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Abstract

In this paper a hybrid metaheuristic for biclustering
based on Scatter Search and Genetic Algorithms is pre-
sented. A general scheme of Scatter Search has been used
to obtain high–quality biclusters, but a way of generating
the initial population and a method of combination based
on Genetic Algorithms have been chosen. Moreover, in the
own algorithm the overlapping among biclusters is con-
trolled adding a penalization term in the fitness function.
Experimental results from yeast cell cycle are reported. Fi-
nally, the performance of the proposed hybrid algorithm is
compared with a genetic algorithm recently published.

1 Introduction

Clustering and data mining techniques have been re-
cently applied to analyze the huge volume of biological in-
formation generated by microarray data experiments [10].
Clustering techniques find groups of genes with similar be-
havior from a microarray. However, genes are not necessary
related to every condition. Thus, the goal of the bicluster-
ing is to identify genes with the same pattern only under a
specific group of conditions.

Many approaches have been proposed for biclustering in
the context of microarray analysis [3]. Biclustering algo-
rithms have two important aspects: the search algorithm and
the measure to evaluate the quality of biclusters.

Most of proposed approaches are focussed on different
search methods. An iterative hierarchical clustering is ap-
plied to each dimension separately and biclusters are built
by the combination of the obtained results for each dimen-
sion in [7].

The Cheng and Church algorithm [4] built biclusters
adding or removing genes or conditions in order to im-
prove the measure of quality called Mean Squared Residue
(MSR). In [15], an exhaustive biclusters enumeration by
means of a bipartite graph-based model in which nodes
were added o removed in order to find subgraphs with max-

imum weights. The FLOC algorithm [16] improved the
method presented in [4] obtaining a set of biclusters simul-
taneously and adding missing values techniques. In [1], a
simple linear model for gene expression was applied as-
suming normally distributed expression level for each gene
or condition. Also, geometrical characterizations such as
hyperplanes in a high dimensional data space have been
used to find biclusters [8]. Recently, global optimization
techniques such as Simulated Annealing [2] or Evolution-
ary Computation [6, 11] have been applied to obtain biclus-
ters due to the good performance shown in several environ-
ments.

In the last few years, several papers were focussed on
the measure proposed to evaluate the quality of biclusters.
In [9] an analysis of the MSR was made, showing that this
measure is good to find biclusters with shifting patterns
but not scaling patterns. A new measure based on uncon-
strained optimization techniques was proposed in [12] as
alternative to the MSR in order to find biclusters with cer-
tain patterns.

In this paper a biclustering algorithm, which incorpo-
rates a control of the overlapping among biclusters, based
on the evolution of populations is presented. The proposed
algorithm combines Scatter Search with some features of
the Genetic Algorithms such as the way of generating the
initial population and the offspring. Finally, the perfor-
mance of the proposed methodology is compared with a ge-
netic algorithm recently published [6] and with the Cheng
and Church algorithm [4]. A Scatter Search has been se-
lected due to the recent success obtained to solve different
hard optimization problems and to the references about the
application of Scatter Search for biclustering have not been
found in the literature.

This paper is organized as follows. Section 2 presents ba-
sic concepts about populations–based algorithms focussing
on Scatter Search. The description of the proposed method
is described in Section 3. Some experimental results from a
real dataset and a comparison between the proposed method
and two biclustering algorithms are reported in Section 4.
Finally, Section 5 outlines the main conclusions of the pa-
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per and future works.

2 Populations-Based Algorithms: Scatter
Search

Search strategies based on the evolution of populations
are optimization techniques where a set of individuals cod-
ifying possible solutions evolves in order to find an optimal
solution of the problem.

The proposed approach in this work, called OC-SS&GA,
combines two evolutionary algorithms based on popula-
tions: Scatter Search and Genetic Algorithms. Scatter
Search [14] was introduced in the seventies and recently it
has been applied to many nonlinear and combinatorial opti-
mization problems. Basically, a standard Scatter Search can
be summarized by the following steps:

1. Generate an initial population in a deterministic man-
ner to assure the diversity of the population regarding
a distance.

2. A reference set is built with the best individuals from
this initial population. The best individuals are not lim-
ited to a measure of quality provided by a fitness func-
tion but an individual that improves the diversity can
be added to this reference set.

3. New individuals are created by the deterministic com-
bination of individuals of the reference set and all in-
dividuals of the reference set are selected to be com-
bined.

4. The reference set is updated using the new individuals
and the combination is repeated until the reference set
does not change.

