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Abstract— It is generally known that most incremental 
learning systems are order dependent, i.e provide results 
that depend on the particular order of the data 
presentation. Our previous work has developed an 
incremental soft computing algorithm which can be 
applied to learn text fragment patterns in semi-
structured texts. A set of fuzzy grammar fragments is 
evolved, able to recognize the string set used as examples 
and any similar strings. Slight modification of the 
grammar fragments is performed to learn new patterns. 
This paper investigates the theoretical aspects of order-
independence in the algorithm and shows that 
equivalent grammar fragments are produced 
irrespective of the order in which illustrative examples 
are presented. 

Keywords- fuzzy grammar fragment, incremental learning, 
independent incremental learner, fuzzy evolving, text 
fragment learning. 

I. INTRODUCTION 
 
 It has long been argued that self-adaptation is a 
prerequisite for general intelligence and that learning, in 
particular, involves the ability to improve performance over 
time. Clearly, humans acquire knowledge over time, i.e., 
incrementally, since all of the information necessary to learn 
many concepts is rarely available a priori. Rather, new 
pieces of information become available over time, and 
knowledge is constantly revised (i.e., evolves) based on 
newly acquired information.  
 According to Langley [1], the three most important 
assumptions characterizing an incremental learning system 
are: a) “it must be able to use the learned knowledge at any 
step of the learning”; b) “the incorporation of experience 
into memory during learning should be computationally 
efficient” (theory revision must be efficient in fitting new 
incoming observations); and, c) “the learning process should 
not make unreasonable space demands, so that memory 

requirements increase as a tractable function of experience” 
(memory requirements must not depend on the training 
size). 
 It is widely known in the Machine Learning literature 
that incremental learning suffers from instance order effects 
and that, under some orderings, extremely poor theories 
might be obtained. Although the ordering of the data may 
carry some meaning that should be implicitly captured by 
the learning system, such is not always the case. Indeed, 
incremental learning presupposes redundancy in the data, as 
is true in human learning. Similar situations have a tendency 
to reproduce themselves so that general rules (or analogies) 
can ultimately be drawn from them. However, since 
robustness is a primary issue for any machine learning 
system, it is very desirable to mitigate the phenomenon of 
order sensitivity.  
 This paper investigates the order-independence in 
incremental evolutionary fuzzy grammar fragments (IEFG). 
The focus of IEFG is towards learning the variety of the 
underlying patterns of text fragments using the fuzzy 
grammar approach, since these data are not always well-
formatted and may be noisy i.e. a couple of different 
sentences may contain common meaning but are 
distinguished with different words used and structured in a 
different format. The main contribution is to show that the 
learned fuzzy grammar fragments are insensitive to the 
order in which examples are presented. Note that the 
generated results may not be syntactically identical but 
rather yield same (approximate) parsing coverage even 
when the pattern instances are presented in different orders. 
In this soft-computing oriented algorithm, slight 
modification of the learned pattern is performed in an 
optimal, more generalised knowledge structure.  
 This is in contrast to the algorithm exploited by a batch 
learning system that processes many instances at a time and 
avoids the re-execution of the whole learning process. The 
gradual fusion of new text pattern has enriched the coverage 
of the known pattern and is maintained throughout the time. 
The performance of the grammar parser is tested by 
measuring the parsing coverage of the evolved grammars.  
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TABLE 1 COMBINATION OPERATORS

Source 
Grammar 

Target 
Grammar 

Cost 
(Source,Target) 

Cost 
(Target,Source) 

Combination 
Operation 

Combine(Source,Target)= 
Combine(Target,Source) 

a-b-c a-b 0 1 0 - - 1 0 0 - - Delete a-b-[c] 
a-b a-b-c 1 0 0 - - 0 1 0 - - Insert a-b-[c] 

a-b-c a-B-c 0 0 0 - - 0 0 1 - - Merge a-B-c 
a-B-c a-b-c 0 0 1 - - 0 0 0 - - Merge a-B-c 
a-F-c a-G-c 0 0 1 - - 0 0 1 - - Create a-X-c , X:=F||G, 

 
In these grammars, a, b, c, B, F, G represent grammar tags of length 1 where B >b (i.e. B is more general than b); GF ≠ and X 
is a new tag. The Cost(G1, G2) is the number of edit operations (insertions, deletions, substitutions) needed to make the 
grammar fragment G1 equivalent to grammar fragment G2. 
 
