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Abstract 
 
In this paper we face some relevant issues on the 
relations between web communities and ontologies. We 
build an operator that constructs a weak Web 
Community, according to the definition given in 
[16],starting  from a seed of web sites.  The necessity 
of such an operator is derived from a problem arisen 
in the model developed in [3], in which some relevant 
concepts in automotive oriented ontology were not 
given a  corresponding Web community. This fact –if 
not considered- can bring automatic ontology 
development ([9,18]) to some non-correct results. 
In this work we define and analyze a new operator, 
called Com, with the tools furnished by the method of 
parametrization  ([8,15]) and we find that, given a 
seed S and the induced graph I(S), the community 
generated by our operator is monotonic with respect to 
clustering and is denser than the original graph I(S).   
 
1. Introduction 
 
      At present, ontologies are built manually by a panel 
of experts and the tools for assisting automatically  the 
construction of new ontologies are based on text 
analysis. In [3, 4] we described a tool for building 
ontologies that locally reflects Web communities and 
we started an experimental ontology describing the 
field of automotive.  The experience with our prototype 
Gelsomino [11] revealed that some relevant concepts in 
the field of automotive - such as “SCR-based 
ecologically sustainable engines [14]” - were not  
tokenized enough.  On the contrary, sites about  
“restaurants” and “regional tourism” were hubs of 
many automotive communities. Of course, if we 
extract these concepts and put them into an automotive 
oriented ontology, then such ontology is not longer 
reliable. Therefore, we need instruments that equalize   
the structures of a web community. We have been 
studying the problem of ontological alignment ([9]) 
and we found that ontological alignment is hard to do 
without mapping communities to concepts. 

 
FaceBook and MySpace have been developing some 
simple tools for  balancing the structure of a 
community, based on the “small-world”  assumption 
([1]): If  a is a friend of c and b is a friend of c, then a 
and b could be a friend of d, too. 
But this is causing a lot of problems in social networks. 
In fact, if a and b are males looking for a mate and c is 
female, then a and b will hardly get along well. On the 
contrary, the dynamics of èlite network, a small 
world.Net, takes in consideration only the  principle of 
network synchronization [2]–or co-evolution [3] - and 
they say that their  Web Community is highly robust 
and top-level quality.  
 
Network parameterisation has been intensively studied 
in [8, 15].  In this paper, a set of parameters is drawn 
and through them we propose a characterization of 
“good networks”; the parameters are the following: 
 

• Clustering 
• Diameter 
• Average degree 
• Degree distribution 
• Spectrum 

 
Network parameterisation is a diffused area of 
research. In [7] a feature vector of parameters is 
associated to a complex network.   By associating a 
feature  vector of parameters in Rn –seen as a space 
state- to a network, we can model the evolution of a 
network  by a path in a space state. These results arise 
the following problem in our model: given a concept c 
with little tokenization but significant information, is 
there a network operator that equalizes the associated 
set of web sites  S(c)  by extending it into a “good 
network”? 
Good networks are networks without massive 
connected components that trends to monopolize  the 
whole network. This passage of state is called 
“percolation” and it is a quiescent state of a network. In 
percolation a complex network is divide into a few 
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massive components. Some authors assert that the 
quality of a network is given by the percolation 
threshold ([17]).   
In the present paper we build such an operator and we 
check its validity by network parameterisation 
methods. In this way we can draw some considerations 
on the definition and classification of a network as a 
“good” network. 
 
The paper is organized through the following Sections: 
In Section 2 we introduce complex networks and we 
definer scale free networks and small world networks, 
in Section 3 we introduce the parametrization of 
complex networks, in Section 4 we define a graph 
operator for building web communities and it is 
described how scale-free networks are transformed into 
scale-free communities, in Section 5 we introduce the 
network parametrization of the community operator 
defined in section 4. Finally in Section 6 we conclude 
our work outlining some future developments. 
 
