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Abstract 
 

Frequent patterns discovery is a core functionality 
used in many mining tasks and large broad application. In this 
paper, we present a new algorithm, VMUDG, for vertical 
mining of frequent itemsets. The proposed algorithm adapts a 
new efficient approach that classifies all frequent 2-itemsets 
into separate groups according to their diffsets. Using these 
groups, the proposed algorithm offers three new distinct 
features; First, it allows calculating the support of N itemsets 
(N is>0) using one calculation process rather than N 
calculation processes. Second, it offers a chance to reduce the 
time needed for the manipulation of the itemsets diffsets. 
Third, it minimizes the need for checking the frequency 
condition for every itemset. A performance study of the 
proposed algorithm has been conducted. Several experiments 
show that the algorithm outperforms the well known dEclat 
algorithm. 
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1. INTRODUCTION 
Frequent pattern mining has been a focused theme in data 
mining research for over a decade. It is a core technique used 
in many mining tasks like sequential pattern mining [1], 
structured pattern mining, correlation mining, associative 
classification, and frequent pattern-based clustering [2], as 
well as their broad applications [3] [4]. So, a great effort has 
been dedicated to this research and tremendous progress has 
been made to develop efficient and scalable algorithms for 
frequent pattern mining [5] [6]. The problem of mining 
frequent itemsets can be formulated as follows. Let I be a set 
of items and T a database of transactions, where each 
transaction has a unique transaction identifier (Tid) and 
contains a set of items. A set X ⊆ I is called an itemset, and a 
set Y ⊆ T is called a tidset. An itemset that contains k items is 
called a k-itemset. The support of an itemset X, denoted σ(X), 
is the number of transactions in which X occurs. An itemset is 
frequent if its support is greater than or equal to a user-
specified minimum support (min_ sup) value [6] [7]. 
In this paper, we present a new algorithm VMUDG (Vertical 
Mining using Diffset Groups) for vertical mining of frequent 
itemsets. The proposed algorithm uses the diffset data 
representation [6]. It depends on the classification of frequent 

