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Abstract

Genomes of many organisms have been sequenced over
the last few years. However, transforming such raw se-
quence data into knowledge remains a hard task. A great
number of prediction programs have been developed to ad-
dress part of this problem: the location of genes along a
genome. We propose a multiobjective methodology to com-
bine algorithms into an aggregation scheme in order to ob-
tain optimal methods’ aggregations. Results show a major
improvement in specificity and sensitivity when our method-
ology is compared to the performance of individual methods
for gene finding problems. The here proposed methodology
is an automatic method generator, and a step forward to
exploit all already existing methods, by providing optimal
methods’ aggregations to answer concrete queries for a cer-
tain biological problem with a maximized accuracy of the
prediction. As more approaches are integrated for each of
the presented problems, de novo accuracy can be expected
to improve further.

1. Introduction

Genomes of many organisms have been sequenced over

the last few years. However, transforming such raw se-

quence data into knowledge remains a hard task. A great

number of prediction programs have been developed to ad-

dress one part of this problem: the location of genes along

a genome [2, 4, 1, 9]. Unfortunately, finding genes in a ge-

nomic sequence is far from being a trivial problem. Compu-

tational gene prediction methods have yet to achieve perfect

accuracy, even in the relatively simple prokaryotic genomes

[11]. Gene prediction is one of the most important prob-

lems in computational biology due to the inherent value of

the set of protein-coding genes for other analysis.

Despite the advances in the gene finding problem, ex-

isting approaches to predicting genes have intrinsic advan-

tages and limitations [11]. Furthermore, there is no pro-

gram that can provide perfect predictions for any given in-

put. The gene-finding problem can be interpreted as a sim-

ple decision between which section of a sequence is protein-

coding and which not. Many different programs are avail-

able which give distinct solutions. Our methodology com-

bines these approaches into an aggregation scheme to pro-

vide better predictions by taking advantage of the different

methodologies’ starknesses and avoiding their weaknesses.

Moreover, we use a multiobjective approach to extract the

best aggregation of methods by maximizing the specificity

and sensitivity of their predictions.

We applied our methodology to a reference dataset

in gene prediction containing 570 multi-species DNA se-

quences of known genes [5].

2. Materials and Methods

The aggregation of methods is accomplished by using

the union -∪- and intersection -∩- operator [8]. All po-

tential aggregations conform a space of potential hypothe-

ses, which can be represented as a lattice structure (Figure

1). We search for the best aggregation of methods, mov-

ing from hypothesis to hypothesis towards the most general

(i.e., the union of all methods) and the most specific (i.e.,

the intersection of all methods) which are located at the top

and the bottom of the lattice, respectively [12] (Figure). In

the gene finding problem we explore nine methods, n = 9,

termed M1 to M9, conforming a total set of 512 potential

aggregations.

We selected the dataset from Guigó et al. [5] which is

a reference for assessing the quality of gene prediction pro-

grams. This set contains only sequences representing only

one complete spliceable functional product of a gene in the

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.70

1233



Figure 1. Lattice of potential hypothesis,
methods’ aggregations of M1, · · · Mn using
the -∪- and -∩- operators. The solid arrows
show the direction of the search in the space
of hypothesis.

forward strand. It contains as well representatives from

all vertebrate genomes in 570 sequences totaling 2,892,149

bp. There are 2649 coding exons, corresponding to 444,498

coding bp, which gives a coding density of about 15%. The

programs used in this study were designed to predict gene

structure, or at least a set of spliceable exons, in vertebrate

or pre-human genome sequences: GeneID [7], GeneID+,

SORFIND [10], GeneParser2, GeneParser3 [14], GRAIL 2

[18], GenLang [3], FGENEH [15] and Xpound [17]. Gen-

scan is a Generalized hidden markov model (GHMM) and

one of the most successful gene prediction programs. It

was the most accurate individual method in the reference

dataset but, since most of the genes in the dataset were

used to train it, it was not included in the aggregation as-

sessment. All of them are de novo gene predictors us-

ing a single genome sequence. GeneID combines differ-

ent algorithms using Position Weight Arrays to detect fea-

tures such as splice sites, start and stop codons and Markov

Models to score exons and Dynamic Programming (DP) to

assemble the gene structure [7]. GeneParser2 employs a

DP algorithm and a simple feed-forward Neural Network

(NN) to maximize the number of correct predictions [14].

