
Order Independent
Incremental Evolving Fuzzy Grammar Fragment Learner

Nurfadhlina Mohd Sharef,
Department of Computer Science,

Faculty of Computer Science and Information
Technology,

University of Putra Malaysia,
Malaysia

fadhlina@fsktm.upm.edu.my

Nurfadhlina Mohd Sharef,
Trevor Martin,

Yun Shen
 Artificial Intelligence Group,

University of Bristol
Bristol, United Kingdom

ennms@bris.ac.uk, trevor.martin@bris.ac.uk,
yun.shen@hotmail.co.uk

Abstract— It is generally known that most incremental
learning systems are order dependent, i.e provide results
that depend on the particular order of the data
presentation. Our previous work has developed an
incremental soft computing algorithm which can be
applied to learn text fragment patterns in semi-
structured texts. A set of fuzzy grammar fragments is
evolved, able to recognize the string set used as examples
and any similar strings. Slight modification of the
grammar fragments is performed to learn new patterns.
This paper investigates the theoretical aspects of order-
independence in the algorithm and shows that
equivalent grammar fragments are produced
irrespective of the order in which illustrative examples
are presented.

Keywords- fuzzy grammar fragment, incremental learning,
independent incremental learner, fuzzy evolving, text
fragment learning.

I. INTRODUCTION

 It has long been argued that self-adaptation is a
prerequisite for general intelligence and that learning, in
particular, involves the ability to improve performance over
time. Clearly, humans acquire knowledge over time, i.e.,
incrementally, since all of the information necessary to learn
many concepts is rarely available a priori. Rather, new
pieces of information become available over time, and
knowledge is constantly revised (i.e., evolves) based on
newly acquired information.
 According to Langley [1], the three most important
assumptions characterizing an incremental learning system
are: a) “it must be able to use the learned knowledge at any
step of the learning”; b) “the incorporation of experience
into memory during learning should be computationally
efficient” (theory revision must be efficient in fitting new
incoming observations); and, c) “the learning process should
not make unreasonable space demands, so that memory

requirements increase as a tractable function of experience”
(memory requirements must not depend on the training
size).
 It is widely known in the Machine Learning literature
that incremental learning suffers from instance order effects
and that, under some orderings, extremely poor theories
might be obtained. Although the ordering of the data may
carry some meaning that should be implicitly captured by
the learning system, such is not always the case. Indeed,
incremental learning presupposes redundancy in the data, as
is true in human learning. Similar situations have a tendency
to reproduce themselves so that general rules (or analogies)
can ultimately be drawn from them. However, since
robustness is a primary issue for any machine learning
system, it is very desirable to mitigate the phenomenon of
order sensitivity.
 This paper investigates the order-independence in
incremental evolutionary fuzzy grammar fragments (IEFG).
The focus of IEFG is towards learning the variety of the
underlying patterns of text fragments using the fuzzy
grammar approach, since these data are not always well-
formatted and may be noisy i.e. a couple of different
sentences may contain common meaning but are
distinguished with different words used and structured in a
different format. The main contribution is to show that the
learned fuzzy grammar fragments are insensitive to the
order in which examples are presented. Note that the
generated results may not be syntactically identical but
rather yield same (approximate) parsing coverage even
when the pattern instances are presented in different orders.
In this soft-computing oriented algorithm, slight
modification of the learned pattern is performed in an
optimal, more generalised knowledge structure.
 This is in contrast to the algorithm exploited by a batch
learning system that processes many instances at a time and
avoids the re-execution of the whole learning process. The
gradual fusion of new text pattern has enriched the coverage
of the known pattern and is maintained throughout the time.
The performance of the grammar parser is tested by
measuring the parsing coverage of the evolved grammars.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.169

1221

TABLE 1 COMBINATION OPERATORS

Source
Grammar

Target
Grammar

Cost
(Source,Target)

Cost
(Target,Source)