2-itemsets into groups according to their diffsets. It also 
structures the frequent 2-itemsets while they are processed in 
the groups compactly to achieve efficient memory usage.  
Using these groups of frequent 2-itemsets, the algorithm 
efficiently generates frequent k-itemsets (where k > 2). This is 
done by a simple and direct extraction process from the 
groups, which consequently has a good effect on the level of 
performance.  In addition, the new algorithm has three unique 
features like; first, in related work, on any level L each itemset 
is checked with other itemsets at this level to determine 
whether they can form frequent L+1-itemsets. So at any level, 
if we have N itemsets, we make ∑i (where i >=1 and i <= N-
1) number of checks between these itemsets. However, in our 
algorithm the itemsets are grouped into a set of groups. Each 
group contains multiple itemsets. The checks are done at the 
group level rather than the itemset level. If we have N itemsets 
distributed on G groups we will make ∑i (where i >=1 and i 
<= G-1) number of checks between the groups. For any 
frequent item class has N itemsets; in the best case we have 
only one group and in the worst case we have N groups, and 
then we have an average ((N+1)/2) groups. This offers a 
chance for reducing the number of checks, done by the 
manipulation of the itemsets diffsets, and consequently results 
in minimizing the processing time. Second, the proposed 
algorithm offers the availability of calculating the support of N 
itemsets with one calculation process rather than N processes 
(one process for each itemset) as in related work. Third, in all 
related work, every itemset has to be checked for its frequency 
condition. However, the proposed VMUDG algorithm 
minimizes the need of checking the frequency of the itemsets 
through the validity condition it follows while developing the 
groups. Many experiments have been conducted to compare 
between the proposed VMUDG algorithm and the well known 
dEclat algorithm. All experiments show that the features of the 
proposed algorithm make it outperforms the dEclat algorithm. 
The rest of the paper is organized as follows: In section two 
we list and discuss the related work. Section three explains in 
details the proposed VMUDG algorithm and specifies its 
features. Also, in section three an illustrative example is given 
to show how the proposed algorithm carries out mining of all 
frequent itemsets. A performance study of the proposed 
VMUDG algorithm is given in section four. Finally, a 
conclusion is given in section five. 
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2.Related work 
In this section, we will review the algorithms that follow the 
vertical mining approach for mining frequent itemsets. Eclat 
[7] is the first algorithm proposed to generate all the frequent 
itemsets using the depth-first strategy. It uses a tidset 
representation, where each item is associated with a set of 
transaction identifiers (Tids) where the item was shown in.  
The strength of the algorithm stems from conducting the 
mining process through a simple intersection operation on the 
transaction ids of the items. To perform this fast counting 
mechanism it did not use any complex data structure like the 
hash tree as some Apriori-like algorithms use. The algorithm, 
however, starts to suffer when being used with dense data sets 
that are characterized by high item frequency. In such case, 
the processing time required to perform the intersection 
process between the tidsets starts to be larger. Also, the 
required memory space required to store the tidsets 
incrementally grows.  
The problems raised with the Eclat algorithm that follows the 
traditional tidset vertical data layout motivate to search for 
another vertical representation of data that can avoid these 
problems. Zaki [9] proposed a novel vertical data 
representation called Diffsets and implemented on the DEclat 
algorithm. At the level of frequent items (1-itemset), the 
diffset keeps for each frequent item the tids where this item 
has not been shown. However, for other frequent k-itemsets 
(where k>1) the diffset for a k+1-itemsets keeps only track of 
the differences of the diffset of its generating frequent 
k_itemsets. The dEclat algorithm has experimentally shown to 
result in significant performance enhancements and more 
memory reduction. And also although it reduced the memory 
required but it still needs to store each itemset with its diffset 
for processing further itemsets. 
A new algorithm based on the diffset structure, FVDM [8] has 
been proposed to enhance the performance of the vertical 
mining algorithms. The algorithm follows the pattern growth 
methodology and utilizes it over the diffset structure. The 
algorithm consists of two main phases. The first phase is 
concerned with the mining of all long patterns for each item, 
while the next phase is concerned with generating all the sub 
itemsets from the previous discovered long patterns. 
Experiments have shown that the FDVM algorithm drastically 
outperforms the dEclat algorithm. However, the algorithm still 
needs the existence of the database into the memory to be 
scanned to check the frequency condition at the phase of 
generating hidden itemsets that are itemsets that have not been 
generated or considered before. It needs to recheck the dataset 
N times where N is the number of hidden itemsets which is a 
critical disadvantage when being used in large databases with 
real time requirements. 
As shown, we can observe that all the previous algorithms 
require the existence of the database into the main memory in 
order to be able to conduct the mining process completely. If 
the database is too large to fit into the main memory, the 
algorithms will not be applicable or they will be enforced to 
use some other techniques that make the algorithms pay in 
performance. Goethals [9] has proposed the Medic algorithm to 

solve the problem of insufficient available memory space. It 
applies a simple technique on the basic form of the Eclat 
algorithm. The idea behind the Medic algorithm is to 
manipulate the frequent items with their corresponding Tids of 
the currently read transactions instead of all the database 
transactions. Also, as soon as there are items that could no 
longer exist in further coming transactions, the algorithm will 
remove these items with their corresponding tidset from the 
memory. By this mechanism, the whole database may never 
be entirely loaded into the main memory giving the algorithm 
a new strength. The advantages of this algorithm can be 
gained when being used in spare data sets. But the case will 
differ when being used in dense data sets, as we will find a lot 
of high frequency items that require a major part of the 
database to be retained in the main memory until they have 
been processed, leading the algorithm to lose its advantages. 
Recently, Song and Rajasekaran [10], present a novel 
algorithm for mining frequent itemsets. This algorithm is 
referred to as the TM (Transaction Mapping) algorithm. In this 
algorithm, the tids of each itemset are mapped and compressed 
to continuous transaction intervals in a different space and the 
counting of itemsets is performed by intersecting these 
interval lists in a depth-first order along the lexicographic tree. 
When the compression coefficient becomes smaller than the 
average number of comparisons for intervals intersection at a 
certain level, the algorithm switches to transaction id 
intersection as in Eclat. Though the gained advantages of the 
TM algorithm, it still suffers from some problems; first, we 
may face the situation where the numbers of continuous 
intervals of tids become too close to the number of tids itself 
and accordingly the algorithm will lose its main feature. 
Second, there is an additional overhead required for 
calculating the intervals of the tids and monitoring the mining 
process to decide to continue using the algorithm or to switch 
to normal tidset approach. Also, in the same paper they have 
combined the dEclat algorithm with the TM algorithm and 
producing the dTM algorithm. However, experiments have 
shown that the performance of the dTM algorithm is worse 
than that of TM. It also shows that it performs almost like the 
dEclat in some experiments and in other experiments it is 
worse than the dEclat. This is due to the complex mechanisms 
it uses in calculating the support of the itemsets. 
 
