
MAHATMA: a Genetic Programming-Based Tool for Protein Classification

Denise F. Tsunoda
Federal University of

Parana
dtsunoda@ufpr.br

Alex A. Freitas
University of Kent

A.A.Freitas@kent.ac.uk

Heitor S. Lopes
Federal University of

Technology
hslopes@utfpr.edu.br

Abstract

Proteins can be grouped into families according to
some features such as hydrophobicity, composition or
structure, aiming to establish common biological
functions. This paper presents a system that was
conceived to discover features (particular sequences of
amino acids, or motifs) that occur very often in
proteins of a given family but rarely occur in proteins
of other families. These features can be used for the
classification of unknown proteins, that is, to predict
their function by analyzing their primary structure.
Experiments were done with a set of enzymes extracted
from the Protein Data Bank. The heuristic method used
was based on Genetic Programming using operators
specially tailored for the target problem. The final
performance was measured using sensitivity (Se) and
specificity (Sp). The best results obtained for the
enzyme dataset suggest that the proposed evolutionary
computation method is very effective to find predictive
features (motifs) for protein classification.

1. Introduction

This paper proposes a computational tool based on
an evolutionary computation technique, more precisely
a genetic programming method, specially devised for
the automatic discovery of protein motifs using as
input the primary structure of proteins.

Proteins are responsible for several functions such
as: transport of small molecules, sustentation,
regulation, increase of reaction speed and others.
Biological organisms have thousands of different types
of proteins, which are constituted basically of amino
acids linked in linear chains through peptide
connections. The amino acid sequence of a protein,
also called primary structure, is inextricably linked to
its function [1]. Active intra-molecular forces like
covalent peptide bonds and disulfide bonds cause

proteins to assume specific three-dimensional shapes
that are directly related to their biological functions [2].
Proteins are grouped into super families, families and
subfamilies according to these biological functions
[3,4,5].

Despite the existence of several methods to solve
the protein function prediction problem [6,7], it still
remains one of the main challenges in the current
post-genomic era.

The proposed tool – MAHATMA – finds sequences
of amino acids (features or motifs) that occur very
often in proteins of a given class (family) but rarely
occur in proteins of other classes. Those discovered
motifs can be further used for the characterization of
families of proteins as well as for the automatic
classification of unknown-class proteins.

2. Method

Genetic programming [8, 9] was used mainly for its

ability to perform adaptive and robust searches.
Besides, as an evolutionary computation technique, it
operates in parallel over a population of candidate
solutions, allowing a simultaneous exploration of
different regions of the search space in the solution
domain. This characterizes a global search, less likely
to get trapped in local optima, by comparison with
many local-search methods.

2.1. Basic algorithm and individual
representation

MAHATMA – Memetic Algorithm-based Highly
Adapted Tool for Motif Ascertainment – is a genetic
programming (GP) based tool [8, 10]. In GP – like in
other types of evolutionary algorithms – each
individual corresponds to a candidate solution to the
target problem. In this work the goal of the GP method
is to find a set of rules combining protein motifs

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.14

1136

which, when used as predictive features, lead to a high
protein-classification accuracy. In this work, an individual
is represented by a tree (Figure 1). There are three kinds of
nodes: root node, intermediate nodes and leaf nodes. The
root and intermediate nodes represent the logical
operations: and, or and not. The leaf nodes are variable-
length sequences of amino acids representing candidate
protein motifs.

AND

AND

MD MM LQE IGA

OR

Root node

Intermediate nodes

Leaf nodes

Edges

�
�
�
�
�
�
�
�
�

Figure 1. MAHATMA individual representation

Hence, each individual represents the antecedent (IF
part) of an IF-THEN classification rule consisting of a
motif formed by applying logical operations to amino acid
sequences. For instance, the individual shown in Figure 1
can be read as the rule antecedent: IF “(a protein has the
aminoacid sequence MD or MM) and (a protein has the
aminoacid sequences LQE and IGA)”.

The class predicted by the THEN part of a rule is
computed by using a deterministic procedure that assigns
the best possible class to the rule (individual), to be
explained later.

Figure 2 presents MAHATMA’s flowchart.