Combination
Operation

Combine(Source,Target)=
Combine(Target,Source)

a-b-c a-b 0 1 0 - - 1 0 0 - - Delete a-b-[c]
a-b a-b-c 1 0 0 - - 0 1 0 - - Insert a-b-[c]

a-b-c a-B-c 0 0 0 - - 0 0 1 - - Merge a-B-c
a-B-c a-b-c 0 0 1 - - 0 0 0 - - Merge a-B-c
a-F-c a-G-c 0 0 1 - - 0 0 1 - - Create a-X-c , X:=F||G,

In these grammars, a, b, c, B, F, G represent grammar tags of length 1 where B >b (i.e. B is more general than b); GF ≠ and X
is a new tag. The Cost(G1, G2) is the number of edit operations (insertions, deletions, substitutions) needed to make the
grammar fragment G1 equivalent to grammar fragment G2.

The constructed grammars are guaranteed to have 100%
correctness and equal parsing coverage of all examples.
 The first part of the paper gives some introduction into
order independence notion in IEFG followed by detail on
IEFG and its evolutionary dynamics in Section Two. Section
Three discusses on theoretical support of order independence
in IEFG followed by a short example in Section Four.
Section Five provides some related work on incremental
learners with order-independent mitigations and Section Six
gives conclusion on the paper.

II. INCREMENTAL EVOLVING GRAMMAR
FRAGMENTS

 The idea of incremental evolving grammar fragments
was first introduced in [2], with [3] providing details of the
minimal combination algorithms. This method was shown
to be more accurate and consistent in the semi-structured
grammar fragment learning task than the previous maximal
combination approach in [4]. Grammar fragments [3]
consist of terminal tags which are (possibly fuzzy) sets of
words and other symbols from the language, plus non-
terminal tags using a BNF-style notation. Each tag defines a
(possibly fuzzy) set of words or word sequences that the tag
will parse; this set is known as the extension of the tag,
denoted Ext(T) for a tag T. A tag S is more general than a
tag T iff Ext(T) ⊆ Ext(S).
 The learning starts in a very naive state with a set of hand
crafted terminal grammars (plus possibly some non-terminal
grammars) prepared according to some degree of domain
knowledge. The learning process examines each example
string and incrementally extends the grammar definition to
include the pattern represented by the example. A minimal
grammar derivation process is executed to transform an
example string into a corresponding grammar (minimal in
the sense that it has the smallest possible extension). For
example, an entry ‘Baltimore 13 Sweet Lane Ipswich IP2
3AF’ has the derived grammar ‘w-n-w-se-pn-pc’ where the
terminal tag w indicates any word, n indicates a number, se
a street-ending (such as lane, road, etc), pn denotes a place
name and pc is a (non-terminal) definition of a post-code.

The grammar derived from the new string (source grammar)
is compared to the existing grammar collection (target
grammar) where the aim is to make a combined grammar
able to parse strings recognized by both the source and
target grammars. The grammar evolution is based on the
distance of the new string from the existing grammars,
measured by an edit cost. We follow [2] in defining a cost to
be a five-tuple (I D S Rs Rt) where I, D, and S are
nonnegative real numbers representing, respectively, the
approximate number of insertions, deletions, and
substitutions needed to convert a string parsed by the source
grammar into one that satisfies the target grammar. Rs and
Rt represent sequences of grammar elements remaining
(respectively) in the source and target after the match; at
least one of Rs and Rt is null in every valid cost.
 totalCost(I,D,S,Rs,Rt)=I+D+S+len(Rs)+len(Rt)

An efficient algorithm to calculate the cost (and further
explanation) can be found in [2]. Table 1 shows the
combination operations and examples of combined
grammars. The combination operations are based on the
fuzzy grammar similarity (g2g) output. Combine(GS,GT) is
the fusion of grammar definitions in GS and GT with
combination operations performed according to the changes
indicated by the grammar comparison function. If the
indicated operation based on the g2g result is insert then an
element from the target grammar is added into the source (at
suitable position) while a deletion change indicated an
element defined in the source (at suitable position) does not
exist in the target and therefore is added. Both operations
result in the extra element being optional (indicated by
enclosing the tag in brackets). This optional element ensures
no overgeneralisation of the altered/extended grammar.
When a substitute change is needed, the element that has
different coverage between the source and target grammar is
merged by creation of a new tag (sub-grammar) and
combined into the grammar.