3. The proposed VMUDG algorithm 
In this section we show how the proposed algorithm carries 
out mining of all frequent itemsets. The algorithm consists of 
two phases. Initially, the algorithm scans the source data to 
find frequent items. These items are represented using the 
diffset vertical representation. In the first phase; the frequent 
2-itemsets are generated and classified into a set of groups. 
From the generated groups, the second phase extracts other k-
itemsets, where k ≥ 3. These phases will be described in the 
following sections. Before we proceed, we need the following 
definitions. For convenience we write an itemset {A, C, W} as 
ACW, and a diffset {2, 4, 5} as 245. 
Definition 1: Given an itemset I (i1, i2,…, in), the prefix of I, is 
the first item i1. 
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Definition 2: Given a frequent item i, we associate with i a set 
of groups G = {gi1, gi2,…,gik}. There are two types of groups; 
basic groups and class groups. The class groups are developed 
by specific manipulation of the basic groups. Once all the 
class groups of a frequent item i are generated there is no need 
for the basic groups and they are removed from the memory. 
The next section explains the process of constructing these 
groups. The overall process of the VMUDG algorithm is 
illustrated in Fig. 1 

A. Group Construction 
The following are the steps to construct the groups for each 
frequent item i:  
Step 1: constructing basic groups: Each basic group has a 
header that contains the group’s diffset, and a set of frequent 
2-itemsets, each has item i as a prefix and has the same diffset 
as the group’s diffset. The construction of the basic groups is 
done as follows: Generate all frequent 2-itemsets that have 
item i as a prefix. Once a frequent 2-itemset is generated we 
search for a group that has a diffset equal to the diffset of the 
currently processed frequent 2-itemset. If such a group is 
found, we union the processed frequent 2-itemset with the 
only itemset already existing in the group. For example, by 
taking the union of itemset AB and itemset AC, we have the 
itemset ABC. However, if such group is not found, create a 
new group for the processed frequent 2-itemset. The diffset of 
this group is the diffset of the frequent 2-itemset. The union of 
itemsets in the basic groups is done for efficient memory 
usage. Note that, as a result of continuous itemset union, any 
basic group always has one frequent itemset (not necessarily 
of length 2). Note that, basic groups have different diffsets. 
Fig. 2 
Step 2: constructing class groups: once all basic groups are 
developed we start constructing the class groups. Given two 
groups (either basic or class) that belong to the groups of item 
i, if the two groups satisfy the following validity condition, we 
generate a class group by taking the union of the two groups. 
Where the validity condition is: 

T – C – TI >= min_sup 
Where,   
• T= Total number of transactions 
• C=│tids in the diffset of the item class│ 
• I = │tids in the diffset of the itemset│ 
• For any itemsets  (M1 ,M2, …, Mn) : 

TI= │tids (M1.diffset U M2.diffset U… U Mn.diffset │ 
Here, TI represents the number of Tids in the diffsets of all 
itemsets exist in gia and gib 
The union process aims to put in one group all frequent 
itemsets that exist together in a number of transactions that is 
greater than or equal to the minimum support. So, the previous 
rule ensures that all itemsets in the newly generated group are 
frequent. Fig. 3 shows the pseudo code of generating class 
groups. The itemsets in the groups with their corresponding 
diffsets are put together in one group. For example, if we have 
group G1 with itemset ABC and diffset 3 and another group 
G2 with itemset ADE and diffset 2, by union these two groups 
we have one group that has two records (tuples), each record 

is associated with one of the previous itemsets and its 
corresponding diffset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The union process between the groups is repeated respectively 
until there are no groups that can be joined together.  
The union of basic groups to generate class groups provides a 
performance optimization for the algorithm on both levels of 
memory and processing time. For processing time, unlike 
previous algorithms that check each frequent 2-itemset 
intersection with other frequent 2-itemsets, we only check the 
intersection between the diffsets group where each group 
contains a set of frequent 2-itemsets. For memory usage, all 
frequent 2-itemsets that have the same diffset are merged 
together and the diffset is stored only once as one unit and also 
processed as one unit. 