The constructed grammars are guaranteed to have 100% 
correctness and equal parsing coverage of all examples.
 The first part of the paper gives some introduction into 
order independence notion in IEFG followed by detail on 
IEFG and its evolutionary dynamics in Section Two. Section 
Three discusses on theoretical support of order independence 
in IEFG followed by a short example in Section Four. 
Section Five provides some related work on incremental 
learners with order-independent mitigations and Section Six 
gives conclusion on the paper. 
 

II. INCREMENTAL EVOLVING GRAMMAR 
FRAGMENTS 

 
 The idea of incremental evolving grammar fragments 
was first introduced in [2], with [3] providing details of the 
minimal combination algorithms. This method was shown 
to be more accurate and consistent in the semi-structured 
grammar fragment learning task than the previous maximal 
combination approach in [4]. Grammar fragments [3] 
consist of terminal tags which are (possibly fuzzy) sets of 
words and other symbols from the language, plus non-
terminal tags using a BNF-style notation. Each tag defines a 
(possibly fuzzy) set of words or word sequences that the tag 
will parse; this set is known as the extension of the tag, 
denoted Ext(T) for a tag T. A tag S is more general than a 
tag T iff  Ext(T) ⊆ Ext(S).  
 The learning starts in a very naive state with a set of hand 
crafted terminal grammars (plus possibly some non-terminal 
grammars) prepared according to some degree of domain 
knowledge. The learning process examines each example 
string and incrementally extends the grammar definition to 
include the pattern represented by the example. A minimal 
grammar derivation process is executed to transform an 
example string into a corresponding grammar (minimal in 
the sense that it has the smallest possible extension). For 
example, an entry ‘Baltimore 13 Sweet Lane Ipswich IP2 
3AF’ has the derived grammar ‘w-n-w-se-pn-pc’ where the 
terminal tag w indicates any word, n indicates a number, se 
a street-ending (such as lane, road, etc), pn denotes a place 
name and pc is a (non-terminal) definition of a post-code. 

The grammar derived from the new string (source grammar) 
is compared to the existing grammar collection (target 
grammar) where the aim is to make a combined grammar 
able to parse strings recognized by both the source and 
target grammars. The grammar evolution is based on the 
distance of the new string from the existing grammars, 
measured by an edit cost. We follow [2] in defining a cost to 
be a five-tuple (I D S Rs Rt) where I, D, and S are 
nonnegative real numbers representing, respectively, the 
approximate number of insertions, deletions, and 
substitutions needed to convert a string parsed by the source 
grammar into one that satisfies the target grammar. Rs and 
Rt represent sequences of grammar elements remaining 
(respectively) in the source and target after the match; at 
least one of Rs and Rt is null in every valid cost. 
 totalCost(I,D,S,Rs,Rt)=I+D+S+len(Rs)+len(Rt) 

An efficient algorithm to calculate the cost (and further 
explanation) can be found in [2]. Table 1 shows the 
combination operations and examples of combined 
grammars. The combination operations are based on the 
fuzzy grammar similarity (g2g) output. Combine(GS,GT) is 
the fusion of grammar definitions in GS and GT with 
combination operations performed according to the changes 
indicated by the grammar comparison function. If the 
indicated operation based on the g2g result is insert then an 
element from the target grammar is added into the source (at 
suitable position) while a deletion change indicated an 
element defined in the source (at suitable position) does not 
exist in the target and therefore is added. Both operations 
result in the extra element being optional (indicated by 
enclosing the tag in brackets). This optional element ensures 
no overgeneralisation of the altered/extended grammar. 
When a substitute change is needed, the element that has 
different coverage between the source and target grammar is 
merged by creation of a new tag (sub-grammar) and 
combined into the grammar. 

