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Abstract

We present a classification method, founded in the
instance-based learning and the disjunctive version space
approach, for performing approximate retrieval from
knowledge bases expressed in Description Logics. It is able
to supply answers, even though they are not logically en-
tailed by the knowledge base (e.g. because of its incom-
pleteness or when there are inconsistent assertions). More-
over, the method may also induce new knowledge that can
be employed to make the ontology population task semi-
automatic. The method has been experimentally tested
showing that it is sound and effective.

1 Introduction

In the perspective of the next generation Semantic Web
(SW) [16], many important tasks that are to be supported
through automated reasoning services, such as classifica-
tion, construction, revision, population, are likely to be sup-
ported by inductive methods. The Knowledge Bases (KBs)
are expressed resorting to standard ontology languages and
inference services which are ultimately especially based
on representation and reasoning in Description Logics
(DLs) [1]. However, purely (deductive) logic methods may
hardly scale to the extent of the SW. This has stimulated the
investigation of inductive-analogical forms such as induc-
tive generalization and specialization [3][12][13][10].

In this work we extend an inductive instance-based
method based on machine learning techniques [11] focus-
ing on the problem of the classification of semantically an-
notated resources in the Semantic Web, which is closely re-
lated to the (dual) retrieval problem [1]. Indeed, answering
to a query, namely finding the extension of a query con-

cept, can be cast as a problem of establishing the class mem-
bership of the semantically annotated individuals in a KB.
Instance-based methods are known to be very efficient and
fault-tolerant compared to the classic logic-based methods.
Experiments in this direction have been illustrated in [4].

Specifically, we recall our relational form of the Nearest
Neighbor (NN) approach [11] based on the idea that simi-
lar individuals, by analogy, should likely belong to similar
concepts [4]. The NN approach consists in selecting k train-
ing instances (the neighborhood) that are most similar to the
query instance xq that has to be classified. The class of xq is
determined by applying a majority voting criterion to the se-
lected neighbors. There are various by-products of this ap-
proach: 1) it can give a better insight in the specific domain
of the knowledge base; 2) it may help populating knowledge
bases which is time consuming and error-prone; 3) it may
trigger the tasks concept induction or revision by means
of supervised and unsupervised machine learning methods
[12][13][10]. For instance, distance-based clustering can
be employed in order to group instances and new concept
may be induced for accounting for such groups [9]. Up-
grading the standard algorithms based on the NN approach
to cope with multi-relational representations [7], like the
concept languages used in the SW, requires the solution of
the following problems: 1) the definition of novel (pseudo-
)metrics for assessing the similarity of individuals that are
suitable for their representations; 2) coping with the Open
World Assumption (OWA) that is generally made on the se-
mantics of the representations adopted in this context, rather
than the Closed World Assumption (CWA) that is the typical
machine learning and database settings; 3) rather than in the
standard multi-class learning, where classes are assumed to
be disjoint, one cannot assume the non-disjointness of the
classes (individuals can belong to more than one concept).
These problems have been solved in [4].
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The basic idea of NN classification has been further
extended towards another direction [8], by borrowing an-
other form of learning: the disjunctive version space ap-
proach [14]. In this alternative setting, the notion of neigh-
borhood is based on class-membership queries (rather than
on a similarity criterion) performed on a training set of in-
dividuals. Specifically, an individual is considered as be-
longing to the neighborhood of a positive example, when it
is instance of the local model (a concept description) rep-
resenting the positive example and that does not cover any
negative example. Each local model can be regarded as a
disjunction of features that separate a positive example from
negative ones. Thus the membership to the neighborhood of
positive examples (w.r.t. the a target concept) gives a crite-
rion to decide on the membership of an individual to be in-
ductively classified. The procedure is not necessarily crisp,
since a number of mistakes may be tolerated, blaming them
to the noise in the data (see [8] for more details).

Extending these alternative approaches to inductive clas-
sification, a distance-based NN algorithm is proposed [5],
where distances are computed by building local models.
Since local models are able to represent instances, such an
approach should ensure more reliable results w.r.t. the clas-
sical NN approach. In this paper we experimentally show
the reliability of the method grounded on local models.