GeneID+ and GeneParser3 extend their respective original

versions by using the potential similarity between the query

sequence and the known amino acid sequences as evidence

in gene identification. GenLang uses grammar rules and a

parser for eukaryotic protein encoding genes [3]. GRAIL

uses a set of NNs to evaluate candidate exons and a DP al-

gorithm to build the best possible single gene model [18].

Sorfind and Xpound use both a variety of statistical mod-

els, primary Markov Chain models to score exons [10, 17].

FgeneH uses linear discriminant analysis to best discern be-

tween two functional classes of sequences, combined with

a DP algorithm to predict optimal gene models from the list

of potential exons [15].

The aggregation of the different methods in the Gene

Finding problem is performed at a nucleotide level. This

aggregation joins two overlapping or adjacent exons into a

larger new exon (Figure 2).

Exon A

Exon B

Exon A ∪ B

(a) Equal exons

Exon A

Exon B

Exons A ∪ B

(b) Missed exons

Exon A

Exon B

Exon A ∪ B

(c) Included exons

Exon A

Exon B

Exon A ∪ B

(d) Overlapped exons

Figure 2. Example of exons aggregation by
the union operator.

We measured the accuracy of a prediction on a test se-

quence by comparing the predicted coding value (coding or

non-coding) with the true coding value for each nucleotide

along the test sequence. This has been one of the most

widely used approaches in evaluating the accuracy of cod-

ing region identification and gene structure prediction meth-

ods. Nucleotide level accuracy is calculated as a compar-

ison of the annotated nucleotides with the predicted nu-

cleotides. Sensitivity (Sn) (Equation 1) is the proportion of

annotated nucleotides (as being coding or part of an mRNA

molecule) that is correctly predicted, and specificity (Sp)

(Equation 2) the proportion of predicted nucleotides (as be-

ing coding or part of an mRNA molecule) that is so anno-

tated. As a summary measure, we have computed the corre-

lation coefficient (CC) (Equation 3) between the annotated

and the predicted nucleotides [5].

Sn =
TP

TP + FN
(1)

Sp =
TP

TP + FP
(2)

CC =
(TP × TN)− (FN × FP )√

(TP + FN)× (TNF P )× (TP + FP )× (TN + FN)
(3)

3. Results

The number of genes correctly predicted was calculated

according to the average CC for the individual (Table 1)

and the aggregation of methods (Table 2). We express

the accuracy of the methods’ aggregation by considering

a gene correctly retrieved when its CC > 0.7. When us-

ing different thresholds (e.g., CC > 0.5) (data not shown)

the ranking of individual methods or methods’ aggregations

was not affected. Out of all gene prediction programs an-

alyzed, GParser3 achieved the highest number of correctly
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predicted genes. However, its average CC for all genes was

not the highest differing in more than 0.05 from the highest

one (values ranking in the [0-1] interval with the best value

in 1). GeneID failed to predict 130 genes, almost 23% of the

dataset though it achieved the best performance attending to

the average CC. Its sensitivity value was close to the aver-

age (0.694) but its specificity value was much lower than the

rest (Table 1). FgeneH obtained the best specificity, sensi-

tivity and CC, but predicted correctly two genes less than

GParser3. These results show that a high average CC does

not imply a good performance, and viceversa, since the av-

erage might hide some low CCs for specific genes. Some

programs predict specific genes with high CCs close to 1,

but the same program is not able to predict correctly other

genes (CCs below 0.7 or even 0.5) (Table 2).

