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Abstract—Mining patterns in large databases is a challenging
task facing NP-hard problems. Research focused attention on
the most occurrent patterns, although less frequent patterns
still offer interesting insights. In this paper we propose a new
algorithm for discovering infrequent patterns and compare it
to other solutions.

I. INTRODUCTION

Mining patterns in business transactions, time-series, ge-

netic records, and many other kinds of data is a basic step in

formulating hypotheses and discovering associations among

values, i.e. items. For instance, the market basket analysis

in the retail business is aimed at discovering which products

tend to be bought together in order to capture the purchase

behavior of customers, to understand their needs, to develop

cross-promotional programs, to acquire new buyers or, more

in general, to improve business performances. In order to do

this, generally analysts look at the most recurrent patterns,

although also looking at the least frequent co-occurrences

can provide interesting insights, regarding smaller but not

less interesting groups.

Recently, an increasing importance is given to the dis-

covery of those patterns which are infrequent, such as

in identifying fraudulent credit card transactions, learning

word pronunciations, predicting pre-term births, predicting

telecommunication equipment failures, linking cancer to

medical tests, and detecting oil spills from satellite images

[1]. In market basket analysis, some sets of items, such

as peanut butter and jelly, occur frequently and can be

considered common cases. Other associations may be ex-

tremely rare. For example, food processor and cooking pan

will be an extremely rare association in a supermarket, not

because the items are unlikely to be purchased together, but

because no item is frequently purchased in a supermarket

[2]. Non-frequent itemsets can unveil interesting business

opportunities and niche markets. Indeed, rare data associa-

tions appearing infrequently in a database, for example in

only 1% of transactions, become interesting to analyze in a

database of 100K transactions as this means 1000 cases.

The problem of identifying rare or infrequent patterns is

known to be complex as much as the problem of discovering

frequent patterns. In literature both problems have been

faced by several authors and some algorithms have been

proposed. In this paper, we discuss issues related to mining

rare itemsets and present a new algorithm, named Rarity, for

discovering them in large databases. The remaining of this

paper is organized as follows: In Section 2 we provide some

preliminary definitions, in Section 3 we discuss the problem

of discovering frequent and infrequent itemsets, in Section 4

we introduce the Rarity algorithm, describing main features

and strategy; in Section 5 we illustrate experimental results

in comparing the algorithm to other solutions; in Section 6

we point out some open issues and future directions.

II. PRELIMINARIES

A transaction is a record of one or more items collected

from a finite item domain, and a dataset is a collection of

transactions. An itemset is a non-empty subset of items.

According to R. Agrawal, T. Imielinski, and A. Swami [3]

support is defined as the number of itemset occurences in

the dataset. Itemsets whose support is higher than a given

threshold are defined as frequent. On the contrary, we define

as rare (or infrequent) itemsets those that are not frequent,

thus with support below the given threshold.

The main property of support is antimonotonicity entailing

that all subsets of a frequent itemset are also frequent. On

the opposite, this means that all supersets of an infrequent

itemset are infrequent themselves. For instance, if ABC
is a frequent itemset, subsets {AB, BC, AC, A, B, C} are

also frequent itemsets. At the same time, if an itemset RS
is infrequent, its superset RST is infrequent as well. As

proven by Yang [4] the problem of counting the number of

distinct maximal frequent itemsets in a dataset, given an ar-

bitrary support threshold, is NP-complete and the problem of

mining maximal frequent itemsets is NP-hard. Complexity

comes out from the need of traversing the itemset power set

lattice. Antimonotonicity can be used to find the downward

closure of the power set lattice of frequent itemsets, thus

to prune the search space. As the set of infrequent itemsets

is complementary to the set of frequent itemsets, counting

and mining rare itemsets are still NP-complete and NP-hard

respectively.
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Figure 1. The power set lattice of dataset D, shown on the table at the left

III. MINING FREQUENT AND RARE ITEMSETS

A primer algorithm to discover frequent itemsets in a

database is the Apriori algorithm proposed by Agrawal and

Srikant [5]. This algorithm is level-wise, as it considers

itemsets with different cardinality at each step. At step

k frequent itemsets having k items are available in Fk.

Each step is made of two phases. First, (k + 1)-itemsets

are generated from elements in Fk. Then their support is

computed by scanning the dataset, discarding those itemsets

whose support is below the threshold. The result is the list

of frequent itemsets Fk+1. The algorithm stops when Fk+1

is empty or k = lm that is the maximum itemset length.

Resulting frequent itemsets are obtained by merging lists

Fk with k = 1..lm.