The remainder of the paper is organized as follows. In
§2, the basics of the ALC logic are summarized. The adap-
tation of the NN classification procedure to DL representa-
tions is recalled in §3, while the method for inducing local
models is surveyed in §4. The measure based on local mod-
els is presented in §5. An experimental evaluation of the
proposed method is discussed in §6. Conclusions are drawn
in §7 with an outlook on future research.

2 Basics of the Representation and Inference

Description Logics (DLs) are a family of logics (frag-
ment of first-order logic) of different expressive power (de-
pending on the allowed constructors by the particular logic)
and endowed by a set of reasoning services. Among the
others, ALC logic has been considered a good compromise
between expressive power and computational complexity.

DLs have been adopted as theoretical counterpart of
the standard Ontology representation Language (OWL). In
DLs, concept descriptions are defined in terms of a set NC

of primitive concept names and a set NR of primitive roles.
The semantics of the concept descriptions is defined by an
interpretation I = (∆I , ·I), where ∆I is a non-empty set,
the domain of the interpretation, and ·I is the interpretation
function that maps eachA ∈ NC to a setAI ⊆ ∆I and each
R ∈ NR to RI ⊆ ∆I × ∆I . The top concept > is inter-
preted as the whole domain ∆I , while the bottom concept⊥
corresponds to ∅. Complex descriptions can be built inALC

using the following constructors. The language supports full
negation: given any concept description C, denoted ¬C, it
amounts to ∆I \CI . The conjunction of concepts, denoted
withC1uC2, yields an extensionCI1 ∩CI2 and, dually, con-
cept disjunction, denoted with C1 t C2, yields CI1 ∪ CI2 .
Finally, there are two restrictions on roles: the existential
restriction, denoted with ∃R.C, and interpreted as the set
{x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI} and the
value restriction, denoted with ∀R.C, whose extension is
{x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI → y ∈ CI}.

A knowledge base K = 〈T ,A〉 contains a TBox T and
an ABoxA. T is a set of concept definitions C ≡ D, mean-
ingCI = DI , whereC is atomic (the concept name) andD
is an arbitrarily complex description defined as above (the
cases of general axioms or cyclic definitions will not con-
sidered). A contains assertions on the world state, e.g.C(a)
and R(a, b), meaning that aI ∈ CI and (aI , bI) ∈ RI .
Moreover, normally the unique names assumption is made
on the ABox individuals. These are denoted with Ind(A).
In this context the most common inference is the semantic
notion of subsumption between concepts:

Definition 2.1 Given two concept descriptionsC andD,D
subsumes C, denoted by C v D, iff for every interpretation
I it holds that CI ⊆ DI . When C v D and D v C, they
are equivalent, denoted with C ≡ D.

Another important inference is instance checking, that
is deciding whether an individual is an instance of a con-
cept [1]. Conversely, it may be necessary to solve the real-
ization problem that requires finding the concepts which an
individual belongs to, especially the most specific one:

Definition 2.2 (most specific concept) Given ABox A and
an individual a, the most specific concept of a w.r.t. A, de-
noted MSCA(a), is the concept C s.t. A |= C(a) and for
any other concept D s.t. A |= D(a), it holds that C v D.

For many non-trivial DLs, such as ALC, the exact most
specific concept may not be always expressed with a finite
(non-recursive) description [1], yet it may be approximated
[3][2] (which may be satisfactory for inductive approaches).
Generally an approximation of the most specific concept is
considered up to a certain depth p.