However, if the selected element in the target is more 
general than the source, that element will replace the 
selected source element and no sub-grammar will be 
created. This process creates more compact and concise 
grammars. Note that to ensure the order independent effect, 
the combined grammar parses any string parsed by either of 
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Figure 1: IEFG Algorithm 
 
the combination of two grammars is a symmetrical 
operation so that they will have same parsing; 
Combine(GS,GT) = Combine(GT,GS). It is clear that the 
Ext(Combine(S,T))=Ext(S)∪ Ext(T). More explanation of 
the combination algorithm is included in [3]. The 
incremental learning process is described in Figure 1. Step 
(1) is the grammar derivation process while step (2) is the 
process of obtaining gti, the best existing grammar (lowest 
cost) that can parse the new string. The evolution process 
will not be executed if the string is parsed by an existing 
grammar (i.e. totalCost is 0 at stage 3). Otherwise, a 
combined grammar will be created if the totalCost of 
overlap between gsj (the derived grammar from the new 
string) and gti and vice versa is equal to 1 and the change is 
at the same position. gsj replaces gti if it is more general 
than gti. No change is done if gti is more general than gsj. 
Finally if the totalCost between gsj and gti and vice versa is 
bigger than 1 or the position of change is not at a matching 
place, then the derived grammar gsj will be added into GT. 

 

III. ORDER INDEPENDENT INCREMENTAL 
EVOLVING GRAMMAR FRAGMENT LEARNER 
In this section, we formalize the order independence of 

the IEFG process, i.e. we show that the results from IEFG 
will generate exactly equivalent grammars irrespective of 
the order in which training strings are presented.  

Let α  be a triplet α =<S, GS,GT> where S is a finite 
permutation of strings i.e. a sequence in which each string 
appears exactly once.  

GS is the set of derived grammars that represents (can 
parse) S.  

GT is the set of combined grammars that represents (can 
parse) S. 

In order to show GS = GT we note that 
 GS ≤ GT ↔ Ext(GS) ⊆  Ext(GT) 
 GT ≤ GS ↔ Ext(GT) ⊆  Ext(GS) 
where  

Ext(GS) is the set of strings parse-able by GS 
Ext(GT) is the set of strings parse-able by GT 

Hence it suffices to show that  
 Ext(GS) =  Ext(GT) 
 
Theorem 1 
Forα =<S, GS,GT> 
 Ext(GS)=Ext(GT) 
Proof 
We proceed by induction on n, the number of example 
strings. We use the notation GSk to denote the set of derived 
grammars from the first k examples (as in fig 1).  
Basis n=1 
Clearly GS = {gs1} = GT, so 
 Ext(GS) =  Ext(GT) 
Inductive step 
We assume that Ext(GSj-1) =  Ext(GTi-1) for some arbitrary 
value i=j and j>1 and show that  
 Ext(GSj) =  Ext(GTi) 
Note that  
 Ext(GSj) = Ext(GSj-1)∪ Ext(gsj)  

Let S={s1,s2,…,si,…,sn} be a finite permutation ( i.e. an ordered set) of example strings, 
GSk={gs1,gs2,…,gsj,…,gsk}be the set of derived grammars from the first k examples 
where gsj=derivedGrammar(sj) 
and let  GTm={gt1,gt2,…,gti,…,gtm}be the set of combined grammars from the first k examples (note that 
m≤k). For the jth example string the incremental evolution proceeds as follows: 
1. gsj=derivedGrammar(sj)  
2. Let gti be the combined grammar from GTm that parses sj with minimal cost 
3. IF   0 <(totalCost(Cost(gsj,gti)) ≤1.0 THEN 

a. Calculate (totalCost(Cost(gti, gsj)) 
b. Let gx= gsj and statCombine=false 
c. IF  (totalCost(Cost(gsj,gti)) =1 AND (totalCost(Cost(gti, gsj))=1 (both changes at same  

position)  THEN  
(i) gx=Combine(gsj,gti). Set statCombine=true 

 ELSE IF (totalCost(Cost(gsj,gti)) =1 AND (totalCost(Cost(gti, gsj))=0 THEN  
(ii) gx=gsj. Set statCombine=true 

 ELSE IF (totalCost(Cost(gsj,gti)) =0 AND (totalCost(Cost(gti, gsj))=1 THEN  
(iii) gx=gti. Set  statCombine=true 

 END IF
 

d. IF statCombine=true the grammar collection is updated: GTm={GTm-1-gti} ∪ {gx} 
ELSE GTm={GTm-1} ∪ {gx} 

