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Abstract—Protein binding sites are often represented by
means of graphs capturing their most important geometri-
cal and physicochemical properties. Searching for structural
similarities and identifying functional relationships between
them can thus be reduced to matching their corresponding
graph descriptors. In this paper, we propose a method for
the structural analysis of protein binding sites that makes use
of such matching techniques to assess the similarity between
proteins independently of sequence or fold homology. More
specifically, we propose a similarity measure that generalizes
the commonly used maximum common subgraph measure in
two ways. First, using algorithms for so-called quasi-clique
detection, our measure is based on maximum ‘approximately’
common subgraphs, a relaxation of maximum common sub-
graphs which is tolerant toward edge mismatches. Second,
instead of focusing on equivalence, our measure is a com-
promise between a generalized equivalence and an inclusion
measure. An experimental study is presented to illustrate the
effectiveness of the method and to show that both types of
relaxation are useful in the context of protein structure analysis.

Keywords-protein binding sites; graphs; cliques; quasi-
cliques; similarity measure;

I. INTRODUCTION

The progress in medicine and drug design largely hinges

on discoveries in bioinformatics. Indeed, with the expo-

nential growth of molecular data, computational techniques

are needed to extract, store and process this data. The

structural comparison of proteins is one of the main tasks

in bioinformatics, since it is well-known that functional

similarity does not necessarily come along with sequence

similarity [7].

Our focus in this paper will be on the special case of

protein binding sites derived from crystal structures. To

model such structures in a formal way, we resort to a

graph representation which is able to capture the most

important geometrical and physicochemical properties of a

binding site. For a long time, graphs have been used in

chemoinformatics for the modeling of chemical compounds

[4]. In bioinformatics, they are becoming more and more

important, too, due to their general versatility in modeling

complex structures such as proteins or interaction networks

[2]. It is hence not surprising that a number of methods has

been developed for comparing graphs representing protein

structures (e.g. [6, 10, 23]), and for computing related

similarity measures, for example based the concepts of max-

imum (minimum) common subgraph (supergraph) [18, 19]

or graph edit distance [15].

Considering the definition of the maximum common

subgraph, a drawback of this measure is its sensitivity toward

errors and small deviations. This becomes especially obvious

in the case of graphs with real-valued edge weights. Due

to mutations, molecular flexibility, and noise in the data,

one cannot expect to find exact matches in the context of

comparing protein binding sites. This may result in very

small common subgraphs that fail to capture the structural

similarities of two or more protein binding sites in a proper

way. To overcome this problem, we relax the condition of

exact matches and propose a method for detecting “ap-

proximately” common subgraphs, which is arguably more

appropriate to search for common substructures in biological

data. To this end, we employ the concept of a so-called

quasi-clique of a graph that has recently been studied in the

literature [1, 14, 16].

The remainder of the paper is organized as follow: In

Section 2, we introduce protein binding sites and their

graph representation. Section 3 discusses the problem of

finding a maximum common subgraph using clique detection

techniques. The concept of a quasi-clique and our novel sim-

ilarity measure are introduced in Section 4. An experimental

validation is presented in Section 5. Section 6 concludes the

paper.

II. GRAPH-BASED REPRESENTATION OF PROTEIN

BINDING SITES

To model protein binding sites as graphs, we build upon

CavBase [21, 22], a database developed for the purpose

of identifying and extracting putative protein binding sites

from structural data deposited in the protein database (PDB)

[3]. CavBase detects putative binding sites as cavities on

the surface of proteins by using the LIGSITE algorithm

[9]. The geometry of a protein binding site is internally

represented by a set of pseudocenters, spatial points that

represent the physico-chemical properties of a surface patch
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within the binding site. Pseudocenters can be seen as a

compressed spatial representation of areas on the cavity

surface where certain protein-ligand interactions are experi-

enced. Currently, CavBase uses seven types of pseudocenters

(donor, acceptor, donor-acceptor, pi, aromatic, aliphatic and

metal) that account for different types of possible interac-

tions between residues of the binding site and the substrate

of the protein. These pseudocenters are derived from the

amino acid composition of the binding site.

