
Vertical Mining of Frequent Patterns Using Diffset Groups

Laila A. Abd El-Megid1, Mohamed E. El-Sharkawi2, Laila M. El-Fangary3, Yehia K. Helmy4
1, 3, 4 Dept. of Information Systems, Faculty of Computers & Information, Helwan University, Egypt,

2 Dept. of Information Systems, Faculty of Computers & Information, Cairo University, Egypt
1 eng.lole@yahoo.com, 2 mel_sharkawi@gmail.com, 3 lailaelfangary@hotmail.com,

4yehiahelmy@yahoo.com

Abstract

Frequent patterns discovery is a core functionality
used in many mining tasks and large broad application. In this
paper, we present a new algorithm, VMUDG, for vertical
mining of frequent itemsets. The proposed algorithm adapts a
new efficient approach that classifies all frequent 2-itemsets
into separate groups according to their diffsets. Using these
groups, the proposed algorithm offers three new distinct
features; First, it allows calculating the support of N itemsets
(N is>0) using one calculation process rather than N
calculation processes. Second, it offers a chance to reduce the
time needed for the manipulation of the itemsets diffsets.
Third, it minimizes the need for checking the frequency
condition for every itemset. A performance study of the
proposed algorithm has been conducted. Several experiments
show that the algorithm outperforms the well known dEclat
algorithm.

Keyword: Frequent patterns, verrtical mining, diffset,

asscication rules, data mining

1. INTRODUCTION
Frequent pattern mining has been a focused theme in data
mining research for over a decade. It is a core technique used
in many mining tasks like sequential pattern mining [1],
structured pattern mining, correlation mining, associative
classification, and frequent pattern-based clustering [2], as
well as their broad applications [3] [4]. So, a great effort has
been dedicated to this research and tremendous progress has
been made to develop efficient and scalable algorithms for
frequent pattern mining [5] [6]. The problem of mining
frequent itemsets can be formulated as follows. Let I be a set
of items and T a database of transactions, where each
transaction has a unique transaction identifier (Tid) and
contains a set of items. A set X ⊆ I is called an itemset, and a
set Y ⊆ T is called a tidset. An itemset that contains k items is
called a k-itemset. The support of an itemset X, denoted σ(X),
is the number of transactions in which X occurs. An itemset is
frequent if its support is greater than or equal to a user-
specified minimum support (min_ sup) value [6] [7].
In this paper, we present a new algorithm VMUDG (Vertical
Mining using Diffset Groups) for vertical mining of frequent
itemsets. The proposed algorithm uses the diffset data
representation [6]. It depends on the classification of frequent

2-itemsets into groups according to their diffsets. It also
structures the frequent 2-itemsets while they are processed in
the groups compactly to achieve efficient memory usage.
Using these groups of frequent 2-itemsets, the algorithm
efficiently generates frequent k-itemsets (where k > 2). This is
done by a simple and direct extraction process from the
groups, which consequently has a good effect on the level of
performance. In addition, the new algorithm has three unique
features like; first, in related work, on any level L each itemset
is checked with other itemsets at this level to determine
whether they can form frequent L+1-itemsets. So at any level,
if we have N itemsets, we make ∑i (where i >=1 and i <= N-
1) number of checks between these itemsets. However, in our
algorithm the itemsets are grouped into a set of groups. Each
group contains multiple itemsets. The checks are done at the
group level rather than the itemset level. If we have N itemsets
distributed on G groups we will make ∑i (where i >=1 and i
<= G-1) number of checks between the groups. For any
frequent item class has N itemsets; in the best case we have
only one group and in the worst case we have N groups, and
then we have an average ((N+1)/2) groups. This offers a
chance for reducing the number of checks, done by the
manipulation of the itemsets diffsets, and consequently results
in minimizing the processing time. Second, the proposed
algorithm offers the availability of calculating the support of N
itemsets with one calculation process rather than N processes
(one process for each itemset) as in related work. Third, in all
related work, every itemset has to be checked for its frequency
condition. However, the proposed VMUDG algorithm
minimizes the need of checking the frequency of the itemsets
through the validity condition it follows while developing the
groups. Many experiments have been conducted to compare
between the proposed VMUDG algorithm and the well known
dEclat algorithm. All experiments show that the features of the
proposed algorithm make it outperforms the dEclat algorithm.
The rest of the paper is organized as follows: In section two
we list and discuss the related work. Section three explains in
details the proposed VMUDG algorithm and specifies its
features. Also, in section three an illustrative example is given
to show how the proposed algorithm carries out mining of all
frequent itemsets. A performance study of the proposed
VMUDG algorithm is given in section four. Finally, a
conclusion is given in section five.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.167