4. ELSE IF (totalCost(Cost(gsj,gti)) > 1 THEN GTm={GTm-1} ∪ {gsj} 
5 END IF
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We analyse the possible paths through the evolution process 
as shown in stages 3 and 4 of Fig 1. 
The combination rule in 3c(i) shows that the combination of 
gsj and gti is taken if the cost from gsj to gti and vice versa is 
equal to 1.  
In this case,  
 Ext(GTi) = Ext(GTi-1 - {gti}) ∪ Ext(gx) 
where 
 gx= Combine(gsj, gti) 
and 
 Ext(gx) = Ext(gsj) ∪  Ext (gti) 
Hence 
Ext(GTi) 
    = (Ext(GTi-1) - (Ext(gti)) ∪  Ext(gx)  
  = Ext(GTi-1)  ∪  Ext(gsj)  
so that Ext(GSj-1) =  Ext(GTi-1) 
  implies Ext(GSj) = Ext(GTi) 
In case 3c(ii) gsj is more general than gti  
i.e. Ext(gti) ⊆ Ext(gsj) 
while in case 3c(iii) gti is more general than gsj i.e. Ext(gsj) 
⊆ Ext (gti)  
In both cases Ext(GSj-1) =  Ext(GTi-1) 
  implies Ext(GSj) =  Ext(GTi) 
Finally in cases 3d and 4, the addition of the new grammar 
gsj will increase the parsing coverage of GTi: 

 Ext(GTi) =Ext(GTi-1) ∪ Ext(GSj) 
so that again 
 Ext(GSj-1) =  Ext(GTj-1) 
 implies Ext(GSj) =  Ext(GTj) 
Thus in all cases the inductive hypothesis is true and  
 Ext(GSj)=Ext(GTi) 
This ends the proof of Theorem 1■ 
 
 
Lemma 2.1 
For any two permutations S and S* giving derived 
grammars GS and GS* 
 Ext(GSj) =  Ext(GSj*) 
Proof 
Each example string sj leads to a derived grammar gsi.  
Clearly from the definition  
     Ext(GS) = Ext(gs1) ∪  Ext(gs2) ∪  … 
This is independent of the order in which the example 
strings are presented. 
 
 
 
 

To show that the IEFG process is independent of the order 
in which examples are presented, we consider a different 
permutation S* leading to α * =<S*, GS* ,GT*>  and show 
that Ext(GTi) =  Ext(GTi*)  
 
Theorem 2 
The IEFG process is independent of the order in which 
examples are presented. Consider  
α  =<S, GS ,GT> and a different permutation S* leading to 
α * =<S*, GS* ,GT*>   
Then  
 Ext(GTi) =  Ext(GTi*) 
Proof 
By lemma 2.1,  

 Ext(GSj) =  Ext(GSj*) 
 By theorem 1, 
 Ext(GSj) =  Ext(GTi) 
and Ext(GSj*) =  Ext(GTi*) 
Hence  Ext(GTi) =  Ext(GTi*) Corollary 2 

Cost(GT,GT*)  = Cost(GT*,GT)= <0 0 0 null null> 
This ends the proof of Theorem 2■ 

 

IV. EXAMPLE 
 
An experiment to investigate the effect and practicality of 
free order learning in IEFG is conducted on learning 
grammar fragments for address dataset and discussed 
previously in [3]. This section shows a simple example to 
illustrate how the grammar learner works, where the aim is 
to demonstrate that the product of the grammar learning 
from different training order will generate equivalent 
(semantic) parsing although the final grammars can be 
syntactically different. 

Figure 2 shows a set of grammar example consisting of 5 
terminal elements; a, b,c,d, and e with d more general than 
e. Table 2 illustrates the grammar learning process in every 
timestep,t when the training is given in different orders. The 
learning process is executed by referring to the algorithm  

 

dcaG
edcaG

ecaG
ededcbag

GGGG

n

−−=
−−−=

−−=
>=

=

3

2

1

321

},,,,,{
},,{

 