However, if the selected element in the target is more
general than the source, that element will replace the
selected source element and no sub-grammar will be
created. This process creates more compact and concise
grammars. Note that to ensure the order independent effect,
the combined grammar parses any string parsed by either of

1222

Figure 1: IEFG Algorithm

the combination of two grammars is a symmetrical
operation so that they will have same parsing;
Combine(GS,GT) = Combine(GT,GS). It is clear that the
Ext(Combine(S,T))=Ext(S)∪ Ext(T). More explanation of
the combination algorithm is included in [3]. The
incremental learning process is described in Figure 1. Step
(1) is the grammar derivation process while step (2) is the
process of obtaining gti, the best existing grammar (lowest
cost) that can parse the new string. The evolution process
will not be executed if the string is parsed by an existing
grammar (i.e. totalCost is 0 at stage 3). Otherwise, a
combined grammar will be created if the totalCost of
overlap between gsj (the derived grammar from the new
string) and gti and vice versa is equal to 1 and the change is
at the same position. gsj replaces gti if it is more general
than gti. No change is done if gti is more general than gsj.
Finally if the totalCost between gsj and gti and vice versa is
bigger than 1 or the position of change is not at a matching
place, then the derived grammar gsj will be added into GT.

III. ORDER INDEPENDENT INCREMENTAL
EVOLVING GRAMMAR FRAGMENT LEARNER
In this section, we formalize the order independence of

the IEFG process, i.e. we show that the results from IEFG
will generate exactly equivalent grammars irrespective of
the order in which training strings are presented.

Let α be a triplet α =<S, GS,GT> where S is a finite
permutation of strings i.e. a sequence in which each string
appears exactly once.

GS is the set of derived grammars that represents (can
parse) S.

GT is the set of combined grammars that represents (can
parse) S.

In order to show GS = GT we note that
 GS ≤ GT ↔ Ext(GS) ⊆ Ext(GT)
 GT ≤ GS ↔ Ext(GT) ⊆ Ext(GS)
where

Ext(GS) is the set of strings parse-able by GS
Ext(GT) is the set of strings parse-able by GT

Hence it suffices to show that
 Ext(GS) = Ext(GT)

Theorem 1
Forα =<S, GS,GT>
 Ext(GS)=Ext(GT)
Proof
We proceed by induction on n, the number of example
strings. We use the notation GSk to denote the set of derived
grammars from the first k examples (as in fig 1).
Basis n=1
Clearly GS = {gs1} = GT, so
 Ext(GS) = Ext(GT)
Inductive step
We assume that Ext(GSj-1) = Ext(GTi-1) for some arbitrary
value i=j and j>1 and show that
 Ext(GSj) = Ext(GTi)
Note that
 Ext(GSj) = Ext(GSj-1)∪ Ext(gsj)

Let S={s1,s2,…,si,…,sn} be a finite permutation (i.e. an ordered set) of example strings,
GSk={gs1,gs2,…,gsj,…,gsk}be the set of derived grammars from the first k examples
where gsj=derivedGrammar(sj)
and let GTm={gt1,gt2,…,gti,…,gtm}be the set of combined grammars from the first k examples (note that
m≤k). For the jth example string the incremental evolution proceeds as follows:
1. gsj=derivedGrammar(sj)
2. Let gti be the combined grammar from GTm that parses sj with minimal cost
3. IF 0 <(totalCost(Cost(gsj,gti)) ≤1.0 THEN

a. Calculate (totalCost(Cost(gti, gsj))
b. Let gx= gsj and statCombine=false
c. IF (totalCost(Cost(gsj,gti)) =1 AND (totalCost(Cost(gti, gsj))=1 (both changes at same

position) THEN
(i) gx=Combine(gsj,gti). Set statCombine=true

 ELSE IF (totalCost(Cost(gsj,gti)) =1 AND (totalCost(Cost(gti, gsj))=0 THEN
(ii) gx=gsj. Set statCombine=true