1196

2.Related work
In this section, we will review the algorithms that follow the
vertical mining approach for mining frequent itemsets. Eclat
[7] is the first algorithm proposed to generate all the frequent
itemsets using the depth-first strategy. It uses a tidset
representation, where each item is associated with a set of
transaction identifiers (Tids) where the item was shown in.
The strength of the algorithm stems from conducting the
mining process through a simple intersection operation on the
transaction ids of the items. To perform this fast counting
mechanism it did not use any complex data structure like the
hash tree as some Apriori-like algorithms use. The algorithm,
however, starts to suffer when being used with dense data sets
that are characterized by high item frequency. In such case,
the processing time required to perform the intersection
process between the tidsets starts to be larger. Also, the
required memory space required to store the tidsets
incrementally grows.
The problems raised with the Eclat algorithm that follows the
traditional tidset vertical data layout motivate to search for
another vertical representation of data that can avoid these
problems. Zaki [9] proposed a novel vertical data
representation called Diffsets and implemented on the DEclat
algorithm. At the level of frequent items (1-itemset), the
diffset keeps for each frequent item the tids where this item
has not been shown. However, for other frequent k-itemsets
(where k>1) the diffset for a k+1-itemsets keeps only track of
the differences of the diffset of its generating frequent
k_itemsets. The dEclat algorithm has experimentally shown to
result in significant performance enhancements and more
memory reduction. And also although it reduced the memory
required but it still needs to store each itemset with its diffset
for processing further itemsets.
A new algorithm based on the diffset structure, FVDM [8] has
been proposed to enhance the performance of the vertical
mining algorithms. The algorithm follows the pattern growth
methodology and utilizes it over the diffset structure. The
algorithm consists of two main phases. The first phase is
concerned with the mining of all long patterns for each item,
while the next phase is concerned with generating all the sub
itemsets from the previous discovered long patterns.
Experiments have shown that the FDVM algorithm drastically
outperforms the dEclat algorithm. However, the algorithm still
needs the existence of the database into the memory to be
scanned to check the frequency condition at the phase of
generating hidden itemsets that are itemsets that have not been
generated or considered before. It needs to recheck the dataset
N times where N is the number of hidden itemsets which is a
critical disadvantage when being used in large databases with
real time requirements.
As shown, we can observe that all the previous algorithms
require the existence of the database into the main memory in
order to be able to conduct the mining process completely. If
the database is too large to fit into the main memory, the
algorithms will not be applicable or they will be enforced to
use some other techniques that make the algorithms pay in
performance. Goethals [9] has proposed the Medic algorithm to

