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Abstract 
 
Proteins can be grouped into families according to 
some features such as hydrophobicity, composition or 
structure, aiming to establish common biological 
functions. This paper presents a system that was 
conceived to discover features (particular sequences of 
amino acids, or motifs) that occur very often in 
proteins of a given family but rarely occur in proteins 
of other families. These features can be used for the 
classification of unknown proteins, that is, to predict 
their function by analyzing their primary structure. 
Experiments were done with a set of enzymes extracted 
from the Protein Data Bank. The heuristic method used 
was based on Genetic Programming using operators 
specially tailored for the target problem. The final 
performance was measured using sensitivity (Se) and 
specificity (Sp). The best results obtained for the 
enzyme dataset suggest that the proposed evolutionary 
computation method is very effective to find predictive 
features (motifs) for protein classification.   
 
1. Introduction 
 

This paper proposes a computational tool based on 
an evolutionary computation technique, more precisely 
a genetic programming method, specially devised for 
the automatic discovery of protein motifs using as 
input the primary structure of proteins.  

Proteins are responsible for several functions such 
as: transport of small molecules, sustentation, 
regulation, increase of reaction speed and others. 
Biological organisms have thousands of different types 
of proteins, which are constituted basically of amino 
acids linked in linear chains through peptide 
connections. The amino acid sequence of a protein, 
also called primary structure, is inextricably linked to 
its function [1]. Active intra-molecular forces like 
covalent peptide bonds and disulfide bonds cause 

proteins to assume specific three-dimensional shapes 
that are directly related to their biological functions [2]. 
Proteins are grouped into super families, families and 
subfamilies according to these biological functions 
[3,4,5].  

Despite the existence of several methods to solve 
the protein function prediction problem [6,7], it still 
remains one of the main challenges in the current 
post-genomic era. 

The proposed tool – MAHATMA – finds sequences 
of amino acids (features or motifs) that occur very 
often in proteins of a given class (family) but rarely 
occur in proteins of other classes. Those discovered 
motifs can be further used for the characterization of 
families of proteins as well as for the automatic 
classification of unknown-class proteins.  
 
2. Method 

 
Genetic programming [8, 9] was used mainly for its 

ability to perform adaptive and robust searches. 
Besides, as an evolutionary computation technique, it 
operates in parallel over a population of candidate 
solutions, allowing a simultaneous exploration of 
different regions of the search space in the solution 
domain. This characterizes a global search, less likely 
to get trapped in local optima, by comparison with 
many local-search methods. 
 
2.1. Basic algorithm and individual 
representation 
 

MAHATMA – Memetic Algorithm-based Highly 
Adapted Tool for Motif Ascertainment – is a genetic 
programming (GP) based tool [8, 10].  In GP – like in 
other types of evolutionary algorithms – each 
individual corresponds to a candidate solution to the 
target problem. In this work the goal of the GP method 
is to find a set of rules combining protein motifs 
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which, when used as predictive features, lead to a high 
protein-classification accuracy. In this work, an individual 
is represented by a tree (Figure 1). There are three kinds of 
nodes: root node, intermediate nodes and leaf nodes. The 
root and intermediate nodes represent the logical 
operations: and, or and not. The leaf nodes are variable-
length sequences of amino acids representing candidate 
protein motifs. 
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Figure 1. MAHATMA individual representation 

Hence, each individual represents the antecedent (IF 
part) of an IF-THEN classification rule consisting of a 
motif formed by applying logical operations to amino acid 
sequences. For instance, the individual shown in Figure 1 
can be read as the rule antecedent: IF “(a protein has the 
aminoacid sequence MD or MM) and (a protein has the 
aminoacid sequences LQE and IGA)”.  

The class predicted by the THEN part of a rule is 
computed by using a deterministic procedure that assigns 
the best possible class to the rule (individual), to be 
explained later. 

Figure 2 presents MAHATMA’s flowchart. 
 