After all itemsets of class Ci are processed and assigned to the 
class groups, the next phase is applied on these groups. That is 
the two steps of the algorithm are pipelined and there is no 

Algorithm VMUDG

------------------------------------------------------------------------------------------ 

Input:  Min_Sup       
           D   // The set of frequent items 

T  // Total number of transaction in the data set 
 
Output: All frequent k-itemsets (where k>=1) 
 
1      For each item xi ∈ D 
2      A set of groups GS is empty 
3       For each item xj ∈ D, having j> i 
4         R= xiµ xj 
5         σ (R) = σ (xi) - ⎪d(R) ⎪      // d (R) is the diffset of R 
6         If (σ (R)) >= Min_sup then 
7         Basis_groups_construction(R, d(R)) 
8         End if 
9        Next xj 
10     Class_groups_construcion() 
11     Next xi 
12     For each group gi in GS 
13 For each itemset i in g 
14     Extract all sub itemsets and calculate the support as  

in Rule 1               
15 Next i 
16     For each group gi ∈ GS 
17      For each group gj ∈ GS, having j> i 
18       Union gi and gj  
19  Extract all sub itemsets and calculate the support as  

in Rule 2  
20 Next j 
21      Next i

Figure 1. VMUDG algorithm 

Figure 2. Basis_groups_construction procedure 

Basis_groups_construction (new_item, new_diffset))

// Each group G has a header and an itemset  

1        For each group g ∈ GS 
2         If (new_diffset = g.header) then 
3         g.itemset=g.itemset ∪ new_item 
4         Exit 
5         End if 
6       Next g  
7      GS.add new group(new diffset, new item) 
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need to wait for generating groups of other classes (frequent 
items).  

B. Generating frequent k-itemsets 
After generating and grouping all the frequent 2-itemsets of a 
class, we start the phase of generating the frequent k-itemsets. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The mining process is conducted over each group in the class. 
Since the existing groups failed to be combined together 
according to the previous validity condition, that is they 
cannot form together further frequent k-itemsets, each group 
can be mined independently with no interaction with other 
groups. In the mining process, we first extract the frequent sub 
itemsets from each itemset in the group starting with the 
itemset’s prefix. For example, when extracting sub itemsets of 
the ABCD itemset, we will have: AB, AC, AD, ABC, ABD, 
and ACD. The supports of all these itemsets are calculated 
once by Rule 1.  
Rule 1 

Support (S) = T – C – I 
Then we join the itemsets in the group respectively and extract 
all sub itemsets from the new joined itemset to generate other 
frequent itemsets. For all extracted itemsets from any itemsets 
(M1 ,M2, …, Mn) the support of all extracted itemsets are 
calculated once according to Rule 2. 

Rule 2 

Support (S) = T – C – TI 

Note that we can skip the process of calculating the support and 
produce only the frequent itemsets through the direct extraction 
from the itemsets in the group and thus offer a chance for 
reducing the processing time. Here we have not to check the 
frequency condition of the extracted itemsets because that they 
are frequent (because they exist in the same group that has been 
checked previously according to the validity condition). 

 After applying the previous two steps on all the groups 
existing in all the classes, we will have a complete set of 
frequent itemsets of all available lengths with their 
corresponding support. 

C. Illustrative example 
Here we explain how the proposed VMUDG algorithm works 
through all its phases with an illustrative example. The 
objective is to mine all frequent itemsets in the transactional 
data given on Table 1 having a minimum support value equals 
three. 