3 Distance-based Classification of Resources
in DL Knowledge Bases

Nearest Neighbor is a lazy-learning method [11, 6].
The learning phase is reduced to simply memorizing pre-
classified training instances of the target concepts. The
computational effort is devoted to the inductive classifica-
tion phase, where a notion of (dis)similarity between in-
stances is employed to classify a new (query) instance. Gen-

1210



erally this method is employed to classify tuples of (dis-
crete or numeric) features from some n-dimensional in-
stance space: a database table. We will extend this setting
to the more complex case of DL KBs. Such an approach
can be used in the DL / SW context to classify individuals
w.r.t. the concepts in an ontology (or any other query con-
cept that could be defined on the ground of the concepts in
the ontology), exploiting the analogy with its neighbors [4].
Specifically, given a KB, the classification method can be
employed for assigning an individual with the concepts it
is likely to belong to (realization problem [1]). Due to the
inherent incompleteness of the DL knowledge bases, indi-
viduals are only partially described by the assertions occur-
ring in the ABox. Inductive classification may induce new
assertions, which cannot be inferred deductively.

The classical NN approach can be formally defined as
follows. Given a KB K, let xq be the instance that must
be classified w.r.t. a concept Q, and let Ind(Q) ⊆ Ind(A)
be a set of training instances for Q. Using a (dis)similarity
measure, the set of the k training instances that are more
similar to xq is selected. The objective of the method is to
learn an estimate of a hypothesis function for the target con-
cept membership h : Ind(Q) 7→ V from a space of training
instances Ind(Q) to a set of values V = {v1, . . . , vs} rep-
resenting the multi-way classification to be decided. The
algorithm approximates h for xq on the ground of the value
it assumes for the training instances in the neighborhood of
xq , i.e. the k closest training instances to xq . Precisely, this
value is estimated as the value which is (weighted) voted by
the majority of instances in the neighborhood. Formally:

ĥ(xq) := argmax
v∈V

k∑
i=1

wiδ(v, h(xi)) (1)

where where ĥ is the estimated hypothesis function, δ re-
turns 1 in case of matching arguments and 0 otherwise, and
the weights wi can be defined as wi = 1/d(xi, xq), given a
dissimilarity function d.

An assumption made in this setting is that the values in V
correspond to pairwise disjoint concepts. On the contrary,
in a DL setting, an individual could be instance of more
than one concept at the same time. In this general case,
another classification procedure has to be adopted. A pos-
sible solution is the decomposition of the multi-way clas-
sification problems into smaller (binary/ternary) classifica-
tion problems (one per target concept). Another problem
is related to the CWA usually made in the knowledge dis-
covery context, since, in the SW context, the OWA is usu-
ally made. To deal with the OWA, the absence of informa-
tion on whether a training instance x belongs to the exten-
sion of a concept Cj should not be interpreted negatively, it
should rather count as neutral information. Thus, a ternary
value set V = {−1, 0,+1} has to be adopted, where the

values denote, respectively, membership, uncertainty, non-
membership:

h(x) =

 +1 K ` Q(x)
−1 K ` ¬Q(x)

0 K 6` Q(x) ∧ K 6` ¬Q(x)

Since the procedure is based on a (weighted) majority vote,
it is less error-prone in case of noise in the data, (i.e. incor-
rect assertions in the ABox), therefore it may be able to give
an answer, even when a purely logic-based approach would
not be able to give the correct answer or any answer at all.

4 Building Intensional Local Models:
The Disjunctive Version Space Approach

An alternative instance-based method for classifying re-
sources inALC KBs has been presented in [8], derived from
the notion of Disjunctive Version Space [14]. Differently
from the NN approach (see §3), this method determines
the neighborhood of an instance w.r.t. a query concept by
building intensional local models of the training instances.
Specifically, an individual’s neighborhood is determined by
inducing a local definition for the query concept on the
grounds of its examples (E+

Q = {x ∈ Ind(Q) | K ` Q(x)})
and counterexamples (E−Q = {x̄ ∈ Ind(Q) | K ` ¬Q(x̄)}).
The method can be summarized as follows.