2.2. Selection Method and Genetic Operators 
 

The system uses stochastic tournament selection, which 
works as follows [11]. First, k individuals are randomly 
drawn from the current population, with replacement, 
where k is determined as a percentage of the population 
size. In this work, k is 3% of the population size (this is a 
user-defined parameter). Then, the k individuals are 
prompted to “play a tournament”, where the probability of 
an individual to win the tournament is proportional to its 
fitness value. A copy of the winner of a tournament is then 
passed on, as a parent, to genetic operators such as 
crossover and mutation. Notice that each tournament 
selects just one parent, so that the tournament selection 
procedure has to be called N times to produce N parents, 
where N is the population size. The choice of k must be 
done carefully, since this parameter modulates the degree 
of the selective pressure. The larger k, the higher the 
selective pressure will be, possibly leading the algorithm to 
stick rapidly in a “local maximum”. On the other hand, a k 
too small will impose no selective pressure, turning the 
method into a random search. 
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Figure 2. MAHATMA flowchart 

 
We emphasize that MAHATMA has two kinds of 

operators: structural operators (usual in GP [8]) and leaf 
operators (based on genetic algorithms [13]). The 
structural operators are: reproduction, crossover, mutation, 
editing and encapsulation.  

The reproduction operator just copies a selected 
individual to the next generation. The encapsulation keeps 
the best M motifs found throughout the evolutionary 
process, where M is a user-defined parameter. In other 
words, the encapsulation operator identifies a potentially 
useful subtree and gives it a tag so that it can be referenced 
and used later. 

The leaf operators modify the sequence of amino acids 
by genetic operators (e.g. crossover and mutation) in order 
to produce offspring [12, 13].  
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2.2.1. Structural Operators. These operators modify an 
individual’s structure. MAHATMA´s structural mutation 
introduces random changes in structures. For example, in 
the “current generation” structure in Figure 3, the AND at 
the intermediate node is selected as the mutation point. A 
subtree is randomly generated and inserted at that point, to 
produce the “next generation” structure. 
 

AND

AND

MM LQ IG IGA NAL

ILQOR OR

LEE LVI

Mutation

Current Generation Next Generation

Selected 
node Generated 

tree

AND

MM LQ IG

ILQOR

 

Figura 3. MAHATMA structural mutation operator 

The structural crossover operator produces new 
offspring taking parts from each of the two parents. It is 
also called sexual recombination. For example, in the 
“current generation” structure in Figure 4, one random 
point in each parent is select. Each of these points is a 
rooted subtree crossover point. Figure 4 “next generation” 
shows the two offspring resulting from crossover. 
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Selected 
nodes

Crossover
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AND
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AIWOR AND
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OR

FAA

NNPNOT OR

DM KG  

Figure 4. MAHATMA structural crossover operator 

Edition is an asexual operator and it recursively applies 
a set of simplifying operations in order to optimize the 
rule. If any function has no side effects, the edition 
operator will evaluate that function and replace it with the 
value obtained by the evaluation. Figure 5 shows an 
example of this operator. 
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Current Generation Next Generation

MM ILQNOT

NOT

 

Figure 5. MAHATMA edition operator 

 
2.2.2. Leaf Operators. These operators modify the 
contents of leaf nodes (sequences of amino acids 
representing motifs). MAHATMA uses the classical one-
point crossover, where a crossover point is randomly 
selected and then the two parents swap their genetic 
material from the crossover point up to the right-hand end 
of the individual [10]. Notice, however, that this kind of 
crossover was originally designed for a fixed-length 
individual representation, unlike the variable-length motif 
representation used in this work. Therefore, this work has 
adapted the conventional one-point crossover to a variable-
length representation, as follows. The crossover point 
(which is still randomly generated) indicates the 
percentage of the genome of each parent where the 
swapping of genes starts. The percentile (relative position) 
is the same for both parents, but the actual (absolute) 
position where the gene swapping starts can be different, 
since the parents can have different numbers of genes. This 
is illustrated in Figure 6, where the crossover percentage is 
60%. The absolute position of the crossover point for each 
parent is computed by multiplying 0.6 by the number of 
genes of the parent and rounding up the result. This results 
in crossover points at positions 4 and 5 in the first and 
second parents, respectively. The genetic material being 
swapped is shown in Figure 6. 