solve the problem of insufficient available memory space. It
applies a simple technique on the basic form of the Eclat
algorithm. The idea behind the Medic algorithm is to
manipulate the frequent items with their corresponding Tids of
the currently read transactions instead of all the database
transactions. Also, as soon as there are items that could no
longer exist in further coming transactions, the algorithm will
remove these items with their corresponding tidset from the
memory. By this mechanism, the whole database may never
be entirely loaded into the main memory giving the algorithm
a new strength. The advantages of this algorithm can be
gained when being used in spare data sets. But the case will
differ when being used in dense data sets, as we will find a lot
of high frequency items that require a major part of the
database to be retained in the main memory until they have
been processed, leading the algorithm to lose its advantages.
Recently, Song and Rajasekaran [10], present a novel
algorithm for mining frequent itemsets. This algorithm is
referred to as the TM (Transaction Mapping) algorithm. In this
algorithm, the tids of each itemset are mapped and compressed
to continuous transaction intervals in a different space and the
counting of itemsets is performed by intersecting these
interval lists in a depth-first order along the lexicographic tree.
When the compression coefficient becomes smaller than the
average number of comparisons for intervals intersection at a
certain level, the algorithm switches to transaction id
intersection as in Eclat. Though the gained advantages of the
TM algorithm, it still suffers from some problems; first, we
may face the situation where the numbers of continuous
intervals of tids become too close to the number of tids itself
and accordingly the algorithm will lose its main feature.
Second, there is an additional overhead required for
calculating the intervals of the tids and monitoring the mining
process to decide to continue using the algorithm or to switch
to normal tidset approach. Also, in the same paper they have
combined the dEclat algorithm with the TM algorithm and
producing the dTM algorithm. However, experiments have
shown that the performance of the dTM algorithm is worse
than that of TM. It also shows that it performs almost like the
dEclat in some experiments and in other experiments it is
worse than the dEclat. This is due to the complex mechanisms
it uses in calculating the support of the itemsets.

3. The proposed VMUDG algorithm
In this section we show how the proposed algorithm carries
out mining of all frequent itemsets. The algorithm consists of
two phases. Initially, the algorithm scans the source data to
find frequent items. These items are represented using the
diffset vertical representation. In the first phase; the frequent
2-itemsets are generated and classified into a set of groups.
From the generated groups, the second phase extracts other k-
itemsets, where k ≥ 3. These phases will be described in the
following sections. Before we proceed, we need the following
definitions. For convenience we write an itemset {A, C, W} as
ACW, and a diffset {2, 4, 5} as 245.
Definition 1: Given an itemset I (i1, i2,…, in), the prefix of I, is
the first item i1.

1197

Definition 2: Given a frequent item i, we associate with i a set
of groups G = {gi1, gi2,…,gik}. There are two types of groups;
basic groups and class groups. The class groups are developed
by specific manipulation of the basic groups. Once all the
class groups of a frequent item i are generated there is no need
for the basic groups and they are removed from the memory.
The next section explains the process of constructing these
groups. The overall process of the VMUDG algorithm is
illustrated in Fig. 1

A. Group Construction
The following are the steps to construct the groups for each
frequent item i:
Step 1: constructing basic groups: Each basic group has a
header that contains the group’s diffset, and a set of frequent
2-itemsets, each has item i as a prefix and has the same diffset
as the group’s diffset. The construction of the basic groups is
done as follows: Generate all frequent 2-itemsets that have
item i as a prefix. Once a frequent 2-itemset is generated we
search for a group that has a diffset equal to the diffset of the
currently processed frequent 2-itemset. If such a group is
found, we union the processed frequent 2-itemset with the
only itemset already existing in the group. For example, by
taking the union of itemset AB and itemset AC, we have the
itemset ABC. However, if such group is not found, create a
new group for the processed frequent 2-itemset. The diffset of
this group is the diffset of the frequent 2-itemset. The union of
itemsets in the basic groups is done for efficient memory
usage. Note that, as a result of continuous itemset union, any
basic group always has one frequent itemset (not necessarily
of length 2). Note that, basic groups have different diffsets.
Fig. 2
Step 2: constructing class groups: once all basic groups are
developed we start constructing the class groups. Given two
groups (either basic or class) that belong to the groups of item
i, if the two groups satisfy the following validity condition, we
generate a class group by taking the union of the two groups.
Where the validity condition is:

T – C – TI >= min_sup
Where,
• T= Total number of transactions
• C=│tids in the diffset of the item class│
• I = │tids in the diffset of the itemset│
• For any itemsets (M1 ,M2, …, Mn) :

TI= │tids (M1.diffset U M2.diffset U… U Mn.diffset │
Here, TI represents the number of Tids in the diffsets of all
itemsets exist in gia and gib
The union process aims to put in one group all frequent
itemsets that exist together in a number of transactions that is
greater than or equal to the minimum support. So, the previous
rule ensures that all itemsets in the newly generated group are
frequent. Fig. 3 shows the pseudo code of generating class
groups. The itemsets in the groups with their corresponding
diffsets are put together in one group. For example, if we have
group G1 with itemset ABC and diffset 3 and another group
G2 with itemset ADE and diffset 2, by union these two groups
we have one group that has two records (tuples), each record

is associated with one of the previous itemsets and its
corresponding diffset.