Method Sp Sn

Average #Genes

Correlation correctly

Coefficient predicted

GParser3 0.759 0.724 0.714 413
FgeneH 0.847 0.772 0.768 411

GeneID+ 0.713 0.718 0.694 393

GRAIL 0.837 0.724 0.731 389

Sorfind 0.834 0.697 0.705 349

genlang 0.747 0.719 0.673 323

XPound 0.825 0.611 0.652 302

GParser2 0.778 0.652 0.642 299

GeneID 0.806 0.632 0.649 283

Table 1. Results obtained by each of the nine
individual methods. Gene finding methods
are ordered by descending number of genes
correctly retrieved, where a gene is consid-
ered correctly retrieved when its correlation
coefficient is over 0.7. The best result for
each column is highlighted in italic and color-
coded in blue, while the worst result is high-
lighted in italic and color-coded in grey.

All 502 potential methods’ aggregations of the nine used

gene finding programs were performed and evaluated. The

top 10 methods’ aggregations are shown in Table 2, where

aggregations including GeneID+, FgeneH, GParser3 and

GRAIL generally improve individual methods performance

in terms of accuracy. The best aggregation is the union

of GeneID+ ∪ GRAIL ∪ FgeneH, which correctly predicts

90% of the dataset. FgeneH is present in the best ten meth-

ods’ aggregations, providing supplementary predictions to

the other methods. For instance, when FgeneH is combined

with GParser3, the number of genes that are correctly pre-

dicted increases from 413 to 494. This change is due to

the fact that FgeneH detects several genes, especially those

with length over 8000 nt, that GParser3 was unable to iden-

tify while increasing the prediction of others. This behav-

ior is consistent with the other aggregations with FgeneH.

XPound appears in several sets of best aggregations even

though is one of the worse individual methods (Table 1),

this is because XPound predicts correctly three genes from

the entire data set (HRSPRMI, HUMHMGIY, S59780) that

are not correctly predicted by any other method.

The levels of specificity and sensitivity obtained by all

methods’ aggregations using the union operator to predict

each of the 570 genes are shown in Figure 3(a) and Fig-

ure 3(b). The range of colors between green and red in

both images is not uniformly distributed, but centered in

a threshold of 0.8 to easily distinguish good values from

bad specificity and sensitivity levels. The specificity of each

methods’ aggregation to retrieve each gene expression pro-

file is shown in Figure 3(a). The top rows of the plot cor-

respond to methods’ aggregations with fewer numbers of

methods, while bottom rows correspond to methods’ aggre-

gations composed by a large number of methods. From the

top rows we can infer that some genes are not predicted with

very high specificity levels when we use only one or two

methods’ aggregations. We see that there are several genes,

those in the first columns (e.g., HUMDZA2G, BOVGAS,

HS2OXOC), for which almost any methods’ aggregation

obtains good specificity values, while there are other genes

showing black/red areas meaning that in their prediction a

large set of methods’ aggregations obtains good specificity

values (e.g., HUMRPS6B, S66606, HUMMKXX). We can

also see a set of genes in the center of the figure with similar

behavior for all methods’ aggregations (e.g., RATIGFBA,

MUS100B, RNGMTG). Another noticeable feature of the

graphic is that some methods’ aggregations share a similar

behavior when predicting the genes, as it can be appreci-

ated in large horizontal areas. The sensitivity of each meth-

ods’ aggregation to predict each gene is shown in Figure

3(b). The top rows of the plot correspond to methods’ ag-

gregations with fewer numbers of methods, while bottom

rows correspond to methods’ aggregations composed by a

large number of methods. We see that most of the columns

have sensitivity levels near to 1 for the majority of the meth-

ods’ aggregations examined. There are some other columns

with green areas as well as black/red areas, meaning that

such genes are predicted with successful levels of sensitiv-

ity by only some of the methods’ aggregations. The lower

rows (methods’ aggregations composed by a large num-

ber of methods) correspond to methods’ aggregations with

lower sensitivity values as there is a higher proportion of

green areas over black/red ones.