 

R A Y L E G T H E A T R L C W

R A Y R L C W H E A T L E G T

(a)

(b)  
Figure 6. One-point crossover between variable-length 

parents: (a) original parents, (b) offspring 

The crossover operator introduced here also has another 
feature that distinguishes it from conventional crossover 
operators. This feature consists of monotonically 
increasing the fitness of the children with respect to their 
parents, and it was introduced to eliminate the potentially-
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destructive effect of crossover (which can produce 
offspring with fitness worse than the parents). This idea 
works as follows. After crossover has been done, all the 
corresponding four individuals (two parents and two 
children) are compared to each other and the best two 
individuals are passed to the next population, no matter 
whether the individuals being passed are parent or 
offspring.  

This work introduces four kinds of mutation operators 
tailored for the variable-length sequence of amino acids 
represented by each individual, as follows: 
a) Addition to the Left (AE) – a letter – representing an 
amino acid – is randomly generated and inserted into the 
leftmost end of the sequence of amino acids; 
b) Addition to the Right (AR) – analogous to AE, with the 
difference that the new amino acid is inserted into the 
rightmost end of the sequence of amino acids; 
c) Multiple Mutations (MM) – each of the amino acids 
from a randomly-generated starting position up to the end 
of the sequence is replaced by another randomly-generated 
amino acid. The starting position can be any position in the 
sequence except the first and the last positions.  
d) Removal (RM) – the amino acid in a randomly-chosen 
position is removed from the sequence. Notice that after 
removal of an amino acid the sequence will still have at 
least three amino acids. If this condition is not met then 
this operator is not applied, and another mutation operator 
is applied instead. 

These mutation operators also have the feature of 
monotonically increasing the fitness of offspring with 
respect to the parents, as explained for the crossover 
operator. That is, if the fitness of the offspring is worse 
than the fitness of the parent then the offspring is thrown 
away and the parent is passed to the next generation. 

The system also has an extra genetic operator designed 
specifically for the target problem. This operator, called 
the expansion operator, performs a kind of local search in 
the solution space, so that the MAHATMA can be 
considered a hybrid method or a memetic algorithm [14]. 
The expansion operator works as follows. 

The basic idea is to increase the length of the motif 
represented by an individual – making that motif more 
specific to a given class – while at the same time 
increasing the motif’s ability to discriminate between 
different classes of proteins. The operator starts by 
randomly selecting a protein among those that contain the 
motif represented by the individual to be expanded. (If 
there is no protein with that motif, the operator is not 
applied.) The selected protein is then used as a source of 
amino acids to be inserted into the individual, as follows.  

First, the amino acid which is located immediately to 
the left of the motif in the protein is inserted into the 
leftmost end of the individual’s sequence of amino acids, 
and the individual’s fitness is recomputed. If the new 
fitness is worse than the previous one, then this operation 

is undone – i.e. the just-added amino acid is removed from 
the individual’s sequence of amino acids – and the 
expansion based on the current protein is terminated. 
Otherwise the just-inserted amino acid is kept in the 
individual, and the process continues. Next, the amino acid 
which is located immediately to the right of the motif in 
the protein is inserted into the rightmost end of the 
individual’s sequence of amino acids, and the fitness of the 
individual is recomputed. Again, if the new fitness is 
worse than the previous one, this operation is undone and 
the expansion based on the current protein is terminated. 
Otherwise the just-inserted amino acid is kept in the 
individual, and the process continues. This process is 
repeated, considering amino acids that are 2,3,…., 
positions away from the motif in the current protein, 
alternating between amino acids to the left and to the right 
of that motif, until an attempt to further expand the 
individual would lead to a reduction in its fitness. 

Next, this process is repeated for all other proteins that 
also contain the individual’s motif and that belong to the 
same class as the class of the protein that was used in the 
first step of the operator.  

Hence, the expansion operator aims at generating the 
longest (most specific) motif for a given class, but notice 
that the expansion process never decreases the fitness of 
the individual being expanded. Therefore, this operator 
also has the feature of monotonically increasing the fitness 
of the offspring with respect to its parent, like the 
crossover and mutation leaf operators. 
 