5. The reference set is rebuilt and if the maximum num-
ber of iterations is not reached go to step 3.

The main ideas in Scatter Search are the diversification
in order to avoid local minima and the intensification in or-
der to find high–quality solutions. The diversity is intro-
duced when the population is generated initially and when
the reference set is rebuilt. The intensification is due to the
combination method and the selection of the best solutions.

Genetic Algorithms differs to Scatter Search in some as-
pects such as the way of generating the initial population
randomly, the selection of individuals to create offspring
where a probabilistic procedure is applied to select parents,
the evolution of the population which is based on the sur-
vival of the best depending only on the fitness function, the
way of generating diversity using mutation operators and,
mainly, the size of the population in Genetic Algorithms is
bigger than that of the reference set in Scatter Search. A
typical size in Genetic Algorithms is 100 and 10 in Scatter

Search as the combination method in Scatter Search takes
into account all pairs of individuals to create new individu-
als.

The underlying idea of Scatter Search is to emphasize
systematic processes against existing random procedures in
Genetic Algorithms.

3 Description of the Algorithm

In this section the pseudocode of the OC-SS&GA biclus-
tering method is presented in Algorithm 1. Basically, the
algorithm is a hybrid metaheuristic based on Scatter Search
and Genetic Algorithms. High-quality biclusters are ob-
tained by a general Scatter Search but the generation of the
initial population and the combination method are caught
from Genetic Algorithms. Furthermore, the algorithm avoid
the overlapping among biclusters including in the fitness
function penalization terms proportional to such overlap-
ping.

Algorithm 1 : OC − SS&GA FOR BICLUSTERING

INPUT Microarray M , penalization factors M1, M2 and M3, num-
ber of biclusters numBi to be found, maximum number of iterations
numIter to obtain a bicluster, size of the population and size S of the
reference set.

OUTPUT The set Results containing numBi biclusters.
begin

num← 0, Results← ∅
while (num < numBi) do

Initialize population P randomly
//Building Reference Set
R1 ← S/2 best biclusters from P (according to the fitness function)
R2 ← S/2 most scattered biclusters, regarding R1, from P � R1

(according to a distance).
RefSet← (R1 ∪R2)
P ← P � RefSet
//Initialization
stable← FALSE, i← 0
while (i < numIter) do

while (NOT stable) do
A← RefSet
B ← CombinationMethod(RefSet)
RefSet← S best biclusters from RefSet ∪B
if (A = RefSet) then

stable← TRUE
end if

end while
//Rebuilding Reference Set
R1 ← S/2 best biclusters from RefSet
R2 ← S/2 most scattered biclusters from P � R1

RefSet← (R1 ∪R2)
P ← P � RefSet
i← i + 1

end while
//Storage in Results
Results← the best from RefSet
num← num + 1

end while
end

All steps of the Algorithm 1 going to be detailed in the
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sequel.

3.1 Biclusters Codification and Genera-
tion

After preprocessing and normalization steps, a microar-
ray can be seen as a real matrix M composed by N genes
and L conditions. The element (i, j) of the matrix means
the level of expression of gene i under the condition j. A
bicluster is a submatrix of the matrix composed by n ≤ N
rows or genes and l ≤ L columns or conditions.

Biclusters are encoded by binary strings of length N +L
[6]. Each of the first N bits of the binary string is related
to the genes and the remaining L bits to the conditions. For
example, the bicluster shown in Figure 1 is encoded by the
following string: 0010110000|01100. Thus, this string rep-
resents the bicluster composed by genes number 3, 5 and
6 and conditions 2 and 3 from a microarray comprising 10
genes and 5 conditions.

 C1 C2 C3 C4 C5 
G1 2.2 3.6 5.3 -2.6 0.3 
G2 1.3 1.5 -3.1 -2.1 2-2 
G3 4.7 1.0 1.0 7.9 0.4 
G4 -3.8 -0.3 2.2 3.1 1.4 
G5 7.5 1.0 1.0 2.1 -2.3 
G6 0.4 1.0 1.0 0.4 0.3 
G7 3.2 8.3 -2.5 -2.5 3.1 
G8 2.5 3.1 4.1 0.3 0.1 
G9 3.1 0.4 6.9 9.2 0.2 
G10 0.3 0.5 0.3 0.3 -0.1 

 

1.0 1.0 

1.0 1.0 

1.0 1.0 

 
bicluster

 

00101100000|01100

codification

microarray

Figure 1. Microarray and bicluster along with
its codification.