 
 

 
1. Scan the source data and convert it to its diffset vertical 
representation Table 2. Only the representation of the frequent 
items will be stored in the memory. Here in the example, item 
H is infrequent so it is removed Table 3. 
2. Generate all frequent 2-itemsets for all frequent items and 
construct the basic groups Fig. 4. For each frequent item, 
when a frequent 2-itemset is generated we search for a group 
that has a header as its diffset if such group is found then the 
frequent 2-itemsets is merged with the itemset in the group 
(ex. AD, AG) otherwise we build a new group for this itemset 
(ex. AC). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. After generating all the basic groups, start the union process 
between them to get the class groups according to the validity 
condition.  For example when trying to union the two basic 
groups of class A we will have T – C – TI = 6- 2- 1=3 which 

Frequent 
Item Diffset 

A 2 6 
B 2 4 
C 6 
D 4 
F 6 
G 2 4 
E 1 3 

Tid Items 
1 ABCDFG 
2 CDEFH 
3 ABCDFG 
4 ACEF 
5 ABCDEFG 
6 BDEGH 

Item Diffset 
A 2 6 
B 2 4 
C 6 
D 4 
F 6 
G 2 4 
E 1 3 
H 1 3 4 5 

Procedure Class_groups_construcion() 
-------------------------------------------------------------------- 
1    For each group gi ∈ GS 
2        For each group gj ∈ GS, having j> i 
3              tno=  ⎪gi.header µgj.header  ⎪ 
4          If (Total –tno)  >= Min_sup then 
5         new_group= gi ∪ gj 
6      GS.add_new_group() 
7         new_group.items.add(gi.item, gi.header) 
8         new_group.items.add(gj.item, gjheader ) 
9         End if 
10       Next j 
11     Next i 
12    Delete all pre-processed basic_groups from GS 

Figure 3. Class_groups_construction procedure 

Table 1:  
Transactional data 

Table 2: Diffset of 
all items 

Table 3: Diffset of 
frequent items 

 

G1: 4
ABDG

G2: NULL
ACF

Class A

G1: 6 
BCF

G2: NULL
BDG

Class B

G3: 2, 4 
CG 

G4: 1, 3
CG

G1: 4
CD

G2: NULL 
CF

Class C 

G1: 2, 4 
FG

G2: 1, 3 
FE

Class 

G3: 1, 3
DE 

G1: 6
DF

G2: 2 
DG 

Class D 

Figure 4: Basic groups of all frequent items
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is a valid value (as the min_sup is 3). So, the two groups can 
form one class group. However, by applying the validity 
condition on the two groups of class F it will result in a value 
6 – 1- 4=1 which is less than the min_sup. Thus the two basic 
groups cannot be union in one group. Fig. 5 shows all the 
class groups of all classes.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. After generating all the class groups for each frequent item, 
we start the phase of extracting frequent k-itemsets. In such 
phase, we don’t need to refer to the original data set. The 
calculation of the itemsets support is done according to Rule 
1 and Rule 2 as previously described. Figure 6 (a, b, c, d, e) 
shows the generated frequent k-itemsets of each class with 
their corresponding support and shows at which step of the 
mining process this itemset was generated. 

 

4. Experimental results 
In this section we measure the performance of the proposed 
VMUDG algorithm and also compare its performance of with 
the well-known vertical mining algorithm dEclat [12]. 

 
 
 
 
 

 
 
 
 

 
 

The choice of the dEclat algorithm for the comparison purpose 
is done for the following reason. As mentioned before, the 
diffset data representation is more efficient and scalable than 
the tidset data representation. In the related work there are 
three algorithms that use the diffset. First, FDVM algorithm 
that requires the existence of the data set until finishing the 
mining process for checking the frequency of hidden pattern 
which is impractical when being used in real data sets. 
Second, the DTm algorithm which is a variation of the TM 
algorithm that uses the diffset. Experiments of this algorithm 
show that it is worse than the TM algorithm itself and almost 
has a performance like the dEclat algorithm due to the 
complex methods used in calculating the support of frequent 
itemsets. Third, the dEclat algorithm which has been proved 
experimentally outperforms other algorithms like FP-growth 
[12]. For that we found that comparison with the dEclat 
algorithm is most suitable.  Datasets used in the experiments 
are downloaded from [14]. These data sets are often used in 
the study of frequent patterns mining. The characteristics of 
these datasets are shown in Table 4. All programs are 
implemented and compiled with Microsoft Visual C# Net 
2005. All experiments are performed on a DELL 2GHz Core 2 
Due laptop with 2G of memory, running Windows Vista.  The 
accumulated time is measured from the beginning of reading 
the data set and converting it to its diffset representation to the 
end of the frequent pattern mining process. 
 