2.3. Fitness Function 
 

As mentioned earlier, an individual represents a protein 
motif that will be used as a predictor attribute by a given 
classification algorithm. Since the goal is to maximize 
classification accuracy, the quality of a motif is determined 
by its ability in discriminating enzymes of different 
classes. That is, ideally a motif should represent an amino 
acid sequence that occurs in many proteins of a given class 
and in no (or few) proteins of other classes. The fitness 
function was designed to take this basic principle into 
account. Hence, the fitness of an individual (motif) is 
computed as follows. 

At first, MAHATMA computes, for each class i, 
i=1,…,6 (for the enzyme dataset used in this work), the 
relative frequency of occurrence of the motif in that class. 
This is simply the number of proteins of the i-th class 
where the motif occurs in the protein’s primary sequence. 
Secondly, the EA computes, for each class i, a measure of 
the ability of the motif to discriminate between class i and 
the other classes, denoted Disci and given by the equation 
1, where Fi is the relative frequency of the individual’s 
motif in the i-th class, n is the number of classes (n = 6 in 
this work), and k is the number of classes that contain at 
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least one protein whose primary sequence contains the 
individual’s motif. 
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Equation 1. Fitness function 
 
The rightmost term of the formula simply computes the 
average relative frequency of the motif in all the (n – 1) 
classes j with j�i. This term is subtracted from 1, so that 
the term between square brackets is to be maximized – the 
higher its value, the better the value of Disci. Similarly, the 
value of Fi (the first term of the formula) is also to be 
maximized, so that a high value of Disci means that the 
motif occurs very often in class i but rarely in the other 
classes. 

Finally, once the value of Disci has been calculated for 
all classes i, i=1,…,n, the motif is associated with the class 
i that has the largest value of Disci, and that value is 
considered the fitness of the individual.  

Hence, the motif is considered as a characteristic 
pattern of proteins belonging to class i. In other words, the 
occurrence of that motif in a protein of unknown class will 
be considered, by the classification algorithm, as evidence 
that the protein belongs to class i. 
 
2.4. Result Designation 

 
As explained earlier, each individual represents a motif 

which is associated with a given class of proteins. 
Therefore, it is not enough to return, as solution found by 
the method, only the best motif found throughout the 
evolutionary process – as usual in conventional 
evolutionary algorithms. It is necessary to return a set of 
motifs, in order to perform a comprehensive classification 
of proteins into known families. In this work, we return the 
best M motifs found throughout the evolutionary process, 
where M is a user-defined parameter. 

The set of motifs returned is used for classification as 
follows. Each returned motif is interpreted as a binary 
attribute. For each protein in the data being mined, the 
value of a given attribute is true if its motif occurs in its 
primary sequence, and false otherwise. Hence, each protein 
can be described by a set of M binary attributes.  

Note that the result returned is used to create a new 
data set, containing data about the same proteins used to 
evolve the motifs, but representing those proteins at a 
higher-level of abstraction, with binary attributes 
corresponding to the presence or absence of motifs, rather 
than representing the proteins at the very low-level of 
abstraction associated with their sequence of amino acids. 
Once this new, higher-level data set has been produced, the 
next step is to apply a classification algorithm to it, in 

order to finally produce a classification model that can 
predict the class of a protein based on the motifs occurring 
in it.  

We used a well-known five-fold cross validation 
method [15]. The average error rate on the test set (unseen 
during training) over all five folds is the so-called cross-
validated error rate.  

 
3. Computational experiments 
 

The data set to be mined consists of data about 
enzymes. The data was extracted from the PDB (Protein 
Data Bank), version 102, by identifying the PDB entries 
which had an EC number. This is an enzyme code 
provided by IUBMB (International Union of Biochemistry 
and Molecular Biology). From a data mining viewpoint, 
each EC number corresponds to a class, i.e., a specific 
protein function. More precisely, the EC number consists 
of four digits, where each pair of adjacent digits is 
separated by a dot (“.”), and it specifies the chemical 
reaction catalyzed by the corresponding enzyme. For 
instance, the enzyme Alcohol dehydrogenase has the 
number EC.1.1.1.1.  