The comparison between the prediction accuracy of the

individual methods and the aggregation strategy can be seen

in Figure 4(a). This figure shows that the aggregation of

methods increases the sensitivity of the predictions, with-

out lost of specificity. Figure 4(b) depicts the percentage of

genes correctly retrieved by all aggregations. It can be con-
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Method Sp Sn

Average #Genes

Correlation correctly

Coefficient predicted

GeneID+ ∪ GRAIL ∪ FgeneH 0.810 0.967 0.853 504
GeneID+ ∪ FgeneH 0.862 0.925 0.863 493

GParser3 ∪ FgeneH ∪ XPound 0.818 0.949 0.845 491

GeneID+ ∪ GParser3 ∪ GRAIL ∪ FgeneH 0.783 0.975 0.837 488

GeneID+ ∪ GParser3 ∪ FgeneH 0.831 0.947 0.854 486

GeneID+ ∪ FgeneH ∪ XPound 0.818 0.958 0.851 485

GeneID+ ∪ GParser3 ∪ FgeneH ∪ XPound 0.792 0.969 0.837 479

GeneID ∪ GeneID+ ∪ GRAIL ∪ FgeneH 0.768 0.975 0.827 478

GeneID+ ∪ Sorfind ∪ GParser3 ∪ GRAIL ∪ FgeneH 0.754 0.981 0.817 465

GeneID+ ∪ GParser3 ∪ GRAIL ∪ FgeneH ∪ Xpound 0.754 0.980 0.817 464

Table 2. Ten best aggregation of methods. Gene finding methods are ordered by descending number
of genes correctly retrieved, where a gene is considered correctly retrieved when its correlation
coefficient is over 0.7. The best result for each column is highlighted in italic and color-coded in
blue.

(a) (b)

Figure 3. Graphical representation of the specificity (a) and sensitivity (b) obtained by the methods’
aggregations using the ∪ operator to predict genes. Only methods’ aggregations predicting the same
or more genes than the best individual method (GeneParser3) are shown. Each column represents
a gene (570 columns) and each row a methods’ aggregation including individual methods. Color is
coding values from 0 -green- to 1 -red-. Therefore, green points represent low specificity while red
points correspond to those methods’ aggregations achieving a high specificity level. Black points
correspond to specificity levels around 0.8.

cluded that almost half of all methods’ aggregations have a

better performance than the individual ones. Moreover, the

best methods’ aggregation predictor, GeneID+ ∪ GRAIL ∪
FgeneH (see Table 2), increases the percentage of predic-

tion by a 15% approximately when compared with the best

individual predictor, Gparser3.

In the case of the methods’ aggregations obtained using

the intersection operator, we can see a different behavior.

Results are included in Figure 5. The intersection operator

obtains good results when the approaches used in the inter-

section predict the same exons. Therefore, the greater the

number of methods intersected, the lowest the number of

genes correctly retrieved. FgeneH is present in many of the

best aggregations, but it never appears near the GeneID or

GeneID+ methods, because their results are very different

from the former. We can conclude that most of the individ-

ual methods have a better performance than any aggrega-

tion of methods using the intersection operator for the gene

finding problem, but the intersection operator could be use

to find consensus exons predicted by all programs (usually

they coincide with canonical exons) and use this informa-

tion for added quality value.
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Figure 4. Gene finding prediction accuracy using the ∪ operator: (a) Results of the individual perfor-
mance of methods and of each methods’ aggregation. (b) Percentage of correctly predicted genes
for each individual method and methods’ aggregation. Individual methods are color-coded in blue,
aggregations of methods in black and a few Pareto optimal solutions are shown in red. A gene is
considered correctly retrieved when its CC is over 0.7.