2. Complex Networks 
 
Although there is a general agreement on considering 
as “complex” for example the networks of airline 
routes, the networks of power distribution and the 
networks of social relations, at present there is not a 
general accepted definition of “complex network”, 
probably because such definition is “complex” itself.    
According to Erdös and Rényi ([10]), in a random 
graph with N nodes and connection probability p, the 
probability P(ki=k) that node i has degree k follows a 
binomial distribution. In fact we have: 

( ) kNkk
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In this work we adopt the following definition: a 
network is complex when the distribution of nodes and 
edges does not follow the model of Erdös and Rényi.  

A network is scale free when the degree of distribution 
of its nodes does not depend from the size of the 
network. In particular, Barabasi and  Réka [5] showed 
that in scale-free networks, the following holds: 

γk
kkP i
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Where i is the node and P(ki=k)  is the probability that 
a new arc is added to a node with degree ki.  This 
means that a real network is not a random graph. 
Rather, the percentage of nodes with, for example, 8 
arcs is:  

15.0
8
1)8( 1.2 ≈=p . 

Where γ is a real number in the interval  [1,2]. 

At present there is an ever growing tendency to search 
for network parametrization. [7, 13]   and the network 
is called complex if the degree distribution is not  
poissonian. Thanks to the works of  Watts and Strogatz 
[19] and Barabasi and Reka [5], a taxonomy of 
complex networks has being compiled.  
 
In particular, two categories of networks have 
emerged:  
 
-) scale free networks. 

A scale free network is organized independently on the 
number of its nodes and contains few hubs –nodes with 
a great number of edges-. Examples of scale-free 
networks are air routes, power distribution and 
Internet.  

-) small world networks. 

In small-world networks any  pair of  nodes is not far. 
In [19] a small-world network is described as a regular 
lattice combined with a random graph. Therefore, in 
small world networks  nodes are highly clustered. 
There are edges –called weak ties- that are distributed 
randomly  throughout the network. The importance of 
weak ties has been studied in [12].  Weak ties are 
useful for example to find a job.  Typical examples of 
small world-networks are social networks and World 
Wide Web [1]. 

 

3. Complex Networks and their 
parametrization 

 
We now describe a set of parameters that we used to 
classify a complex network.  

3.1. Degree 
 
The degree of a node of a network is the total number 
of its connections.  The in-degree (resp. outdegree) is 
the number of incoming (resp. outcoming) edges.  By 
indicating with k, ki and ko the degree, in-degree and 
out-degree of a vertex, we have: 

 
k = ki + ko 

 

1185



We indicate with P(k), P(ki) and P(ko) the  distribution 
of the degrees, in-degrees and out-degrees,  
respectively.  
 
 
3.2 Shortest path    
 
Let G be a graph. Given a  pair of nodes μ and ν, we 
call geodesic distance dg(μ,ν) the length of the 
shortest-path in G between  μ and ν.  
Observe that if G is a directed graph then dg is not a 
distance.  
 
We now formalize the concept of small-world network. 
 
Let Ωn be the set of all the networks with n vertices 
and  N as set of vertices. Let ω∈Ωn . We call π(μ,ν,ω) 
the distribution of  the shortest paths over  Ωn.  Then 
we define the average  shortest path in ω as  

 
. 
 
 

Finally, 

∑
Ω∈
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n
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<l> is also called the diameter of the network. It can be 
shown  that: 

z
nl

ln
ln>≈< . 

 
Where n is the cardinality of the nodes of the network 
and z is the average number of nearest neighbours of a 
vertex. By setting: 

z
n

ln
ln=σ  

 
we capture the property of small world , as observed in 
[19]. 
 
3.3 Clustering  
 
We recall that a graph G = (V,E) can be partitioned into 
a family of  set of nodes {Vi}i∈V . It is obvious that, in a 
network with n nodes, the number of possible 

connections is 
2

)1( −nn .  Let σ be the fraction of actual 

connections in the networks. The ratio between the 
number σ and the clique: 
 

 

)1(
2

−
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λ  

is the clustering coefficient with respect to node i. 
Then the clustering coefficient of a network is: 
 

∑
∈N n

C

ν

ν . 