The union process between the groups is repeated respectively
until there are no groups that can be joined together.
The union of basic groups to generate class groups provides a
performance optimization for the algorithm on both levels of
memory and processing time. For processing time, unlike
previous algorithms that check each frequent 2-itemset
intersection with other frequent 2-itemsets, we only check the
intersection between the diffsets group where each group
contains a set of frequent 2-itemsets. For memory usage, all
frequent 2-itemsets that have the same diffset are merged
together and the diffset is stored only once as one unit and also
processed as one unit.

After all itemsets of class Ci are processed and assigned to the
class groups, the next phase is applied on these groups. That is
the two steps of the algorithm are pipelined and there is no

Algorithm VMUDG

--

Input: Min_Sup
 D // The set of frequent items

T // Total number of transaction in the data set

Output: All frequent k-itemsets (where k>=1)

1 For each item xi ∈ D
2 A set of groups GS is empty
3 For each item xj ∈ D, having j> i
4 R= xiµ xj
5 σ (R) = σ (xi) - ⎪d(R) ⎪ // d (R) is the diffset of R
6 If (σ (R)) >= Min_sup then
7 Basis_groups_construction(R, d(R))
8 End if
9 Next xj
10 Class_groups_construcion()
11 Next xi
12 For each group gi in GS
13 For each itemset i in g
14 Extract all sub itemsets and calculate the support as

in Rule 1
15 Next i
16 For each group gi ∈ GS
17 For each group gj ∈ GS, having j> i
18 Union gi and gj
19 Extract all sub itemsets and calculate the support as

in Rule 2
20 Next j
21 Next i

Figure 1. VMUDG algorithm

Figure 2. Basis_groups_construction procedure

Basis_groups_construction (new_item, new_diffset))

// Each group G has a header and an itemset

1 For each group g ∈ GS
2 If (new_diffset = g.header) then
3 g.itemset=g.itemset ∪ new_item
4 Exit
5 End if
6 Next g
7 GS.add new group(new diffset, new item)

1198

need to wait for generating groups of other classes (frequent
items).

B. Generating frequent k-itemsets
After generating and grouping all the frequent 2-itemsets of a
class, we start the phase of generating the frequent k-itemsets.

The mining process is conducted over each group in the class.
Since the existing groups failed to be combined together
according to the previous validity condition, that is they
cannot form together further frequent k-itemsets, each group
can be mined independently with no interaction with other
groups. In the mining process, we first extract the frequent sub
itemsets from each itemset in the group starting with the
itemset’s prefix. For example, when extracting sub itemsets of
the ABCD itemset, we will have: AB, AC, AD, ABC, ABD,
and ACD. The supports of all these itemsets are calculated
once by Rule 1.
Rule 1

Support (S) = T – C – I
Then we join the itemsets in the group respectively and extract
all sub itemsets from the new joined itemset to generate other
frequent itemsets. For all extracted itemsets from any itemsets
(M1 ,M2, …, Mn) the support of all extracted itemsets are
calculated once according to Rule 2.

Rule 2

Support (S) = T – C – TI

Note that we can skip the process of calculating the support and
produce only the frequent itemsets through the direct extraction
from the itemsets in the group and thus offer a chance for
reducing the processing time. Here we have not to check the
frequency condition of the extracted itemsets because that they
are frequent (because they exist in the same group that has been
checked previously according to the validity condition).