 ELSE IF (totalCost(Cost(gsj,gti)) =0 AND (totalCost(Cost(gti, gsj))=1 THEN
(iii) gx=gti. Set statCombine=true

 END IF

d. IF statCombine=true the grammar collection is updated: GTm={GTm-1-gti} ∪ {gx}
ELSE GTm={GTm-1} ∪ {gx}

4. ELSE IF (totalCost(Cost(gsj,gti)) > 1 THEN GTm={GTm-1} ∪ {gsj}
5 END IF

1223

We analyse the possible paths through the evolution process
as shown in stages 3 and 4 of Fig 1.
The combination rule in 3c(i) shows that the combination of
gsj and gti is taken if the cost from gsj to gti and vice versa is
equal to 1.
In this case,
 Ext(GTi) = Ext(GTi-1 - {gti}) ∪ Ext(gx)
where
 gx= Combine(gsj, gti)
and
 Ext(gx) = Ext(gsj) ∪ Ext (gti)
Hence
Ext(GTi)
 = (Ext(GTi-1) - (Ext(gti)) ∪ Ext(gx)
 = Ext(GTi-1) ∪ Ext(gsj)
so that Ext(GSj-1) = Ext(GTi-1)
 implies Ext(GSj) = Ext(GTi)
In case 3c(ii) gsj is more general than gti
i.e. Ext(gti) ⊆ Ext(gsj)
while in case 3c(iii) gti is more general than gsj i.e. Ext(gsj)
⊆ Ext (gti)
In both cases Ext(GSj-1) = Ext(GTi-1)
 implies Ext(GSj) = Ext(GTi)
Finally in cases 3d and 4, the addition of the new grammar
gsj will increase the parsing coverage of GTi:

 Ext(GTi) =Ext(GTi-1) ∪ Ext(GSj)
so that again
 Ext(GSj-1) = Ext(GTj-1)
 implies Ext(GSj) = Ext(GTj)
Thus in all cases the inductive hypothesis is true and
 Ext(GSj)=Ext(GTi)
This ends the proof of Theorem 1■

Lemma 2.1
For any two permutations S and S* giving derived
grammars GS and GS*
 Ext(GSj) = Ext(GSj*)
Proof
Each example string sj leads to a derived grammar gsi.
Clearly from the definition
 Ext(GS) = Ext(gs1) ∪ Ext(gs2) ∪ …
This is independent of the order in which the example
strings are presented.

To show that the IEFG process is independent of the order
in which examples are presented, we consider a different
permutation S* leading to α * =<S*, GS* ,GT*> and show
that Ext(GTi) = Ext(GTi*)

Theorem 2
The IEFG process is independent of the order in which
examples are presented. Consider
α =<S, GS ,GT> and a different permutation S* leading to
α * =<S*, GS* ,GT*>
Then
 Ext(GTi) = Ext(GTi*)
Proof
By lemma 2.1,

 Ext(GSj) = Ext(GSj*)
 By theorem 1,
 Ext(GSj) = Ext(GTi)
and Ext(GSj*) = Ext(GTi*)
Hence Ext(GTi) = Ext(GTi*) Corollary 2

Cost(GT,GT*) = Cost(GT*,GT)= <0 0 0 null null>
This ends the proof of Theorem 2■

IV. EXAMPLE

An experiment to investigate the effect and practicality of
free order learning in IEFG is conducted on learning
grammar fragments for address dataset and discussed
previously in [3]. This section shows a simple example to
illustrate how the grammar learner works, where the aim is
to demonstrate that the product of the grammar learning
from different training order will generate equivalent
(semantic) parsing although the final grammars can be
syntactically different.