 
 
 
 
 
 
 
In Figure 7 and Figure 8, one can see that the execution time 
of our algorithm is better than dEclat in general. However, 
when the minimum support is lower, the performance of our 
method gets better than dEclat. This is because the number of 
frequent itemsets is very big when the minimum support is 
very low, dEclat needs more time to compare a lot of itemsets 
for frequency checking. Since VMUDG does not need to 
check every itemset’s frequency, it can get better performance 
in lower minimum supports.  
Figure 9 shows execution times used by the two algorithms for 
varying minimal support thresholds in mining T25I10D10K 
data set. As can be seen, VMUDG uses around half of the time 
that is used by dEclat. In mining Pumsb data set shown in 

Itemset Sup Phase Itemset Sup Phase 
AB 3 1 ABC 3 2 
AD 3 1 ADC 3 2 
AG 3 1 AGC 3 2 
ABD 3 1 ABDC 3 2 
ABG 3 1 ABGC 3 2 
ADG 3 1 ADGC 3 2 
ABDG 3 1 ABDGC 3 2 
AC 4 1 ABF 4 2 
AF 4 1 ADF 4 2 
ACF 4 1 AGF 4 2 
ABDF 3 2 ABGF 3 2 
AGC 3 2 ADGF 3 2 
ABDGF 3 2 ABDGCF 3 2 

Itemset Sup Phase Itemset Sup Phase 
BC 3 1 BCFD 3 2 
BF 3 1 BCFG 3 2 
BCF 3 1 BCFDG 3 2 
BD 4 1 
BG 4 1 
BDG 4 1 
BCD 3 1 
BCG 3 1 
BFD 3 1 
BFG 3 1 

Itemset Sup Phase
DF 4 1 
DG 4 1 
DFG 3 2 
DE 3 1 

Itemset Sup Phase
CD 4 1
CF 5 1
CG 3 1
CDF 4 2
CDG 3 2
CFG 3 2
CDFG 3 2
CE 2 1

Itemset Sup Phase
FG 3 1 
FE 3 1 

Data No. 
items 

No. 
transactions 

Mushroom 120 8124 
Chess 75 3196 
T25I10D10K 1000 9219 
Pumsb 2113 49046 

Table 4: Data sets characteristics 

Figure 5: Class groups of all frequent items 

 

G1:  
ABDG  4 
ACF   Null 

Class A 

G1: 
BCF  6 
BDG Null 

Class B 

G1:  
CD  4 
CF  Null 
CG  2, 4 

Class C 

G2:  
CF  Null 
CE  1, 3 

 

G1:  
DF  4 
DG 2   

Class D 

G2:  
DE  1, 3 G1: 

FG  2, 4 
G2: 
FE  1, 3 

Class  F 

(c)

(b) 

(a)

(e)

(d)

Figure 6. Class_groups_construction procedure 
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Figure 10, there are a lot of frequent patterns have the same 
diffset. The algorithm gets benefit of such nature when 
constructing the groups and the process was then only a 
simple extraction of the frequent k-itemsets from the groups. 
Utilizing such feature reduce the processing time of the 
VMUDG rather than the dEclat significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

5. Conclusion 
In this paper, a new algorithm VMUDG (Vertical Mining 
Using Diffset Groups) for vertical mining of frequent itemsets 
is proposed. The proposed algorithm uses the diffset in 
classifying the frequent 2-itemsets into separate groups. By 
using these groups we can localize the generation of frequent 
k-itemsets achieving efficient processing and ensure bounded 
memory usage in the mining process. The proposed algorithm 
uses the diffset vertical data representation to generate only 
the frequent 2-itemsets. Itemsets of other lengths are extracted 

directly from the developed groups. Also, as a result of the 
independency between the groups in any class, we only need 
to keep in memory the currently processed group and thus 
support parallel mining. In addition, the algorithm does not 
require checking the itemsets frequency conditions for all 
itemsets, so, we only need to calculate its support through 
simple calculation processes. A comparison study between the 
proposed VMUDG algorithm and the dEclat algorithm has 
been conducted and shown that it in addition to its distinct 
features the VMUDG algorithm outperforms the dEclat 
algorithm. 
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