For each positive training example x ∈ E+
Q, a local hy-

pothesis concept Hx
Q is generated. Each Hx

Q has to be able
to cover the positive example x (i.e. x has to be an instance
of Hx

Q) but it does not have to cover any counterexample
x̄ ∈ E−Q. To fulfill such constraints, Hx

Q may be expressed
as the conjunction of maximally discriminating concepts
against each counterexample D(x, x̄), for each x̄ ∈ E−Q,
namely:

Hx
Q =

l

x̄∈E−
Q

D(x, x̄)

A maximally discriminating concept of an individual x
against a counterexample x̄ w.r.t. Q is a maximally specific
concept (w.r.t. the subsumption ordering) x belongs to that
does not cover x̄ (i.e. x̄must not be an instance ofD(x, x̄)).
An approximation of D(x, x̄) may be given in terms of a
notion of concept difference between the MSC approxima-
tions related to the individuals involved:

D(x, x̄) := MSCp(x)−MSCp(x̄)
where p is a fixed depth that may depend on the ABox depth
(see §2), and the symbol− denotes Teege’s difference oper-
ator for DL descriptions [17]. In the particular case ofALC
this difference is defined by:

D(x, x̄) := MSCp(x) t ¬MSCp(x̄)
For each x ∈ E+

Q, the individual xq to be classified will
belong to x’s neighborhood w.r.t. Q when xq belongs to
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Hx
Q. From the other perspective, the neighbor instance set

of xq w.r.t. Q is defined as:
NQ(xq) := {x ∈ Ind(Q) | K ` Hx

Q(xq)}
Once that the neighborhood has been selected, the inductive
classification can be performed by applying the voting pro-
cedure summarized by Eq. 1. However, a different way for
determining the weights has to be defined. This is because,
so far no similarity measure has been explicitly introduced.
A possible setting for the weight vector components is:

wv
Q :=

#(v,NQ(xq))∑
v∈V #(v,NQ(xq))

where #(v,NQ(xq)) = |{x ∈ NQ(xq)|h(x) = v}| is the
count of the neighbor instances of xq voting for value v,
given the query conceptQ, over the total number of training
individuals belonging to Q.

The complexity of the method mainly depends from the
complexity of the instance checking operator that is used
both for determining the counterexamples of the query con-
cept Q and for computing the (approximation of) MCSs.

The presented method is suitable for logics endowed
with a notion of difference and an approximation had to be
made on the construction of the MSC’s.

5 Metrics Based on Local Models

Moving from the NN approach for DL KBs (see §3) and
the local model approach (see §4), we propose a distance
measure based on the construction of local models. Since
local models are able to characterize individuals, the goal is
to set up a semantic distance measure that is able to capture
the semantic differences between individuals of an ontol-
ogy. Performing the NN classification by exploiting such a
metric should ensure more reliable and precise results w.r.t.
the mere disjunctive version space approach [8].

In [4], a semantic semi-distance measure for individuals
has been introduced. Here, it has also been proved that such
a measure is one of the most reliable currently available.
This measure is based on the notion of Hypothesis Driven
Distance [15]. In this paper, we propose an extension of
such a measure that is grounded on local models. Following
some ideas borrowed from machine learning [11], individ-
uals are evaluated on the grounds of their behavior w.r.t. a
context F = {F1, F2, . . . , Fm} represented by a collection
ofALC concepts, which stands as a group of discriminating
features. In its simplest formulation, a family of totally se-
mantic semi-distance functions for individuals, inspired by
Minkowski’s norms, was defined:

Definition 5.1 (family of measures) Let K = 〈T ,A〉 be a
KB. Given a set of concepts F = {F1, F2, . . . , Fm} and a
corresponding tuple of weightsw = {wi}i=1,...,m, p ∈ N, a

family {dF
p}p∈N of functions dF

p : Ind(A)× Ind(A) 7→ [0, 1]
is defined as follows: ∀a, b ∈ Ind(A)

dF
p(a, b) :=

[
m∑

i=1

wi | πi(a)− πi(b) |p
]1/p

where projection function πi is defined by:

πi(a) =

 1 K ` Fi(a)
0 K ` ¬Fi(a)
1
2 otherwise

The weights wi should reflect the impact of the single
feature concept w.r.t. the overall dissimilarity. This can be
given by the quantity of information conveyed by a feature,
measured as its entropy. Namely, the extension of a feature
F w.r.t. the whole domain of objects may be probabilisti-
cally quantified as PF = |F I |/|∆I | (w.r.t. the canonical
interpretation I). This can be roughly approximated with:
PF = |retrieval(F )|/|Ind(A)|. Considering also the prob-
ability P¬F related to its negation and that related to the
unclassified individuals (w.r.t. F ), denoted PU , a possible
entropic measure for the feature is (see [4] for more details):

H(F ) = − (PF log(PF ) + P¬F log(P¬F ) + PU log(PU ))

The measures require membership queries by perform-
ing instance checking [1]. As an alternative, especially
when a good number of assertions are available in the
ABox, the measures can be approximated by defining the
functions πi based on a simple ABox look-up.

Here, the assumption made is that the feature-set F may
represent a sufficient number of (possibly redundant) fea-
tures that are able to really discriminate different individ-
uals. The measure is not so useful when it is based on a
concise set of features, e.g. the measure get rather coarse if
each example is covered by a single feature Fi. The gran-
ularity of the measures increase with the redundancy of F
and more precisely with the increasing of the number and
diversity of feature Fi. At the same time, if all individuals
are instances of the same features, this behavior does not
raise any information for determining dissimilarity.

Considering the importance that features have in deter-
mining the dissimilarity between individuals, a new way for
feature generation is proposed. Rather than simply consid-
ering the concepts defined in the KB, features are generated
by building local models on the ground of the disjunctive
version space approach (see §4). Given some conceptQ, let
us consider the set of its positive examples E+

Q. For each
xi ∈ E+

Q, a local hypothesis concept Hxi

Q is generated, by
considering the set of counterexamples E−Q w.r.t. Q, as seen
in §4. Hence, the feature Fj is defined as the union of all
hypothesis Hxi

Q built from all positive examples of Q:

Fj =
⊔

xi∈E+
Q

Hxi

Q

1212



If C = {C1, C2, . . . , Cm} is the set of all concepts in
the KB (or part of them), by iterating the feature genera-
tion process presented above for each concept, a feature set
F = {F1, F2, . . . , Fm} made by local models is obtained.
This set would define an induced semi-distance measure ac-
cording to Def. 5.1. Then one may apply the NN procedure
with the metric parametrized on the constructed features, to
perform approximate query answering on an ontology.

The presented feature construction procedure allows to
describe training instances in a more precise way than sim-
ply considering a selection of concepts in the KB. Conse-
quently, it should ensure a more precise evaluation of the
dissimilarity between individuals and hence more reliable
classification results. A tradeoff between the number of fea-
tures employed and the computational effort required for
computing the projection functions is likely to be found.

6 Experiments

Experiments have been carried out for testing the feasi-
bility of the NN procedure illustrated in §3 exploiting the
dissimilarity measure based on local models presented in
§5. The method was tested on some ontologies online avail-
able1 and summarized on Tab. 1. It shows that they are gen-
erally represented with more expressive logics than ALC.
This affected the construction of the MSC approximations,
which turned out to be more general than those that could
be produced in the original DLs.

The proposed method was applied to each test ontology,
for inducing the features for the metric (p parameter was
set equal to 1) subsequently used for classifying all indi-
viduals in an ontology w.r.t. each concept therein: each
individual was considered for determining if it belonged to
the the considered concept (+1) or not (−1), or it was neu-
tral (0 corresponding to an unknown answer). Specifically,
for each training individual, an MSC approximation was
pre-computed so to build the sets of examples and coun-
terexamples w.r.t. each query concept. A cross-validation
experimental design has been adopted.

We intended to assess whether our inductive method was
able to classify instances correctly and also whether it is
able to induce new (previously unknown) class-membership
assertions that cannot be logically inferred. Its performance
was compared to the relevance determined by an expert,
whose role was played by a reasoner2.