Although the Apriori algorithm is able to prune large

parts of the search space, it can be still computationally

expensive on large databases, and several improvements to

the way frequent itemsets are processed and stored (e.g. see

reference [6]). Most of them address the problem of making

Apriori parallel. This is the case of Parallel CD algorithm

[7] that performs the search of frequent itemsets exploring

a spectrum of trade-offs between computation, communi-

cation, memory usage, synchronization and availability of

some specific information.

Since Apriori requires a database to be scanned several

times and the number of scans cannot be determined in

advance, Savasere, Omiecinski, and Navathe [8] propose a

new algorithm called Partition in order to overcome these

limitations. The algorithm is executed in two phases and

requires to scan the database only twice. In phase I, the

database is split into a number of non-overlapping partitions

which are considered one at a time and all frequent itemsets

for that partition are generated. At the end of phase I,

frequent itemsets are merged in order to generate a set of all

potential frequent itemsets. In phase II, the actual support

for these itemsets is computed and frequent itemsets are

identified.

Apriori-like methods have another drawback: they may

need to generate a huge number of candidate sets. Therefore

Han et al. [9] came up with a solution based on compact

tree structure, named FP-Tree, on which to apply a partition-

based divide and conquer mining strategy. This approach has

proved to perform faster than other techniques.

More recently some authors investigated the problem

of mining rare itemsets [10], [11]. As an example, let

us consider the case depicted in Fig.1. In particular we

consider a dataset D populated by 5 records. Each record

represents a transaction involving a certain number of items

identified by capital letters (i.e. A − E). Itemsets can be

mapped over the power set lattice depicted in the figure.

The support is given by the number on the right side of

each itemset. In order to mine rare itemsets, algorithms can

implement different strategies aimed at moving across the

lattice looking for those itemsets with a support below a

threshold (i.e. min support). Antimonotonicity suggests a

means for mining rare itemsets.

Koh and Rountree [10] proposed Apriori-Inverse as a

variant for discovering sporadic rules by discarding all

itemsets above a maximum support threshold. This algorithm

is much faster than Apriori in finding perfectly rare itemsets,

that are a subclass of rare itemsets containing itemsets whose

all subsets are rare. In general a rare itemset can still have

frequent subsets. In order to search the whole class of rare

itemsets, Szathmary, Napoli and Valtchev [11] proposed an

algorithm called ARIMA (A Rare Itemset Miner Algorithm)

that is not restricted to perfectly rare itemsets.

ARIMA introduces a taxonomy for the itemsets. First,
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the class of rare itemsets is split between rare itemsets

with support 0 and rare itemsets with non-zero support. A

minimal rare itemset is an itemset whose sub-itemsets are

all frequent; instead a maximal frequent itemset is a frequent

itemset whose super-itemsets are all rare. A minimal or

key generator is an itemset whose sub-itemsets differ by

support; a minimal zero generator, is an itemset with support

0 and non-zero support sub-itemsets. In order to find rare

itemsets, it is sufficient to identify the minimal rare itemsets

and related super-itemsets as they will be surely rare. After,

because rare itemsets with support 0 are not of interest, the

algorithm can stop when a minimal zero generator is found.

The support is simply computed by scanning the dataset and

counting the itemset occurrences. ARIMA aims at identify-

ing the borderline which separates the frequent itemsets from

the rare. The borderline is drawn by identifying the maximal

frequent itemsets and the minimal rare itemsets. The strategy

ARIMA follows is to start from the bottom of lattice and to

move upwards in order to reach the limit of rare itemsets. All

itemsets above that limit belong to the class of rare itemsets.

In other terms, ARIMA implements a levelwise bottom-up

approach, computing the itemset support by scanning the

dataset at each level.

Therefore ARIMA presents the following limitations: (i)

if there exist few rare itemsets they will probably be on the

top of the lattice, thus a bottom-up approach can be not so

efficient, (ii) some rare itemsets have a support equal to 0

and thereby these itemsets are not in the database, (iii) the

database is scanned once per level during the execution of

the algorithm in order to evaluate the support.

IV. RARITY ALGORITHM

Due to considerations above, the Rarity algorithm imple-

ments a different strategy. It starts by identifying the longest

rare itemsets on the top, and moves downwards the power set

lattice cutting itemsets resulting as frequent, and developing

only those that are confirmed to be rare. Indeed, as described

in Section 2, a frequent itemset entails sub-itemsets that are

necessarily frequent. Differently, rare itemsets can provide

sub-itemsets that are possibly but not necessarily rare.

In order to implement this strategy, the algorithm requires

two data structures, namely (i) the candidate list C and (ii)

the veto list V .1 The candidate list as aimed at collecting

itemsets that are possibly rare, whilst the veto list contains

known frequent itemsets. Both lists are organized by levels,

so that C(l) and V (l) refer only to itemsets long l. In

addition, a list R containing all resulting rare itemsets is

also considered. Pseudo-code is outlined by Algorithm 1.