The initial population of biclusters is generated ran-
domly as in Genetic Algorithms. Random strings composed
by 0 and 1 are generated until the size of the population is
reached.

3.2 Building Reference Set

The reference set is built taking into account both qual-
ity and scattering of biclusters. The quality of biclusters is
measured evaluating the fitness function considered in the
evolutionary process. A bicluster is better than another one
if the fitness function value is lower than that of the second
one. On the other hand, a distance has to be used in order
to define what means scatter in this context. In this work,
the distance used is the Hamming distance. The Hamming
distance for two binary strings is defined by the number of

positions for which their corresponding 0/1 values are dif-
ferent. For example, the Hamming distance between the
string 001001001|001 and the string 001011001|101 is 2.

The reference set of size S is initially composed by the
S/2 best biclusters from P (set R1) and the S/2 biclusters
from P � R1 (set R2) with the highest distances to the set
R1 according to the Hamming distance.

3.3 Combination Method and Updating
Reference Set

Combination method is the mechanism to create new bi-
clusters in Scatter Search. All pairs of biclusters belonging
to the reference set are combined generating S ∗ (S − 1)/2
new biclusters. In the OC-SS&GA algorithm the typical
uniform crossover operator used in Genetic Algorithms is
the proposed combination method. This crossover operator
is shown in Figure 2. A binary mask is randomly gener-
ated and a child is composed by values from the first parent
when the mask set to 1, and from the second parent when
the mask set to 0.

The reference set is updated with the S best biclusters,
according to the fitness function, from the joining of the
reference set and the new biclusters generated by the com-
bination method. This process is repeated iteratively until
the reference set does not change.

parent 1 1 01101 1

0 11100 0

1 11100 1child

parent 2

mask 1 00100 1

Figure 2. Uniform crossover operator of Ge-
netic Algorithms.

3.4 Rebuilding reference set

After getting the stability of reference set in the updat-
ing process, this set is rebuilt to introduce diversity in the
search process. This task is made by mutation operators in
Genetic Algorithms. Thus, the reference set is composed
by the S/2 best biclusters from the updated reference set
(set R1) according to the fitness function and the S/2 most
distant from P � R1 according to the Hamming distance.
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3.5 Overlapping Control

The overlapping between two biclusters B1 and B2 is
the percentage of elements (i,j) from microarray M that are
elements belonging to the biclusters B1 and B2. Obviously,
the overlapping of one bicluster with itself is 100% and,
therefore, it has not been considered. Thus, the overlapping
between a bicluster and a set of biclusters is defined as the
average of the overlapping between the bicluster and all bi-
clusters belonging to the set.

In order to avoid the overlapping among biclusters, a set
called Results is defined as follows. The best bicluster be-
longing to each reference set obtained by the Scatter Search
methodology is added to the set Results. The bicluster to
be added has a low overlapping with the remaining biclus-
ters that belong to the set Results due to a penalization term
included in the fitness function proportional to the overlap-
ping between the bicluster and the set Results (see section
3.6).

3.6 Biclusters Evaluation

The fitness function is used to evaluate the quality of bi-
clusters. Cheng and Church proposed the MSR which mea-
sures the correlation of a bicluster. Given a bicluster com-
prising the subset of genes I and the subset of conditions J ,
the MSR is defined as follows,

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

R(i, j)2

where

R(i, j) = eij − eIj − eiJ + eIJ

eIj =
1
|I|

∑
i∈I

eij

eiJ =
1
|J |

∑
j∈J

eij

eIJ =
1

|I||J |
∑

i∈I,j∈J

eij

In this work, non–overlapped biclusters with low residue
and high volume are preferred. Therefore, the fitness func-
tion is defined by:

f(B) = MSR(B) +
1

rowV ariance(B)
+

+M1

(
1
G

)
+ M2

(
1
C

)
+ M3 (Overlap(B,Results))

where MSR(B) is the MSR of the bicluster B, the sec-
ond term is the inverse of the variance of rows of the biclus-
ter, G and C are the number of genes and conditions of the
bicluster B, respectively, and M1, M2 and M3 are penal-
ization factors to control the volume and the overlapping of
the bicluster B with regards to the remaining biclusters that
belong to the set Results.

4 Experimental Results

Yeast Saccharomyces cerevisiae cell cycle expression
originated in [5] has been used to study the performance
of the proposed algorithm. Original data were preprocessed
in [4] replacing missing values with random numbers. The
Yeast dataset contains 2884 genes and 17 experimental con-
ditions.