Figure 2 shows a set of grammar example consisting of 5
terminal elements; a, b,c,d, and e with d more general than
e. Table 2 illustrates the grammar learning process in every
timestep,t when the training is given in different orders. The
learning process is executed by referring to the algorithm

dcaG
edcaG

ecaG
ededcbag

GGGG

n

−−=
−−−=

−−=
>=

=

3

2

1

321

},,,,,{
},,{

Figure 2: Examples of training grammars

TABLE 2 GRAMMAR LEARNING IN DIFFERENT ORDERINGS
Time,t Order1: G1-G3-G2 Order2: G3-G2-G1 Order3: G1-G2-G3

t0 ecaG −−=1 dcaG −−=3 ecaG −−=1
t1 31 GG ∪ = dca −−][23 edcaGG −−−=∪ edcaGG −−−=∪][21
t2][231 edcaGGG −−−=∪∪][231 edcaGGG −−−=∪∪

edcaGG −−−=∪][21

dcaG −−=3

1224

shown in Figure 1.
At t0 the first example of each order is taken as the

first member of the target grammar. During t1, in Order1
G1 is replaced by G3 because G3 is more general. In
Order2 G3 is combined with G2 while in Order3 G1 is
combined with G2. During t2 in Order1 G2 is combined
with existing grammar from t1 while in Order2 and
Order3, G1 and G3 are added into the collection of the
grammar from the previous timestep respectively. Note
that at t2 all final products produce identical grammars
(with identical parses and extensions) although with
slightly different syntax, hence demonstrates ability of
IEFG to provide similar parsing coverage irrespective of
the training orders.

V. RELATED WORKS
An increasing number of systems based on

incremental learning [5-8] have been created and applied
on wide domains, however not much research has focused
on ways to moderate the order-independence issue. This
section focuses on a few existing works that exhibit
independence of sample order in incremental learning
systems.

An independent ordering incremental learner should
(i) have ability to focus on optimal hypothesis when they
have to choose among the current potential ones (ii) keep
enough information so as not to forget any potential
hypothesis [9]. The theory revision system in
INTHELEX (Incremental Theory Learner from
Examples) [10] memorizes the modification moments and
how it revised the theory. INTHELEXback, the
improvement of INTHELEX reduces the ordering effects
of the learner by embedding a backtracking strategy into
the inductive refinement operators. IEFG memorizes all
seen patterns and increase the generalisation of the
grammars as an attempt towards creating more compact
and concise grammar fragments.

The buffering strategy adopted by Talavera and
Roure [11] in clustering states that the incorporation of
instances will be deferred if they are in either one of the
following two cases, a) the utility of the resulting
clustering after incorporation of the instances could not be
expected, and b) there is not enough confidence about
how the instance should be included in the existing
clustering. The estimation of evolution suitability in IEFG
is measured with the fuzzy overlap and fuzzy membership
function between the new string with the existing set of
grammars as the guidance for alteration of existing
grammars or adding the string that has too much distance
into the set. This means that operation of learning is never
delayed and the parsing coverage is always maintained at
the maximum.

ID5R algorithm [12], the incremental version of the
ID3 batch algorithm, does not forget any information
present in the input data and keep enough information to
be able to compare all potential competing models so as

to select the best one at any moment, and change their
mind if needed. The tree is revised by changing the
position of some (or all) test nodes according to a measure
calculated on all the information regarding such a node. It
is therefore equivalent to its non-incremental learning
system that gets all the data at once and focuses on the
best hypothesis given the information supplied.

Fuzzy ARTMAP (SFAM) belongs to a special class
of neural network which is capable of incremental
learning [13]. Genetic algorithm is used to select the
presentation order of training patterns in order to improve
the classification performance of SFAM. SFAM is trained
several times using training patterns presented in random
order (i.e. permutations of the training patterns) and then
the predicted class of the test patterns is stored. To solve
the problem of having to run many simulations, a single
simulation method based on min–max clustering was
proposed. The method works by using the selection,
mutation and inversion operators in GA to select the
presentation order of training patterns that maximizes the
SFAM classification performance In contrast, IEFG
maintains optimal knowledge at every timestep thus saves
the need to identify the best training order. Further
explanation on the fundamental idea of IEFG is provided
in the next section.