The algorithm initializes the candidate list going through

the database, inserting and counting each record long l
in C(l), as each record identifies a possible rare itemset.

1For the sake of simplicity, we refer to them as lists, although they are
actually sets as they do not admit duplicates.

Algorithm 1 Rarity pseudo-code

1: lm = max len(t) ∀t ∈ D
2: for all record t ∈ D do
3: add t to C
4: end for
5: for l = lm..1 do
6: if C(l) �= ∅ then
7: for all is ∈ C(l) do
8: if supp(is) > min supp then
9: remove is from C(l)

10: add is to V (l)
11: else
12: add is to R(l)
13: if len(is) > 1 then
14: for all sub ∈ subsets(is) do
15: if sub /∈ V then
16: add sub to C
17: vsub = vsub + vis

18: end if
19: end for
20: end if
21: end if
22: end for
23: for all is ∈ V (l) do
24: if len(is) > 1 then
25: for k = l − 1..1 do
26: for all c ∈ C(k) do
27: cis = c

⋂
is

28: remove cis from C, if cis ∈ C
29: add cis to V
30: end for
31: end for
32: end if
33: end for
34: end if
35: end for

The veto list V is initially empty. The algorithm starts by

considering the longest itemsets in C(lm), where lm =
argmaxC(l)|C(l) �= ∅. For each l = lm..1, the algorithm

considers the candidate itemset ci ∈ C(l). If supp(ci) is

known to be greater than threshold t, it is considered as

frequent then moved into veto list V (l). Differently, ci is

rare, therefore inserted into the rare list R. In addition, sub-

itemsets long l − 1 are possibly rare, then inserted into

C(l−1). After, the veto list V (l) is scanned and each known

frequent itemset fj ∈ V (l) is compared to shorter candidates

gk ∈ C(h) with h < l, and intersection ejk = fj ∩ gk is

determined in order to find a common sub-itemset. As ejk

is known to be frequent as derived by fj , thus it is moved

to (or inserted into it has never been considered as far) the

veto list V (ljk) where ljk = length(ejk). The last level that
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is considered by the algorithm is l = 1 made of singletons,

even though the algorithm stops early when C(l) is empty.

Figure 2. Execution of the Rarity algorithm

Rarity performs an efficient computation of support. Each

itemset contributes by its occurrences to the support of each

sub-itemset, as shown by Fig.1. In particular we can write

vis =
∑

i∈P (is)

vi (1)

where i is a generic itemset belonging to the set of is’s

super-itemsets P (is). Vector v takes into the account the

contribution to the itemset’s support provided by super-

itemsets at different level. This contribution arrives to the

itemsets by different paths on the lattice. The number of

paths, which depends on the level difference between the

itemset and the super-itemset, is (l − h)!. In addition the

element of v related to the level of is holds its own

occurrences.

Figure 3. Computation of vector v and support

Therefore, the support of is can be computed as

supp(is) =
lm∑

h=lis

vis(h)
(h − lis)!

(2)

where lis is the is’s length, whilst lm is still the maximum

itemset length as contribution is no further provided. This

entails Rarity considers an additional data structure holding

the support vector v for each itemset. When a candidate is

evaluated, all contributions to its support are available in v,

and support can be computed according to Eq.2.

Figure 4. Algorithm processing at l = 3

So Rarity is able to pass through the database only once

at initialization time, differently by Arima. This feature

comes with other optimizations in order to improve overall
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Figure 5. Application of example

performances. For instance, at level l the algorithm skips

the whole step, thus with no scan of the veto list V (l),
if the candidate list C(l) is empty. Indeed, if there is no

candidate ci ∈ C(l), the itemsets into V (l) have been

necessarily obtained as intersection with longer candidate

itemsets, already considered. In other words, a new frequent

itemset to be at level l, it would be necessarily first a

candidate, making the candidate list C(l) not empty. This

suggests a further optimization: the only itemsets in V (l)
required to be considered for intersection are those newly

determined as frequent at step l.

The execution of Rarity on dataset D (Fig.1) with

min supp = 3 is illustrated in Fig.2. The algorithm first

performs one database scan to initialize its structures (C,

V , R). So in the C list are added the itemsets stored in

the dataset. After, Rarity starts by exploring each level l.
Since there no exist a 5-itemset in the database, C(5) is

empty so rarity starts analyzing the 4th level. It calculates

the support (Eq.2) of ABDE and ABCE and since it is

less than min supp the itemsets are copied to R and the

subsets are generated and inserted into C. The same happens

at the 3rd level. The elements in C(3) are scanned and two

of them (ABE and BCE) are moved into V . This entails

Rarity scans the itemsets in V (3) in order to inhibit them.

So, after the scanning of V , AB, BE, AE, BC, CE (which

are the subsets of ABE and BCE) are moved to V .