Note that this is a hierarchical classification [16, 17] 
consisting of four levels, so that the first digit represents 
the most general classes and the last digit the most specific 
subclasses. In this work we address the prediction of the 
first digit only, corresponding to the prediction of the most 
general class to which the example belongs.  

We emphasize that this is still a useful, challenging 
prediction, and other projects have also focused on the 
prediction of the first digit only – see e.g. [18]. The first 
digit can take on six different values, corresponding to the 
following six different classes: EC.1 – oxidoreductases; 
EC.2 – transferases; EC.3 – hydrolases; EC.4 – lyases; 
EC.5 – isomerases and EC.6 – ligases.  

Some of the enzymes stored in the PDB contained non-
standard amino acids, from which no useful motif can be 
discovered. Therefore, as part of our data preparation 
procedure, we have only retrieved from PDB the enzymes 
whose primary sequence has at least 30 standard amino 
acids. After this simple filtering, the total number of 
proteins retrieved from the PDB was 8,399, distributed 
across the six classes as follows: 1,483 proteins in class 
EC.1; 1,766 in class EC.2; 3,285 in class EC.3; 675 in 
class EC.4; 381 in class EC.5 and 209 in class EC.6. 
 
4. Computational results 
 

As described earlier, MAHATMA has several 
parameters. Hence, this paper describes experiments 
performed to find good values for some of these 
parameters. In these experiments the expansion operator 
was initially turned off, because this is a computationally 
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expensive operator and we wanted to perform some 
relatively quick experiments to set other parameters.  

The initial parameter settings are: number of 
generations: 20, population size: 500, structural crossover 
and mutation probability: 60% each, hill climbing: 10% 
probability, leaf crossover and mutation probabilities: 20% 
and 70%, stochastic tournament size: 3%, edition active 
and expansion deactivated. From now on these parameter 
values will be referred to as the initial values. Each result 
table reports sensitivity (Se), specificity (Sp), performance 
(P) (Se multiplied by Sp) [19] and hit rate (HR). We have 
bolded the best results (better performance). 

The first step was to find a good value for generation 
number (G) and population size (PS). The results obtained 
via 5-fold cross-validation are reported in Table 1.  

 
Table 1. Generation number and population size 

G PS Se (%) Sp (%) P (%) HR(%) 
20 500 87.28±0.12 43.35±0.31 61.51±0.21 79.03±0.74 
40 250 86.85±0.12  37.60±0.30 57.15±0.20 78.28±0.81 
50 200 86.87±0.12 42.37±0.36 60.67±0.26 77.40±1.12 
70 150 85.56±0.12 32.32±0.30 52.59±0.20 77.30±0.79 

 
The second step was to adjust structural crossover (SC) 

and mutation (SM) probabilities (%). The results are 
reported in Table 2. 

 
Table 2. Structural mutation and crossover probabilities 

SM SC Se (%) Sp (%) P (%) HR (%) 
30 60 87.17±0.12 38.37±0.32 57.83±0.22 78.68±0.99 
20 70 87.70±0.11 41.62±0.30 60.42±0.21 79.85±1.01 
10 80 86.70±0.12 36.18±0.32 56.01±0.21 77.76±0.98 
60 60 87.28±0.11 43.35±0.32 61.51±0.23 79.03±0.74 
60 30 87.18±0.11 42.09±0.32 60.58±0.23 78.40±0.92 
70 20 87.49±0.10 39.61±0.31 58.87±0.22 79.32±0.68 
80 10 88.31±0.10 42.34±0.28 61.15±0.20 81.34±0.87 
 

The third step adjusted the hill climbing (HC) 
probability (%). As shown in Table 3, higher values for 
this parameter do not assure better results. In fact, when we 
used 70%, performance decreased significantly. This 
happens because this parameter does not guarantee the 
offspring’s improvement. It simply states that a parent will 
be copied for next generation if the offspring has lower 
fitness than that parent.  

Since the experiments that generated the table 3 leaded 
to the conclusion that higher classification accuracy was 
achieved with hill climbing probability 40% - instead of 
10%, this value (40%) was used to run the experiments 
summarized in tables 4 and 5. 