VI. CONCLUSION
An algorithm that features independent training order

can ensure robust results. Results that are influenced by
the training order may not be reliable especially in the
case of text classification and learning. This paper
discusses an order-independent fuzzy grammar fragment
learning method which is implemented using incremental
evolving method. The formalized theory is supported with
empirical evidence which generates grammars that have
equal (approximated) parsing coverage of the trained
dataset regardless of the orders. Example given illustrates
that the order of the training data can influence the size of
the grammar, but not its extension. The evolution concept
featured in this algorithm is reflected by the enrichment of
the learnt patterns with new pattern gradually fused.
Every time a new instance is fed into the system, it
evolves by increased or unchanged population size, with
greater parsing coverage in the grammar definitions to
include the new fused pattern as well as the prior
knowledge.

REFERENCES

[1] Langley, P., “Order Effects In Incremental Learning”. In
Reimann, P. Spada, H., Eds, Learning In Humans And
Machines: Towards An Interdisciplinary Learning
Science. Elsevier. 1995.

[2] Martin, T, Shen., Y., Azvine, B. “Incremental Evolution Of
Fuzzy Grammar Fragments To Enhance Instance Matching And

1225

Text Mining”, IEEE Transactions On Fuzzy Systems, Vol. 16,
No. 6, December 2008, pp. 1425-1438

[3] Sharef, N.M, Martin, T., Shen, Y., “Minimal Combination
For Incremental Grammar Fragment Learning”, IFSA World
Congress-EUFSLAT Conference 09, pp.909-914.

[4] Sharef, N.M, Martin, T., Shen, Y. (2008) “Incremental
Evolutionary Grammar Fragments”, Proceedings Of The UK
Workshop On Computational Intelligence (UKCI 2008), pp. 89-
94

[5] Mouchaweh, M. S , Devillez,A., Lecolier, G.V, Billaudel, P.,
“Incremental Learning In Fuzzy Pattern Matching”, Fuzzy Sets
And Systems 132 (2002) pp. 49 –62
[6] Giraud-Carrier, C.G, “A Note On The Utility Of Incremental
Learning”, AI Communications, Vol. 13, Issue 4 (December
2000) Pp.215 - 223

[7] Tschichold-Gurman, N. “Generation And Improvement Of
Fuzzy Classifiers With Incremental Learning Using Fuzzy
Rulenet”, Symposium On Applied Computing, Proceedings Of
The 1995 ACM Symposium On Applied Computing, pp. 466 -
470

[8] Mandziuk, C., And Shastri, L., “Incremental Class Learning
Approach And Its Application To Handwritten Digit
Recognition”, Information Sciences—Informatics And Computer
Science: An International Journal ,Vol. 141 , Issue 3-4 (April
2002) pp. 193 - 217

[9] Cornuejols, A., “Getting Order Independence In Incremental
Learning”, Proc. Of The European Conference On Machine
Learning (ECMI-93), Vienna, April 5-8, 1993. pp. 43-53.

[10] Mauro, N. D., Esposito, F., Ferilli, S., Basile, M. A. AI*IA
2005: “Advances In Artificial Intelligence”, LNAI 3673, 2005.
pp. 110-121.

[11] Talavera, L., And Roure, J., “A Buffering Strategy To
Avoid Ordering Effects In Clustering”, LNCS Vol. 1398/1998,
pp. 316-321

[12] Utgoff, P.E, “Incremental Induction Of Decision Trees”,
Machine Learning 4. 1998, Pp. 161-168

[13] Palaniappan, R. And Eswaran, C., “Using Genetic
Algorithm To Select The Presentation Order Of Training Patterns
That Improves Simplified Fuzzy ARTMAP Classification
Performance”, Applied Soft Computing 9 (2009) pp. 100-106.

1226