To model such structures, we make use of node-labeled

and edge-weighted graphs G = (V,E, lV , lE) where V

is the set of nodes, E = V × V is the set of edges,

lV : V → {1,. . . , 7} assigns labels to nodes (each number

represents one physicochemical property), and lE : E → R

assigns weights to edges that represent the distance be-

tween the adjacent nodes.1 To reduce the complexity of the

representation and increase algorithmic efficiency, we use

an approximate representation in which edges exceeding a

certain length are ignored; in this regard, a threshold of 11

Ångström has proved to be a reasonable choice [6]. Despite

this approximation, our representation will produce graphs

that are rather dense, as approximately 20 percent of all pairs

of nodes are connected by an edge.

III. SIMILARITY BASED ON THE MAXIMUM COMMON

SUBGRAPH

A simple though intuitively appealing and frequently used

approach to graph comparison is to define the similarity

between two graphs in terms of the size (number of nodes)

of their maximum common subgraph (MCS). To obtain a

normalized variant of this measure, the size of the MCS

is often divided by the number of nodes of the larger of

the two graphs [8, 17]. This leads to a similarity measure

s : G × G → [0, 1], where 1 indicates that both graphs

are isomorphic and 0 that both graphs have nothing in

common. Before turning our attention to the problem of

finding (maximum) common subgraphs, we recall some

terms that will be needed in the further discussion.
Graph isomorphism:: Given two graphs

G = (V,E, lV , lE), G′ = (V ′, E′, l′V , l′E),

a graph isomorphism is a bijection f : V → V ′ satisfying

the following properties: For all u, v ∈ V ,

(u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′.

Moreover, for node-labeled and edge-weighted graphs,

lV (u) = l′V (f(u)), lV (v) = l′V (f(v)) and lE(u, v) =
l′E(f(u), f(v)) must hold for all u, v ∈ V and (u, v) ∈ E.

G and G′ are called isomorphic, G ≈ G′, if there exists a

graph isomorphism between them. Obviously, isomorphism

is an equivalence relation on graphs.

1Since our edges are undirected, it would be more correct to use a subset
instead of a tuple representation. For convenience, however, we stick to the
simpler tuple notation, with the implicit understanding that (u, v) ∈ E
implies (v, u) ∈ E and lE((u, v)) = lE((v, u)).

Subgraph:: A graph GS = (VS , ES) is a subgraph of

a graph G = (V,E) if VS ⊆ V and ES ⊆ E∩ (VS ×VS). It

is an induced subgraph if VS ⊆ V and ES = E∩(VS×VS).

Maximum common subgraph:: Given two graphs G and

G′, Gcs is called a common subgraph of G and G′ if there

is an induced subgraph GS of G and an induced subgraph

G′
S of G′ such that Gcs ≈ GS and Gcs ≈ G′

S . A common

subgraph is called a maximum common subgraph (MCS) if

there is no other common subgraph of G and G′ with more

nodes than Gcs.

Clique:: A clique in a graph G = (V,E) is an induced

subgraph GC = (VC , EC) which is fully connected, i.e.,

such that (u, v) ∈ EC for all u, v ∈ VC .

Product graph:: The product graph G• = (V•, E•) of

two graphs G = (V,E) and G′ = (V ′, E′) is defined by its

node set V• ⊆ V × V ′ and its edge set E• ⊆ V• × V• as

follows:

V• = { (vi, v
′
j) | lV (vi) = lV (v′

j) }

E• =
{ (

(vi, v
′
j), (vk, v′

l)
)

| lE(vi, vk) = lE(v′
j , v

′
l)

}

The product graph has a number of interesting properties,

one of them being especially important for our purpose:

A clique in the product graph of two graphs G and G′

corresponds to a common subgraph of G and G′ [12].