In Fig.3 is also shown how Rarity calculates vsub. The

example illustrates the value of vAC . At the initialization

time vAC is vAC,init. When Rarity scans C(3) and analyzes

ABC, since this itemset is rare, Rarity must induce ABC’s

v to AC as when Rarity analyzes ACE. So according with

Eq.1 we obtain the new value of vAC . When Rarity scans the

2nd level, the elements in C(2) are all rare so they are copied

to R and then scanning V (2) rarity inhibits singletons A,

B, E, C. Finally, Rarity scans C(1). D is the only itemset

and since its support is less than min supp it is copied

into R. In particular, Fig.4 shows the execution of algorithm

when l = 3. When support of all itemsets in C(3) has been

evaluated, frequent itemsets are moved into veto list V (3),

whilst the others are moved into R. After, the algorithm

generates the candidate with l = 2 which are subsets of rare

itemsets whose length is equal to 3. The result of intersection

between C(2) and V (3) is the list of frequent itemsets which

are moved from C(2) to V (2) (in the case study depicted

in Fig.4, these itemsets are AB, AE, BE, BC and CE). In

Fig.5 we show the result of the example described in Fig.2

and in Fig.3. In this case study the number above the nodes

represents the occurrences of each subset in the dataset D.

V. EXPERIMENTAL RESULTS

In our experiments we compared Rarity to ARIMA [11].

Both Rarity and ARIMA have been made available in Java

as components of the same framework.

Figure 6. Execution Time: ARIMA and Rarity

Experiments were carried out on Intel Xeon 2.66 GHz

machine with 4 GB of RAM running Windows Server

2003 Enterprise Edition Service Pack 2. For experimen-

tation we randomly generated 200 datasets differing by

the number of rows and the maximum number of items

in a transaction. In particular we generated dataset with

a number of rows ranging from 1000 to 10000 and with

maximum transaction length of 5, 10, 15, and 20 items,

each configuration considered 5 times. For the support

threshold we assumed different values of min supp: specif-

ically 0.1%, 0.5%, 1.0%, 5.0%, 10.0% of the dataset size

and 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80 occur-

rences. Fig.6 compares the execution time of ARIMA and
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Figure 7. Memory Occupation: ARIMA and Rarity

Figure 8. Memory vs. Time: Rarity and ARIMA

Rarity. The comparison in memory usage is outlined in

Fig.7. All figures highlight Rarity to be faster at expenses

of memory usage, whilst ARIMA is slower with a smaller

memory footprint. This result becomes more evident by

plotting time versus memory as depicted in Fig.8. In Fig.9

we provide the speed ratio of Rarity vs. ARIMA at varying

the number of rare itemsets. We notice that Rarity speedup

decreases when the number of rare itemsets increases, al-

though it is constantly greater than 1.

The same analysis has been performed on absolute support

thresholds. Fig.10 and Fig.11 respectively compare execu-

tion time and memory usage. In this case, itemsets become

extremely rare, and Rarity performances become spreader in

time, using more memory in general as depicted in Fig.12.

This outcome is confirmed by Fig.13 related to Rarity speed

vs. ARIMA one.

VI. CONCLUSIONS AND FUTURE WORK

We presented a new approach for mining rare itemsets

in large databases. The described algorithm, differently

from existing implementations, uses a top-down strategy in

traversing the power set lattice as rare itemsets generally

occupy the top. In order to evaluate the solution proposed,

Figure 9. Speed ratio: Rarity vs. ARIMA

Figure 10. Extremely rare itemsets. Execution Time: ARIMA and Rarity

we compared performances with ARIMA. Experimental

results highlight Rarity to be faster than ARIMA in the

most of cases, but it requires more memory. When the

support threshold becomes extremely low compared to the

dataset size, the comparison between the two algorithms

become unpredictable. This is caused by the larger number

of intersections between frequent itemsets found at each

level and candidates stored at the following levels. This

leads to an optimization aimed at reducing the number

of subsequent itemsets to evaluate. This optimization is

based on the condition that an itemset is already known

to be frequent as obtained as subset of a larger frequent

itemset. Finally, we are planning to apply this algorithm to

some business cases. In particular, we aim to discover non-

frequent patterns in customer purchasing behavior in order

to identify new and unexploited business opportunities. As

databases involve millions of transactions (e.g. 20Mln daily

transactions, 2Mln money orders per day, 250.000 parcel

deliveries per day, etc.) made of a large number of items (e.g.

10.000 different items sold by PosteShop, etc.), the mining

of rare itemsets is demanded to face feasibility of solution,

thus leading to a parallel implementation of algorithms.
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Figure 11. Extremely rare itemsets. Memory Occupation: ARIMA and
Rarity

Figure 12. Extremely rare itemsets. Memory vs. Time.
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