 
In a random graph, Watts and Strogatz [19] define a 
statistic parameter.  
 

∑
∈
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Clustering is an important parameter when we want to 
search for Web communities. In fact, it measures the 
average number of clusters in the graph. In fact, when 
<C> is not high, it is unlikely that communities can be 
found in the graph. 
 
 
3.4 Edge degree distribution 
 
Another important parameter of a network is the edge 
distribution. In a random graph this distribution is  
poissonian, i.e.  
 

( ) kNkk
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− −== 1
1 1)( . 
 

Barabasi and Rèka ([5]) have shown that in many 
networks such distribution is not uniform, but is a 
function with a tail exponentially decreasing.  
 

ii k
kkP 1)( == . 

 
Our aim is setting up a model that equalizes ontologies 
with complex networks, whose evolution is controlled 
by these parameters. 
 
Network parameters are used in the construction of 
meta-ontology [4]. We must associate to each concept 
a union of graphs. 
 
3.4 Spectrum  
 
The spectrum of a network  G  is the set of eigenvalues 
of  the matrix associated to G. In particular, as shown 
by Kleinberg in [13], the principal eigenvalue  
individuates a pair of vectors  h and a.  Probably, the 
remaining eigenvalues characterize the clustering of 

∑
∈
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the graphs. In particular, given a secondary eigenvalue 
λ , for any eigenvector v of λ there exist a pair of 
integers i and j such that  vk k≥ i  and vk k ≤ j   are a 
cluster in G ([13]). 
 

4. A graph operator for building Web 
communities.  
 
Web communities are studied in  social sciences, 
biology and computer science. The automatic 
extraction of community out of a complex network 
requires a formal definition of  community.  At present 
there is not a general agreement and several definitions 
of Web community have been proposed.  
We try to report them and recall that an N-clique is a 
subgraph G’ such that any pair of nodes in G’ is linked 
by a path of length not greater than  n.  
 
Definition 4.1 Let n be an integer. An  n-web 
community is a n-completely connected subgraph, or 
n-clique. 
 
In Figure 1 and Figure 2 several examples of Web 
communities are depicted. Figure 1 (a) is a 1-clique or 
1-Web community. Figure 1-(b) is a 2-clicque or 2-
Web community, Figure 2-(c) is a strong Web 
community and Figure 2-(d) is a weak Web 
community. 
 
Definition 4.2  Let G be a graph. A strong web 
community is a subgraph G’=(N’,E’) of G such that, 
for any i∈N’, the internal links of G’ are greater then 
the external links of G’. 
 
Finally, the following is an extension of  definition 4.2.  
 
Definition 4.3 Let G be a graph.  A weak web 
community is a subgraph G’=(N’,E’) of G such that 
the sum  of internal links in G’ is greater then the sum 
of external links in G’. 
 
We now define  an operator that, given a set of nodes S 
and the induced graph I(S), takes I(S) as input and 
yields a set of smallest web communities containing 
I(S).   
 
Definition 4.4  Given a graph G = (V,E),  we define 
the operator Com and we set Com(G) as  follows: 
Until G is a strong web Community  
Do 
 Begin   
  For any node v, let Out(n) be the number of outlinks 
of n.  
     IF Out(n) > In(n) then  

     Add  Out(n) –In(n) edges to the n+1….n+|Out(n)-
In(n)|   outside G 
   Close (N,E)  
End  
 
 
 
 
                                  
          
 
 
 
 
 
 
 
 

 
 

Figure 1. A Taxonomy of Web Communities 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. A Taxonomy  of Web Communities  
 
The operator Com transforms a graph G  into a weak 
community by adding to each node the number of  
internal edges in G necessaries to outnumber the 
external edges in G.    
 
Proposition 4.1 
 

i) Com(G) is a Web community 
ii) If G’ is a Web community and G’⊇G 

then G’ ⊇ Com(G) 
 
Proof: Immediate. 