Thus, to detect common subgraphs, one can simply search

for cliques in the product graph G• = G × G′, and

finding a maximum common subgraph amounts to finding

a maximal clique in G•. In other words, the problem of

finding a maximum common subgraph can be reduced to

the problem of clique detection, and any algorithm for the

latter can be used to solve the former. In this regard, it is

worth mentioning that clique detection is an NP-complete

problem [11]. Therefore, exact algorithms are feasible only

for very small graphs, while practically relevant problems

are usually solved in an approximate way by means of

heuristic algorithms.

Suppose that VC is the set of nodes in a largest clique

found in G• and, hence, its cardinality the size of the

maximum common subgraph of G and G′. The similarity

between G and G′ can then be defined as follows:

sim(G,G′) =
|VC |

max{|V |, |V ′|}
. (1)

IV. GRAPH SIMILARITY BASED ON QUASI-CLIQUES

Cliques are the densest form of subgraphs, since each pair

of nodes must be connected by an edge. Considering the

retrieval of the maximum common subgraph by searching

for cliques in the product graph G•, this means that all node

and edge labels must be equal. As mentioned previously, this

requirement is overly restrictive in the context of biological

data analysis, especially in the case of structure analysis

where edges are labeled with real-valued distances. An
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obvious approach to introduce some tolerance is to define

the set of edges E• ⊆ V• × V• in the product graph G• as

{
(

(vi, v
′
j), (vk, v′

l)
)

| ‖lE(vi, vk) − lE(v′
j , v

′
l)‖ ≤ ǫ},

which means that, in the maximum common subgraph,

the length of isomorphic edges is allowed to differ by at

most a constant ǫ. We consider complete graphs and weight

”missing” edges with infinity. Furthermore we assume that

the distance between two such edges is always smaller ǫ. Yet,

looking for cliques i G• still means that this condition must

hold for all pairs of edges in the MCS. Roughly speaking,

this approach is tolerant toward possibly numerous though

small (measurement) errors but not toward single though

exceptionally large deviations. To become flexible in this

regard, too, our idea is to replace the detection of cliques in

G• by the detection of quasi-cliques.

A. Quasi-Cliques

Roughly speaking, quasi-cliques are “almost complete”

graphs G = (V,E). In the literature, different definitions of

quasi-cliques have been proposed. Some of them are based

on the degree of the nodes [14, 16], calling G a quasi-clique

if every node in V is adjacent to at least γ · (|V | − 1) other

nodes, where deg(v) is the number of nodes adjacent to v.

This is the definition that we shall adopt in this paper. Yet,

other definitions do exist, for example referring to the edge

density: A graph G is a quasi-clique if |E| ≥ γ ·
(

|V |
2

)

[1].

In both cases, γ ∈]0, 1] is a relaxation parameter. Note that

the concept of a γ-quasi-clique is a proper generalization of

the concept of a cliques, since each clique is a 1-quasi-

clique.

B. Quasi-Clique Detection

As mentioned earlier, the problem to find a maximum

clique in a graph is NP-complete [11]. Since quasi-cliques

are a generalization of cliques, it immediately follows that

finding a maximum γ-quasi-clique is an NP-complete prob-

lem, too. Therefore, to solve the problem, one has to resort

to heuristic algorithms.

Heuristic methods for clique detection typically exploit

a downward-closure property, namely that a supergraph of

a non-clique cannot be a clique either. Unfortunately, this

property does not hold for quasi-cliques, as one can easily

show by counter-examples. Instead, any subset of the set of

nodes V in a graph G = (V,E) may form a γ-quasi-clique.

Nevertheless, alternative heuristic methods for quasi-

clique detection have been developed. In our approach, we

make use of the method proposed in [13], which represents

all potentially maximal γ-quasi-cliques by its nodes in a set-

enumeration tree [20]. Thus, the search space is given by

the powerset of the set of nodes V . Searching for maximal

quasi-cliques is performed by means of a depth-first search

on the set-enumeration tree. Once a quasi-clique has been

discovered, it is stored in a prefix-tree, so that a maximal

γ-quasi-cliques is provably found in a leaf of the prefix-tree.