 After applying the previous two steps on all the groups
existing in all the classes, we will have a complete set of
frequent itemsets of all available lengths with their
corresponding support.

C. Illustrative example
Here we explain how the proposed VMUDG algorithm works
through all its phases with an illustrative example. The
objective is to mine all frequent itemsets in the transactional
data given on Table 1 having a minimum support value equals
three.

1. Scan the source data and convert it to its diffset vertical
representation Table 2. Only the representation of the frequent
items will be stored in the memory. Here in the example, item
H is infrequent so it is removed Table 3.
2. Generate all frequent 2-itemsets for all frequent items and
construct the basic groups Fig. 4. For each frequent item,
when a frequent 2-itemset is generated we search for a group
that has a header as its diffset if such group is found then the
frequent 2-itemsets is merged with the itemset in the group
(ex. AD, AG) otherwise we build a new group for this itemset
(ex. AC).

3. After generating all the basic groups, start the union process
between them to get the class groups according to the validity
condition. For example when trying to union the two basic
groups of class A we will have T – C – TI = 6- 2- 1=3 which

Frequent
Item Diffset

A 2 6
B 2 4
C 6
D 4
F 6
G 2 4
E 1 3

Tid Items
1 ABCDFG
2 CDEFH
3 ABCDFG
4 ACEF
5 ABCDEFG
6 BDEGH

Item Diffset
A 2 6
B 2 4
C 6
D 4
F 6
G 2 4
E 1 3
H 1 3 4 5

Procedure Class_groups_construcion()
--
1 For each group gi ∈ GS
2 For each group gj ∈ GS, having j> i
3 tno= ⎪gi.header µgj.header ⎪
4 If (Total –tno) >= Min_sup then
5 new_group= gi ∪ gj
6 GS.add_new_group()
7 new_group.items.add(gi.item, gi.header)
8 new_group.items.add(gj.item, gjheader)
9 End if
10 Next j
11 Next i
12 Delete all pre-processed basic_groups from GS

Figure 3. Class_groups_construction procedure

Table 1:
Transactional data

Table 2: Diffset of
all items

Table 3: Diffset of
frequent items

G1: 4
ABDG

G2: NULL
ACF

Class A

G1: 6
BCF

G2: NULL
BDG

Class B

G3: 2, 4
CG

G4: 1, 3
CG

G1: 4
CD

G2: NULL
CF

Class C

G1: 2, 4
FG

G2: 1, 3
FE

Class

G3: 1, 3
DE

G1: 6
DF

G2: 2
DG

Class D

Figure 4: Basic groups of all frequent items

1199

is a valid value (as the min_sup is 3). So, the two groups can
form one class group. However, by applying the validity
condition on the two groups of class F it will result in a value
6 – 1- 4=1 which is less than the min_sup. Thus the two basic
groups cannot be union in one group. Fig. 5 shows all the
class groups of all classes.

4. After generating all the class groups for each frequent item,
we start the phase of extracting frequent k-itemsets. In such
phase, we don’t need to refer to the original data set. The
calculation of the itemsets support is done according to Rule
1 and Rule 2 as previously described. Figure 6 (a, b, c, d, e)
shows the generated frequent k-itemsets of each class with
their corresponding support and shows at which step of the
mining process this itemset was generated.

4. Experimental results
In this section we measure the performance of the proposed
VMUDG algorithm and also compare its performance of with
the well-known vertical mining algorithm dEclat [12].

The choice of the dEclat algorithm for the comparison purpose
is done for the following reason. As mentioned before, the
diffset data representation is more efficient and scalable than
the tidset data representation. In the related work there are
three algorithms that use the diffset. First, FDVM algorithm
that requires the existence of the data set until finishing the
mining process for checking the frequency of hidden pattern
which is impractical when being used in real data sets.
Second, the DTm algorithm which is a variation of the TM
algorithm that uses the diffset. Experiments of this algorithm
show that it is worse than the TM algorithm itself and almost
has a performance like the dEclat algorithm due to the
complex methods used in calculating the support of frequent
itemsets. Third, the dEclat algorithm which has been proved
experimentally outperforms other algorithms like FP-growth
[12]. For that we found that comparison with the dEclat
algorithm is most suitable. Datasets used in the experiments
are downloaded from [14]. These data sets are often used in
the study of frequent patterns mining. The characteristics of
these datasets are shown in Table 4. All programs are
implemented and compiled with Microsoft Visual C# Net
2005. All experiments are performed on a DELL 2GHz Core 2
Due laptop with 2G of memory, running Windows Vista. The
accumulated time is measured from the beginning of reading
the data set and converting it to its diffset representation to the
end of the frequent pattern mining process.