Figure 2: Examples of training grammars 

TABLE 2 GRAMMAR LEARNING IN DIFFERENT ORDERINGS 
Time,t Order1: G1-G3-G2 Order2: G3-G2-G1 Order3: G1-G2-G3 

t0 ecaG −−=1  dcaG −−=3  ecaG −−=1  
t1 31 GG ∪ = dca −−  ][23 edcaGG −−−=∪  edcaGG −−−=∪ ][21  
t2 ][231 edcaGGG −−−=∪∪  ][231 edcaGGG −−−=∪∪  

 
edcaGG −−−=∪ ][21  

dcaG −−=3  

1224



shown in Figure 1. 
At t0 the first example of each order is taken as the 

first member of the target grammar. During t1, in Order1 
G1 is replaced by G3 because G3 is more general. In 
Order2 G3 is combined with G2 while in Order3 G1 is 
combined with G2. During t2 in Order1 G2 is combined 
with existing grammar from t1 while in Order2 and 
Order3, G1 and G3 are added into the collection of the 
grammar from the previous timestep respectively. Note 
that at t2 all final products produce identical grammars 
(with identical parses and extensions) although with 
slightly different syntax, hence demonstrates ability of 
IEFG to provide similar parsing coverage irrespective of 
the training orders. 

V. RELATED WORKS 
An increasing number of systems based on 

incremental learning [5-8] have been created and applied 
on wide domains, however not much research has focused 
on ways to moderate the order-independence issue. This 
section focuses on a few existing works that exhibit 
independence of sample order in incremental learning 
systems. 

An independent ordering incremental learner should 
(i) have ability to focus on optimal hypothesis when they 
have to choose among the current potential ones (ii) keep 
enough information so as not to forget any potential 
hypothesis [9].  The theory revision system in 
INTHELEX (Incremental Theory Learner from 
Examples) [10] memorizes the modification moments and 
how it revised the theory. INTHELEXback, the 
improvement of INTHELEX reduces the ordering effects 
of the learner by embedding a backtracking strategy into 
the inductive refinement operators. IEFG memorizes all 
seen patterns and increase the generalisation of the 
grammars as an attempt towards creating more compact 
and concise grammar fragments. 

The buffering strategy adopted by Talavera and 
Roure [11] in clustering states that the incorporation of 
instances will be deferred if they are in either one of the 
following two cases, a) the utility of the resulting 
clustering after incorporation of the instances could not be 
expected, and b) there is not enough confidence about 
how the instance should be included in the existing 
clustering. The estimation of evolution suitability in IEFG 
is measured with the fuzzy overlap and fuzzy membership 
function between the new string with the existing set of 
grammars as the guidance for alteration of existing 
grammars or adding the string that has too much distance 
into the set. This means that operation of learning is never 
delayed and the parsing coverage is always maintained at 
the maximum. 

ID5R algorithm [12], the incremental version of the 
ID3 batch algorithm, does not forget any information 
present in the input data and keep enough information to 
be able to compare all potential competing models so as 

to select the best one at any moment, and change their 
mind if  needed. The tree is revised by changing the 
position of some (or all) test nodes according to a measure 
calculated on all the information regarding such a node. It 
is therefore equivalent to its non-incremental learning 
system that gets all the data at once and focuses on the 
best hypothesis given the information supplied.  

Fuzzy ARTMAP (SFAM) belongs to a special class 
of neural network which is capable of incremental 
learning [13]. Genetic algorithm is used to select the 
presentation order of training patterns in order to improve 
the classification performance of SFAM. SFAM is trained 
several times using training patterns presented in random 
order (i.e. permutations of the training patterns) and then 
the predicted class of the test patterns is stored. To solve 
the problem of having to run many simulations, a single 
simulation method based on min–max clustering was 
proposed. The method works by using the selection, 
mutation and inversion operators in GA to select the 
presentation order of training patterns that maximizes the 
SFAM classification performance In contrast, IEFG 
maintains optimal knowledge at every timestep thus saves 
the need to identify the best training order. Further 
explanation on the fundamental idea of IEFG is provided 
in the next section. 

VI. CONCLUSION 
An algorithm that features independent training order 

can ensure robust results. Results that are influenced by 
the training order may not be reliable especially in the 
case of text classification and learning. This paper 
discusses an order-independent fuzzy grammar fragment 
learning method which is implemented using incremental 
evolving method. The formalized theory is supported with 
empirical evidence which generates grammars that have 
equal (approximated) parsing coverage of the trained 
dataset regardless of the orders. Example given illustrates 
that the order of the training data can influence the size of 
the grammar, but not its extension. The evolution concept 
featured in this algorithm is reflected by the enrichment of 
the learnt patterns with new pattern gradually fused. 
Every time a new instance is fed into the system, it 
evolves by increased or unchanged population size, with 
greater parsing coverage in the grammar definitions to 
include the new fused pattern as well as the prior 
knowledge.  
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