For technical details, we refer to [13].

C. Similarity Based on Quasi-Cliques

Finding a maximum γ-quasi-clique in the product graph

of two graphs G and G′ means finding a maximum approx-

imately common subgraph (MACS) of these two graphs.

Fig. 1 illustrates this correspondence through a simple

example: In the upper part of the figure, two node labeled

and edge weighted graphs are shown. Note that both graph

share a roughly similar subgraph consisting of the five nodes

labeled A to E. From these graphs a product graph is

calculated (ǫ = 0.5) and the MCS and MACS are derived

by clique detection and γ-quasi-clique detection (γ = 0.5),

respectively. Obviously, the γ-quasi-clique detection is able

to capture all five nodes of the approximately common

subgraph.

The MACS computed by quasi-clique detection can in

turn be used to define a similarity degree via (1). Obviously,

the smaller γ is, i.e., the more tolerant the comparison,

the larger the MACS and, hence, the larger the degree of

similarity becomes.

Despite this obvious possibility, we opt for another type of

similarity measure. In fact, (1) may become problematic for

the comparison of structures of different size. For example,

since protein binding sites do not have a clear-cut boundary,

it often happens that a structure is larger than the actual

binding site. In such cases, where, for instance, one structure

is a subpocket of the other one containing the most important

catalytic residues (while the rest of the binding site is

functionally less important), it might be desirable to consider

G ⊆ G instead of G = G′ as a sufficient condition for a

high similarity degree, a property which is not supported by

(1).

Our idea, therefore, is to express similarity in terms of

subset relations, proceeding from the following equivalence

known from set theory:

A = B ⇔ A ⊆ B ∧ B ⊆ A . (2)

Let G = (V,E) and G′ = (V ′, E′) be two graphs and let

QC = (VQC,, EQC) be the maximum γ-quasi-clique of their

product graph G• = G × G′. Then, the fraction

α =
|VQC |

|V |
∈ [0, 1]

can be considered as a degree to which G is a subset of G′.

Likewise,

β =
|VQC |

|V ′|
∈ [0, 1]

corresponds to the degree to which G′ is a subset of G.

Obviously, (1) is then given by min{α, β}. An interesting

generalization to using the minimum operator for combining

the two degrees of inclusion has been proposed in [5],
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Figure 1. Illustration of the correspondence between quasi-cliques and MACS.

namely the use of an Ordered Weighted Averaging (OWA)

operator [24]. In our special case, this leads to the measure

sim(G,G′) = ϕmin(α, β) + (1 − ϕ)max(α, β), (3)

where ϕ ∈ [0, 1] is a compromise parameter. Note that

ϕ = 1 recovers the original measure (1), which yields

sim(G,G′) = 1 only if G = G′, while ϕ = 0 corresponds

to a set inclusion measure for which G ⊆ G′ or G′ ⊆ G is

sufficient to obtain a similarity degree of 1. Parameter values

0 < ϕ < 1 produce measures in-between these extreme

cases.

V. EXPERIMENTAL RESULTS

We conducted a performance study using a data set from

[6], namely a set of binding sites belonging to the two classes

of ATP- and NADH-binding proteins. For complexity rea-

sons, however, we removed from this data set all structures

whose size exceeded 200 nodes. In the construction of the

product graph, we have considered two edges as a match if

their lenghts differ by at most a thereshold ǫ = 0.2 which

has proved to be a reasonable choice [6].

To assess the performance of our new similarity measure

based on quasi-cliques, we compare it to the standard clique

measure (1). In comparison with this measure, our approach

has two degrees of freedom, namely the parameter γ which

controls the relaxation of the clique concept for pattern

matching, and the parameter ϕ that determines the type of

comparison and interpolates between a (generalized) equiv-

alence measure and a measure of inclusion. Note that (1)

corresponds to the most stringent type of measure obtained

for γ = ϕ = 1. Our conjecture is that less stringent variants,

obtained for 0 < γ,ϕ < 1 will be more appropriate in the

context of protein structure analysis.