In Figure 7 and Figure 8, one can see that the execution time
of our algorithm is better than dEclat in general. However,
when the minimum support is lower, the performance of our
method gets better than dEclat. This is because the number of
frequent itemsets is very big when the minimum support is
very low, dEclat needs more time to compare a lot of itemsets
for frequency checking. Since VMUDG does not need to
check every itemset’s frequency, it can get better performance
in lower minimum supports.
Figure 9 shows execution times used by the two algorithms for
varying minimal support thresholds in mining T25I10D10K
data set. As can be seen, VMUDG uses around half of the time
that is used by dEclat. In mining Pumsb data set shown in

Itemset Sup Phase Itemset Sup Phase
AB 3 1 ABC 3 2
AD 3 1 ADC 3 2
AG 3 1 AGC 3 2
ABD 3 1 ABDC 3 2
ABG 3 1 ABGC 3 2
ADG 3 1 ADGC 3 2
ABDG 3 1 ABDGC 3 2
AC 4 1 ABF 4 2
AF 4 1 ADF 4 2
ACF 4 1 AGF 4 2
ABDF 3 2 ABGF 3 2
AGC 3 2 ADGF 3 2
ABDGF 3 2 ABDGCF 3 2

Itemset Sup Phase Itemset Sup Phase
BC 3 1 BCFD 3 2
BF 3 1 BCFG 3 2
BCF 3 1 BCFDG 3 2
BD 4 1
BG 4 1
BDG 4 1
BCD 3 1
BCG 3 1
BFD 3 1
BFG 3 1

Itemset Sup Phase
DF 4 1
DG 4 1
DFG 3 2
DE 3 1

Itemset Sup Phase
CD 4 1
CF 5 1
CG 3 1
CDF 4 2
CDG 3 2
CFG 3 2
CDFG 3 2
CE 2 1

Itemset Sup Phase
FG 3 1
FE 3 1

Data No.
items

No.
transactions

Mushroom 120 8124
Chess 75 3196
T25I10D10K 1000 9219
Pumsb 2113 49046

Table 4: Data sets characteristics

Figure 5: Class groups of all frequent items

G1:
ABDG 4
ACF Null

Class A

G1:
BCF 6
BDG Null

Class B

G1:
CD 4
CF Null
CG 2, 4

Class C

G2:
CF Null
CE 1, 3

G1:
DF 4
DG 2

Class D

G2:
DE 1, 3 G1:

FG 2, 4
G2:
FE 1, 3

Class F

(c)

(b)

(a)

(e)

(d)

Figure 6. Class_groups_construction procedure

1200

Figure 10, there are a lot of frequent patterns have the same
diffset. The algorithm gets benefit of such nature when
constructing the groups and the process was then only a
simple extraction of the frequent k-itemsets from the groups.
Utilizing such feature reduce the processing time of the
VMUDG rather than the dEclat significantly.

5. Conclusion
In this paper, a new algorithm VMUDG (Vertical Mining
Using Diffset Groups) for vertical mining of frequent itemsets
is proposed. The proposed algorithm uses the diffset in
classifying the frequent 2-itemsets into separate groups. By
using these groups we can localize the generation of frequent
k-itemsets achieving efficient processing and ensure bounded
memory usage in the mining process. The proposed algorithm
uses the diffset vertical data representation to generate only
the frequent 2-itemsets. Itemsets of other lengths are extracted

directly from the developed groups. Also, as a result of the
independency between the groups in any class, we only need
to keep in memory the currently processed group and thus
support parallel mining. In addition, the algorithm does not
require checking the itemsets frequency conditions for all
itemsets, so, we only need to calculate its support through
simple calculation processes. A comparison study between the
proposed VMUDG algorithm and the dEclat algorithm has
been conducted and shown that it in addition to its distinct
features the VMUDG algorithm outperforms the dEclat
algorithm.

