly similar structures while

not improving on structures that are more diverse. This is
hardly surprising, since 3DA strongly exploits information
about the geometry of the structures.
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Figure 3. relative improvement (ri) on the thermolysin dataset

C. Parametrization

As an important advantage of 3DA, it deserves mentioning
that it only has a single parameter, while MGA has six
parameters. In spite of this, we found that if often produces
better results, even when trying to parametrize MGA in an
optimal way. For example, Figure 4 shows a set of solutions
for the benzamidine data that we found by varying the
parameters in 3DA and MGA. For ease of exposition, we
only plotted the solutions that are Pareto optimal in the two
respective sets of solutions; in total, 7776 result vectors �s
were computed for MGA by variation its 5 parameters in
a systematic way. For 3DA there was only one parameter
(threshold k) to vary, so that here only 12 results were
calculated. To have a readable plot we removed results that
are not Pareto optimal1 and plot only the remaining Pareto
optimal points. The resulting plot is illustrated in figure 4.
As one can see the 3DA solutions were independent of
parameterization always better than the MGA results, so that
we can claim that our novel method is easy to adjust and will
lead to results that are better, even for an optimal adjusted
MGA approach.

D. Structure Retrieval

The focus of the second study is on the ability to detect
common substructures in a set of biochemical structures.
We randomly selected 100 subsets of c compounds from the
benzamidine data set and used 3DA and MGA to calculate
an alignment. Then, we checked whether the aforementioned
benzamidine core fragment, an amide derivative of benzol

1Given a set of results S only such results �s ∈ S are called Pareto
optimal that are not dominated by other solutions. A vector �x dominates
another vector �y if �x[i] ≥ �y[i] for all i and �x[i] > �y[i] for some i.
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Figure 4. Pareto optimal solutions found by MGA (circles) and 3DA
(crosses)

which consists of 25 atoms (11 hydrogens), was fully con-
served in the alignment, which means that all pseudocenters
belonging to the core were mutually assigned in a correct
way. The results, shown in Table II for different numbers c,
clearly show that 3DA is able to retrieve the core fragment
much more reliably than MGA.

Table II
PERCENT OF ALIGNMENTS IN WHICH THE BENZAMIDINE CORE

FRAGMENT WAS FULLY CONSERVED IN THE ALIGNMENT OF

c = {2, 4, 8, 16} STRUCTURES.

c 2 4 8 16
MGA 0.85 0.38 0.14 0.04
3DA 0.96 0.92 0.80 0.76

E. Runtime

To investigate the computational complexity of our
method, we used the NADH/ATP data set [4] consisting
of a large set of protein binding sites. From this set we
chose protein binding sites of size approximately s ∈
{25, 35, . . . , 985, 995}; this was done by selecting the largest
binding site smaller than s and the smallest binding site
larger than s. In addition to our novel approach and MGA,
two other approaches were included for comparison, namely
the shortest path (SP) and the random walk (RW) kernel
[3, 5]. Both approaches yield similarity scores (though do
not determine an alignment), and especially the SP kernel is
known to be fast. Each approach is applied on the protein
binding sites mentioned above, and the time for comparing
the structures of size s is measured. Since 3DA is based
on a stochastic optimizer, we repeated each calculation 10
times and derived the median, minimum and maximum of
the runtime.

The results are summarized in Fig. 5. Due to their
excessive memory requirements, MGA and RW-kernel are
not able to compare binding sites exceeding a certain size.

For small problems, 3DA has the highest runtime, but the
runtime is growing very slowly with the problem size; for
point clouds larger than 150 or 200, 3DA is already faster
than MGA or RW-kernel. To explain the high variation of
the runtime of 3DA, note that we hash the points with
equal label to support nearest neighbor search. Therefore, the
runtime strongly depends on the distribution of the labels,
which varies among the data sets: The more uniformly the
labels are distributed, the more efficient the search becomes.

The SP-kernel has cubic runtime, so that this method is
the most efficient alternative for s < 600. 3DA is becoming
the most efficient approach for s > 600, which is hardly
surprising in light of the fact that the dimensionality of the
3DA optimization problem is constant (six parameters have
to be optimized) and does not depend on the number of
data points. It is true that the size of the point clouds does
have an influence on the evaluation of the objective function,
which involves a nearest neighbor search for each point. The
increase in runtime is at most quadratic, however.

V. CONCLUSIONS

In this paper, we proposed an extension of the method of
labeled point cloud superposition (LPCS). Originally, LPCS
computes an optimal spatial superposition of two labeled
point clouds but does not establish a one-to-one correspon-
dence between the points. Motivated by applications in struc-
tural bioinformatics, we developed the method of multiple
geometric alignment which, based on a given superposition,
computes a correspondence of this type. First experiments
carried out in the context of protein structure comparison are
quite promising and show that our method is competitive, if
not even superior, to state-of-the-art graph-based methods for
multiple structure alignment. Besides, it was already shown
in [4] that LPCS is computationally more efficient than
the graph-based approach. All things considered, multiple
geometric alignment is therefore a viable option for protein
structure comparison and might even be of interest beyond
the field of structural bioinformatics.
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