Due to the OWA, cases were observed when, it could not
be (deductively) ascertained whether a resource was rele-
vant or not for a given query. Therefore, we introduced the
following indices for the evaluation [4]:

1http://protege.stanford.edu/download/
ontologies.html

2We employed PELLET 1.5.4, which is publicly available at http:
//clarkparsia.com/pellet

- match rate: number of cases of individuals that got exactly
the same classification with both definitions;
- omission error rate: amount of individuals for which
class-membership w.r.t. the given query could not deter-
mined using the induced definition, while they actually be-
long (do not belong) to the query concept;
- commission error rate: amount of individuals found not to
belong to the query concept, while they actually belong to
it and vice-versa;
- induction rate: amount of individuals found to belong or
not to belong to the query concept, while either case is not
logically derivable from the KB

Tab. 2 reports experimental results. For each ontology,
the average rates are reported together with their standard
deviation. By looking at the table, it is important to note
that, for every ontology, the match rate is quite high espe-
cially for ontologies where more individuals were available.
This hints that the method becomes more accurate with a
growing number of individuals. The commission error was
generally null except for three ontologies: FSM, BIOPAX,
FINANCIAL. Not surprisingly these cases coincide with the
ontologies for which the result show the most relevant vari-
ance. Indeed on careful analysis of the outcomes they have
been probably caused by the lack of examples for some
concepts in these ontologies. Also the omission error rate
is generally almost null with much a low variance in all
cases. Besides, it is possible to note that the inductive clas-
sifier was often able to induce new knowledge (not logically
derivable) for the test instances. Interestingly, for some on-
tologies, such as SWM, TRAINS and NEWSPAPERS an in-
crease of induction rate compensates the decay of match
rate, which can be with an inductive classifier which is less
cautious and tries to provide a positive or negative answer.

7 Conclusions and Outlook

A merely deductive approach to classifying semantically
annotated Web resources may fall short with real ontologies
integrating distributed knowledge sources across the Web.
This was the reason for investigating forms of approximate
classification which may be more responsive and robust.
We have presented a classification procedure for KBs ex-
pressed in DLs, grounded on instance-based learning and
the disjunctive version space approach. Moreover, it may
serve to predict/suggest missing information about individ-
uals in a KB. Besides, the procedure is robust to noise and
only seldom made commission errors in the experiments
that have been carried out so far. It may be the basis for
advanced retrieval procedures. The most immediate activ-
ity is the test of the method on classifying instance w.r.t.
randomly generated queries [4]. Future work will focus on
making the method more language-independent, so that it
can be applied to more expressive DL languages. Moreover,
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Table 1. Facts concerning the ontologies involved in the experiments.
DL #concepts #obj. prop. #datatype prop. #individuals

FSM SOF(D) 20 10 7 37
NEWSPAPERS ALCF(D) 29 25 28 72

SWM ALCOF(D) 19 9 1 115
TRAINS ALC 44 7 0 250
BIOPAX ALCIF(D) 41 38 33 323

HDISEASE ALCIF(D) 1498 10 15 639
NTN SHIF(D) 47 27 8 676

FINANCIAL ALCIF 60 16 0 1000
XGENIA ALCHI(D) 49 42 1 1987

Table 2. Average results (and standard deviations) of the performance indices in the experiments.
ontology match rate comm. err. rate omission rate induction rate

FSM 80.82±18.26 18.64±18.68 00.00±00.00 00.54±02.41
NEWSPAPERS 75.48±17.01 00.00±00.00 05.01±03.39 19.51±13.98

SWM 68.11±23.13 00.00±00.00 03.01±01.37 28.88±23.37
TRAINS 84.70±21.93 00.00±00.00 01.88±02.36 13.42±20.05
BIOPAX 78.38±23.94 21.05±24.29 00.00±00.00 00.57±02.73

HDISEASE 98.37±06.02 00.00±00.00 00.17±00.36 01.46±05.95
NTN 93.29±08.30 00.12±00.55 01.57±01.80 05.02±06.69

FINANCIAL 91.23±19.12 08.42±19.14 00.02±00.07 00.33±00.14
XGENIA 97.88±03.66 00.00±00.00 00.28±00.63 01.84±03.74

we are studying the possibility of providing, together with
each individual classification, an estimate of its probability.
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