References
[1] C. Zhu, X. Zhang, J. Sun, and B. Huang ,”Algorithm for Mining
Sequential Pattern in Time Series Data”, I n t e r n a t i o n a l
C o n fe r e n c e o n C o m mu n i c a t i o n s a n d Mo b i l e
C o mp u t i n g , pp. 258-262, January 2009
[2] H. Kriegel, P. Kroger and A. Zimek, ”Clustering high-
dimensional data: A survey on subspace clustering, pattern-based
clustering, and correlation clustering”, ACM Transactions on
Knowledge Discovery from Data (TKDD), Vol.3, No.1, march 2009
[3] A.Ceglar and J. Roddick, “Association Mining”, In ACM
Computing Surveys, Vol.38, No.2, Article no. 5, July 2006.
[4] Y. Koh, N. Rountree, R. O’Keefe, “Mining Interesting
Imperfectly Sporadic Rules”, Knowledge and Information Systems,
Vol. 14, No. 2, pp: 179-196, January 2008
[5] Z. Zheng, R. Kohavi, and L. Mason, “Real world performance of
association rule algorithms”, In ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pp: 401-406,
2001.
[6] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent Pattern Mining:
Current Status and Future Directions”, Data Mining and Knowledge
Discovery, Vol.15, No.1, pp. 55-86, 2007.
[7] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree Approach”,
Data Mining and Knowledge Discovery, Vol.8, No.1, pp. 53-87,
2004.
[8] M. Zaki, “Scalable Algorithms for Association Mining”, IEEE
Transactions on Knowledge and Data Engineering, Vol.12, No.3, pp.
372-390, May-June 2000.
[9] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and D.
Shah, “Turbo-Charging Vertical Mining of Large Databases”, In
ACM Special Interest Group on Management of Data (SIGMOD),
Vol.29, No.2, June 2000
[10] M. Zaki and K. Gouda, “Fast Vertical Mining Using Diffsets”,
In Knowledge Discovery and Data Mining (KDD), pp. 326-335,
2003.
[11] W. Consue, and W. Kurutach, “Novel Vertical Mining on
Diffsets Structure”, In Proceedings of the IEEE/WIC International
Conference on Intelligent Agent Technology (IAT), pp. 343-349,
October 2003.
[12] B. Goethals, “Memory Issues in Frequent Itemset Mining”, In
Proceedings of the ACM Symposium on Applied Computing (SAC),
pp.530 - 534, March 2004.
[13] M. Song, S. Rajasekaran, “A Transaction Mapping Algorithm
for Frequent Itemsets Mining” , IEEE Transactions on Knowledge
and Data Engineering , Vol.18, No.4, pp. 472-481, April 2006.
[14] http://fimi.cs.helsinki.fi/testdata.html

0
200
400
600
800

1000
1200

95 90 85 80 75 70 65 60 55

Time
(Ms)

Support (%)

Chess

VMUDG
dEclat

0

5000

10000

15000

80 70 60 50

Time
(Ms)

Support (%)

Mushroom

VMUDG
dEclat

0
5000

10000
15000
20000
25000

95 90 85 80 75 70 65 60 55

Time
(Ms)

Support(%)

T25I10D10K

VMUDG
dEclat

Figure 7. Run time for Chess data

Figure 8. Run time for Mushroom data

Figure 9. Run time for T25I10D10K data

Figure 10. Run time for Pumsb data

30000
50000
70000
90000

110000
130000

55 50 45 40 35

Time
(Ms)

Support(%)

PUMSB

VMUDG
dEclat

1201