 
Table 3. Hill climbing probability 

HC Se (%) Sp (%) P (%) HR (%) 
0% 87.31±0.11 42.38±0.30 60.83±0.21 79.19±0.89 

40% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
70% 87.12±0.11 38.52±0.34 57.93±0.24 77.98±0.85 

The fourth step fixed a good value for the parameter 
tournament size. This parameter was given special 
attention, because it is potentially one of the most 
important parameters of an evolutionary algorithm. The 
reason is that this parameter directly determines the 
selective pressure of the algorithm. The larger the 
tournament size, the larger the selective pressure. We have 
performed experiments with four different values of 
tournament size, namely 1%, 3%, 5% and 7% of the 
population size. The results are reported in Table 4. 

 
Table 4. Experiments to adjust the tournament size 

TS Se (%) Sp (%) P (%) HR (%) 
1% 86.85±0.14 37.60±0.34 57.15±0.27 77.87±0.89 
3% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
5% 87.10±0.14 42.31±0.39 60.71±0.31 77.99±1.08 
7% 86.94±0.13 42.43±0.37 60.74±0.28 77.05±0.71 
 
Surprisingly, the value of tournament size had little 

impact in the classification accuracy. In any case, we 
decided to fix the default value of this parameter to 3%, 
since this value led to slightly higher classification 
accuracy.  

Having fixed this parameter, the next experiment 
evaluated the influence of the expansion operator in the 
classification accuracy. The expansion operator was 
somewhat effective, leading to a slight increase of the 
classification accuracy (performance of 64.69%), but the 
processing time increased exponentially (twenty two hours 
instead of thirty seven minutes).  

Finally, we performed experiments to determine the 
influence – in the classification accuracy – of another 
important parameter of the algorithm, the number of motifs 
(NM) (or rules) used for each class. In the experiments 
reported so far this parameter was set to 5 motifs per class. 
The new experiments evaluated four different values of 
this parameter, namely 1, 5, 10, 15 and 20, which produced 
the results shown in Table 5. 

 
Table 5. Effect of number of motifs per class 

NM Se (%) Sp (%) P (%) HR (%) 
1 86.15±0.17 28.76±0.25 49.78±0.15 78.42±0.91 
5 87.26±0.16 35.68±0.27 55.80±0.16 81.19±0.87 
10 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
15 87.64±0.15 41.98±0.30 60.66±0.21 80.25±0.75 
20 87.11±0.16 41.61±0.31 60.20±0.22 81.15±0.73 

 
As it can be observed in Table 5, there was some 

variation in predictive accuracy when the number of motifs 
(rules) changed. However, three values of this parameter 
were considerably more successful than the value of 5 
which had been used in earlier experiments. Hence, it is 
important to return a larger number of motifs per class, in 
order to give more predictor attributes to the classification 
algorithm. 
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5. Results and discussion 
 

We have proposed a system based on a modified 
Genetic Programming method for motif discovery, aiming 
to classify unknown-class proteins.  

We have performed experiments to adjust the 
parameters of our method in an enzyme subset of the PDB, 
containing 8,399 enzymes, distributed across the six 
classes as follows: 1,483 proteins in class EC.1; 1,766 in 
class EC.2; 3,285 in class EC.3; 675 in class EC.4; 381 in 
class EC.5 and 209 in class EC.6. 

The proposed MAHATMA system uses not only 
conventional GP operators, but also operators specifically 
designed for the problem of finding protein motifs. Despite 
the complexity of the algorithm, the use of these problem-
specific operators was very beneficial in the sense that it 
allowed MAHATMA to reach better motifs (motifs with 
higher fitness). 

The predictive performance was measured using 
sensitivity (Se) and specificity (Sp) and best results are 
86.65±0.12 and 47.09±0.34, respectively. 

Future work includes more extensive tests of the system 
in datasets involving enzymes’ secondary structures [20] 
and comparisons with other methods. Also, it is intended 
to apply this system to alternative sets of proteins, like 
transmembranes, globins, hormones and others. 
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