The main parameters of the proposed algorithm are as
follows: 100 for the number of biclusters to be obtained, 20
for the number of iterations to obtain each bicluster, 200 for
the initial population size and 10 for the reference set size.
The penalization factor for the number of genes has been
set to the same order of magnitude to the range of values
of the fitness function for Yeast dataset and to one order of
magnitude larger than such range for the penalization factor
related with the number of conditions [13].
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Figure 3. Overlapping among biclusters.

Figure 3 shows the percentage of overlapping among bi-
clusters obtained by the OC-SS&GA algorithm for differ-
ent penalization factors. The percentage of overlapping is
referred to the overlapping between a bicluster and the set
comprising the 99 remaining ones. The different values
tested to control the overlapping have been set to 0 (with-
out overlapping control), 10 (low overlapping control), 100
(medium overlapping control) and 1000 (large overlapping
control). It can be noticed how this penalization parame-
ter controls the overlapping among biclusters. When the
overlapping is not controlled (M3 = 0) the minimum over-
lapping among biclusters is 37%. However, the overlap-
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ping of all biclusters is approximately zero when a large
number (M3 = 1000) is chosen for this parameter. For a
low and medium penalization factor the overlapping ranges
from 28% to 53% and from 3% to 17%, respectively. A
moderate overlapping control is preferred, and therefore, a
medium penalization is the only one considered in the se-
quel, that is, M3 = 100.
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Figure 4. Volume of biclusters.

Figure 4 shows the volume of the hundred biclusters ob-
tained for the proposed approach, without and with over-
lapping control. It can be notice that when the overlapping
is controlled the volume of most of biclusters is lower than
that of obtained biclusters when the overlapping is not taken
into account.

Bicluster MSR Genes Conditions Row Variance
bi n1 76.63 8 13 224.97
bi n2 114.00 11 14 165.02
bi n23 179.82 17 13 231.09
bi n25 130.34 7 15 254.78
bi n27 222.92 22 14 408.31
bi n44 154.51 10 13 421.91

Table 1. Biclusters obtained by OC-SS&GA al-
gorithm.

Table 1 provides information about six biclusters of the
one hundred biclusters obtained by the OC-SS&GA algo-
rithm. For each bicluster is shown an identifier of the biclus-
ter, the value of its MSR, the number of genes, the number
of conditions and its row variance. It can be observed that
the OC-SS&GA algorithm find shifting and scaling patterns
in gene expression data (see biclusters n23 and n44). These
biclusters are shown in Figure 5. Noted that the genes form-
ing each bicluster have different shapes indicating that the
overlapping among these six biclusters is low.

Finally, a comparison between the results obtained by
the proposed method without and with overlapping control
and two representative techniques reported in the literature

is presented. The use of MSR in the fitness function con-
sidered in the OC-SS&GA algorithm allows to establish a
comparison with a previous evolutionary-based bicluster-
ing method called SEBI [6] and the well-known Cheng and
Church algorithm [4]. CC searches biclusters iteratively
taking into account the MSR value of each bicluster and
SEBI uses MSR as part of its fitness function and it defines
a mechanism to avoid the overlapping among biclusters.

Table 2 presents the average and the standard deviation
(in brackets) of the MSR, the number of genes and the num-
ber conditions of the 100 biclusters found by the SS&GA,
OC-SS&GA, SEBI and CC algorithms. The proposed algo-
rithm, without and with overlapping control, improves the
values of MSR regarding to that of the SEBI and CC algo-
rithms. Obviously, the algorithm leads to higher MSR when
the overlapping is taken into consideration. The number of
genes of the biclusters obtained by the SS&GA and OC-
SS&GA approaches is lower than the number of genes of
the biclusters obtained by CC. This is due to the choice of
the penalization factor for the number of genes. This fac-
tor can be increased if biclusters with more genes are con-
sidered more interesting. Finally, it can be stated that the
proposed algorithm has a good performance yielding good
results with respect to that of other techniques.

5 Conclusions

An algorithm for biclustering with overlapping control
among biclusters has been presented in this work. The OC-
SS&GA is an algorithm based on the evolution of popula-
tions, concretely, a hybrid metaheuristic based on Scatter
Search and Genetic Algorithms. The algorithm avoid the
overlapping among biclusters modifying the search taking
into account the information of biclusters found in previous
iterations. Experimental results from yeast cell cycle have
been reported and the outcomes of the proposed approach
have been compared with that of two representative biclus-
tering techniques.

Future works will be focussed on the use the proposed
biclustering algorithm with other fitness functions to mea-
sure the quality of biclusters.
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