To assess the usefulness of a similarity measure, we

used it in the context of k-nearest-neighbor classification.

The idea is that, the more suitable a similarity measure is,

the better is the performance of a k-NN classifier using

this measure for determining the nearest neighbors of a

query. We measured performance in terms of classification

accuracy (percent of correct classifications, PCC), which

in turn was estimated by means of a leave-one-out-cross-

validation.

Table I
ACCURACY OF THE CLIQUE-MEASURE DEPENDING ON ϕ.

ϕ PCC (k=1) PCC (k=3) PCC (k=5)

0 65.68 75.49 75.49
0.1 67.64 74.50 74.50
0.2 67.64 75.49 74.50
0.3 68.62 74.50 74.50
0.4 69.60 74.50 75.49
0.5 78.43 76.47 79.41

0.6 74.50 76.47 75.49
0.7 74.50 79.41 71.56
0.8 71.56 73.52 74.50
0.9 65.68 71.56 74.50
1 64.70 64.70 67.64

mean PCC 69.86 74.23 74.32

Table 1 summarizes the results obtained for the standard

clique-measure where γ = 1 for different values of ϕ and
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different sizes k of the neighborhood in k-NN classification.

As can be seen, the best results are indeed achieved for

values ϕ ≈ 0.5, suggesting that neither a pure equivalence

nor a pure inclusion measure is optimal. Instead, a mixture

of the two yields a good compromise and seems to produce

improved similarity degrees.

This result was confirmed by experiments with the quasi-

clique measure. Therefore, we fixed the value ϕ = 0.5 for

this measure which corresponds to the best results found

in the case of the clique measure and analyzed the effect of

the clique-parameter γ. The results are shown in Table 2. As

can be seen, medium-sized values of γ ≈ 0.6 yield the best

results, which means that a relaxation of the clique concept

does indeed pay off. Compared to the strongest result of

the clique-measure (79.41%), the best performance of the

quasi-clique measure (89.21%) is significantly higher.

Table II
ACCURACY OF THE QUASI-CLIQUE-MEASURE DEPENDING ON

γ(ϕ = 0.5)

γ PCC (k=1) PCC (k=3) PCC(k=5)

0.1 55.88 55.88 57.84
0.2 69.60 72.54 74.50
0.3 74.50 75.49 78.43
0.4 78.43 79.41 81.37
0.5 84.31 85.29 85.29
0.6 84.31 85.29 89.21

0.7 83.33 80.39 83.33
0.8 80.39 77.45 81.37
0.9 78.43 76.47 79.41
1 78.43 76.47 79.41

These results confirm our conjecture that an increased

tolerance toward mismatches and minor differences due to

conformational flexibility or measurement errors allows for

the detection of a larger MACS of a pair of graphs and

thus leads to a more useful similarity measure for binding

pockets. Of course, it can also be seen that, as expected,

decreasing γ beyond a certain level is not meaningful. In

fact, for very small γ, geometrical constraints are not only

relaxed but essentially ignored. For example, when we take

γ → 0, the similarity measure will only take the distribution

of physicochemical properties into account, without paying

any attention to the geometry of the binding site.

VI. CONCLUSION

Maximum common subgraphs have been used success-

fully as similarity measures for graphs. In this paper, how-

ever, we have argued that this measure is overly stringent

in the context of protein structure comparison, mainly since

graph descriptors of such structures are only approximate

models afflicted with noise and imprecision.

Therefore, we have proposed an alternative measure re-

laxing the MCS in two different ways. First, using algo-

rithms for quasi-clique detection, our measure is based on

maximum approximately common subgraphs, a relaxation

of MCS which is tolerant toward edge mismatches. Sec-

ond, instead of focusing on equivalence, our measure is a

compromise between a generalized equivalence and an in-

clusion measure. First empirical studies, in which similarity

measures are used for the purpose of classification, suggest

that both types of relaxation are useful and lead to improved

measures of similarity between protein binding sites.
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