 

                  (a)  (b) 

(c)                                     (d) 
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We immediately observe that the distribution degree  is 
not an invariant of operator Com. In other words, the 
degree distribution of the graph G, that we indicate 
with    PG,  is different from the degree distribution of 
Com(G), that we indicate with  PCom(G). To prevent this, 
we define a new –non-deterministic –operator Com’. 
 
Definition 4.5. Given a graph G = (V,E), we set 
Com’(G) as  follows:  
 
Until G is a web Community  
Do 
 Begin   
  For any node v , let Out(n) be the number of outlinks 
of n.  
     IF Out(n) > In(n) then  
     Chosed Out(n) –In(n)   n+1….n+|Out(n)-In(n)| 
according to PG 
     Add  Out(n) –In(n) edges to the n+1….n+|Out(n)-
In(n)|   outside G 
   Close (N,E)  
End  
 
The random choosing can be made as follows: 
 
Given PG, generate a pseudo-random bit a 
If a = 1 then add the node  to ComG. 
If  a = 0 then do not add the node.  
 
The random choosing is made in order to preserve the 
distribution degree  of the graph. By so doing, scale-
free networks are transformed into scale-free 
communities. The ontology affects the network  
because the network grows around the concepts of the 
ontology 
 
5. Network Parametrization of the 
Community Operator  

 
We now  analyze the operator Com with respect to the 
parameters of section 3. By so doing, we prove that the 
graph  of the community is denser  then the induced 
graph of  the seed G. 
 
Proposition 5.1  Let G be a graph. Then  
 

>>≥<< )())(( GCGComC  
Proof.    
 
By definition, we have that: 

∑
∈

>=<
Ni

iCiPC )( .  

By  construction, 
 

∑
∈
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Since  Com’(N)⊇ N  and P(i) = P’(i) we have that:  
 

∑ ∑
∈ ∈

≥
)('
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NComi Ni
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The thesis follows.  
 
Proposition 5.1 shows that the graph yield by Com is 
denser then the input graph. Clustering preservation is 
a sufficient condition for the following property: 
 
Proposition 5.2   Let W be a Web community and W ⊆ 
I(S) Then  

<C(W)>≤C(Com’(I(S))) 
 
Proof. Immediate. 
 
Proposition 5.2 says that when operator Com’ is 
applied to a set S that is mostly rarefied but contains  
some Web community W, it yields a community I(S) 
denser than W. This is  shown in Figure 2. 
 

  
                       I(S)  Com’(I(S)) 

 
Figure 3. Clustering Effects. 

 
Figure 3 shows the clustering effects of the operator 
Com’ on Web communities: we can see that 
community Com(W) is still a community but is denser 
then W. 
Network parametrization shows that both operators 
Com and Com’ can be used to equalized scanty seeds.   
 
 
6. Conclusions 
 
We have introduced a methodology –complex network  
parametrization- that studies  the evolution of complex 
networks and we have constructed an operator on 

W

Com(W) 
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graphs. The purpose of our operator is equalizing meta-
ontologies in our model [4]. In particular, operator 
Com transforms a  scattered  group of  web sites -seed- 
associated to a (very) important concept of an ontology 
into a robust and dynamic complex network. 
We must now investigate the behaviour of the seed  
with respect to other graph operators, according to the 
relaxed definition of Web Community.  
We recall that our main goal is developing a 
computational model of network evolution controlled 
by network parametrization and interfaceable  with 
ontologies.   
Effective tools for ontologies construction must 
operate on “good networks”. Therefore a necessary 
condition for building these tools is being able to 
discern “good” networks.  We know that a scattered 
network is not a good network. Therefore, clustering is 
a parameter that characterizes a good network. Many 
scale-free networks have proven to be resistant to 
attacks and  therefore we need an operational 
characterization of this notion. For example, in [17] the 
distribution degree of a scale-free network has been 
related to the percolation threshold, but for a finer 
grasping of clustering, we need definitions based on 
network entropy.  
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