4. Discussion

We propose a methodology to combine programs into

a aggregation scheme. This idea provides better predictions

by combining the advantages of the different methodologies

used in each program. We introduced the use of a multiob-

jective approach to extract the best aggregation of methods

by maximizing the specificity and sensitivity of their pre-

dictions. This way we avoid redundant and overlapping pre-

dictions that might be produced depending on the method-

ologies and the aggregation scheme used. The application

of the proposed methodology to the gene finding problem

to obtain optimal methods’ aggregations showed a major

improvement in sensitivity when compared to the perfor-

mance of individual methods for each topic. The specificity

levels obtained by the aggregation of gene finding methods

improved or decreased depending on the methods used in

the aggregation. When determining which aggregation of

methods was the best one for the gene prediction problem,

sensitivity and specificity were in contradiction. Neverthe-

less, the calculation of the correlation coefficient helped in

the selection of the best methods’ aggregation. The best

aggregations include methods employing different algorith-

mic strategies that predict correctly different subset of the

genes in the dataset. Although the statistical properties of

coding regions allow for a good discrimination between

large coding and non-coding regions, the exact identifica-

tion of the limits of exons or of gene boundaries remains

difficult. For instance, FGENEH and GeneID have strong

constraints concerning this point. In the first case, predicted

coding region limits are often incorrect, for example, short

exons smaller than 40 bp tend to be difficult to locate, as

discriminative statistical characteristics are less likely to ap-

pear in short strands. In the second case, the alternative

splicing, a predicted structure frequently splits a single true

gene into several or, alternatively, merges several genes into

one. Such problems are, however, very complex, as inter-

genic and intronic sequences do not differ much, and spe-

cific gene boundary signals in the UTRs (e.g. the TATA box

and the polyadenylation signal), are often too variable and

sometimes are not even present. However, FGENEH per-

forms very well for especially low %G+C sequences [6].

In contrast to other studies, we show that even programs

with a low individual performance, such as XPound, can

contribute to the accuracy improvement of a certain aggre-

gation, in this case because it is able to identify genes with

either very short or very long introns. The decrease of gene

density in genome sequences and the presence of larger in-

trons has been recently been reported to drop accuracy sig-

nificantly [6].

There are several previous works combining gene find-

ing programs [13, 16], but they fail to obtain good results

as they use simultaneously all programs instead of optimize

their aggregation. De novo gene prediction for compact eu-

karyotic genomes is already quite accurate, although mam-

malian gene prediction lags way behind in accuracy. One

future scope would be the application of this approach to

identify ways to quickly combine many or all-existing pro-

grams trained for the same organism, and determine the up-

per limit of predictive power by aggregations of programs

genome wide [6].

In the last ten years, the existing competitive spirit has

increased the number of programs/algorithms created, up-

dated and adapted for the two biological problems here pre-
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Figure 5. Gene finding prediction accuracy using the ∩ operator: (a) Results of the individual perfor-
mance of methods and of each methods’ aggregation. (b) Percentage of correctly predicted genes
for each individual method and methods’ aggregation. Individual methods are color-coded in blue,
aggregations of methods in black and a few Pareto optimal solutions are shown in red. A gene is
considered correctly retrieved when its CC is over 0.7.

sented [11, 2, 9]. On one side the development of a new al-

gorithm always implies the sacrifice of an objective in favor

of another, which makes very difficult for novel approaches

to improve in absolute terms the quality of the existing ones.

On the other side, the impressive amount of alternative algo-

rithms available for different biological problems is confus-

ing the users, who wonder what makes the programs differ-

ent, which one should be used in which situation and which

level of prediction confidence to expect. Finally, users also

wonder whether current programs can answer all their ques-

tions. The answer is most probably no, and will remain to

be negative as it is unrealistic to imagine that such complex

biological processes can be explained merely by looking at

one objective. The here proposed methodology is an auto-

matic method generator, and a step forward to exploit all

already existing methods, by providing optimal methods’

aggregations to answer concrete queries for a certain bio-

logical problem with a maximized accuracy of the predic-

tion.
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[4] R. Guigó. Computational gene identification: an open prob-

lem. Comput. Chem., 21:215–222., 1997.
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