2.2. Selection Method and Genetic Operators

The system uses stochastic tournament selection, which
works as follows [11]. First, k individuals are randomly
drawn from the current population, with replacement,
where k is determined as a percentage of the population
size. In this work, k is 3% of the population size (this is a
user-defined parameter). Then, the k individuals are
prompted to “play a tournament”, where the probability of
an individual to win the tournament is proportional to its
fitness value. A copy of the winner of a tournament is then
passed on, as a parent, to genetic operators such as
crossover and mutation. Notice that each tournament
selects just one parent, so that the tournament selection
procedure has to be called N times to produce N parents,
where N is the population size. The choice of k must be
done carefully, since this parameter modulates the degree
of the selective pressure. The larger k, the higher the
selective pressure will be, possibly leading the algorithm to
stick rapidly in a “local maximum”. On the other hand, a k
too small will impose no selective pressure, turning the
method into a random search.

BEGIN

Initialize number of generations (Gen=0),
number of rules for each class (R),

population size (PopSize)

Create initial population (P(0))

Evaluate fitness of each individual in
population P(Gen)

Initialize individuals counter (i=0)

i=PopSize?

Add 1 to
Gen

Structural
crossover?

Perform
structural
crossover

No

Yes

Update the solution list with the R best
individuals for each class

Complete population

Termination
criteria satisfied

for run?

END

Yes

Yes

Select genetic operator, considering
Cross_str_prob, Mut_str_prob,

Cross_leaf_prob and Mut_leaf_prob

No

Structural
mutation?

Perform
structural
mutation

1

Leaf
crossover?

No

Yes

Leaf
mutation?

Perform
leaf

mutation
Yes

Perform
leaf

crossover

Perform
reproduction

No

No

No

Yes

Add 2
to i

1Add 1 to i

Figure 2. MAHATMA flowchart

We emphasize that MAHATMA has two kinds of

operators: structural operators (usual in GP [8]) and leaf
operators (based on genetic algorithms [13]). The
structural operators are: reproduction, crossover, mutation,
editing and encapsulation.

The reproduction operator just copies a selected
individual to the next generation. The encapsulation keeps
the best M motifs found throughout the evolutionary
process, where M is a user-defined parameter. In other
words, the encapsulation operator identifies a potentially
useful subtree and gives it a tag so that it can be referenced
and used later.

The leaf operators modify the sequence of amino acids
by genetic operators (e.g. crossover and mutation) in order
to produce offspring [12, 13].

1137

2.2.1. Structural Operators. These operators modify an
individual’s structure. MAHATMA´s structural mutation
introduces random changes in structures. For example, in
the “current generation” structure in Figure 3, the AND at
the intermediate node is selected as the mutation point. A
subtree is randomly generated and inserted at that point, to
produce the “next generation” structure.

AND

AND

MM LQ IG IGA NAL

ILQOR OR

LEE LVI

Mutation

Current Generation Next Generation

Selected
node Generated

tree

AND

MM LQ IG

ILQOR

Figura 3. MAHATMA structural mutation operator

The structural crossover operator produces new
offspring taking parts from each of the two parents. It is
also called sexual recombination. For example, in the
“current generation” structure in Figure 4, one random
point in each parent is select. Each of these points is a
rooted subtree crossover point. Figure 4 “next generation”
shows the two offspring resulting from crossover.

AND

OR

SM MM MV DM KG

AIWOR

OR

AND

FAA IGA ILS LQE

NNPNOT

Selected
nodes

Crossover

Current Generation Next Generation

AND

SM MM MV

AIWOR AND

IGA ILS LQE

OR

FAA

NNPNOT OR

DM KG

Figure 4. MAHATMA structural crossover operator

Edition is an asexual operator and it recursively applies
a set of simplifying operations in order to optimize the
rule. If any function has no side effects, the edition
operator will evaluate that function and replace it with the
value obtained by the evaluation. Figure 5 shows an
example of this operator.

AND

AND

MM MM IGA IGA

ILQ

OR

AND

IGA

Edition

Current Generation Next Generation

MM ILQNOT

NOT

Figure 5. MAHATMA edition operator

2.2.2. Leaf Operators. These operators modify the
contents of leaf nodes (sequences of amino acids
representing motifs). MAHATMA uses the classical one-
point crossover, where a crossover point is randomly
selected and then the two parents swap their genetic
material from the crossover point up to the right-hand end
of the individual [10]. Notice, however, that this kind of
crossover was originally designed for a fixed-length
individual representation, unlike the variable-length motif
representation used in this work. Therefore, this work has
adapted the conventional one-point crossover to a variable-
length representation, as follows. The crossover point
(which is still randomly generated) indicates the
percentage of the genome of each parent where the
swapping of genes starts. The percentile (relative position)
is the same for both parents, but the actual (absolute)
position where the gene swapping starts can be different,
since the parents can have different numbers of genes. This
is illustrated in Figure 6, where the crossover percentage is
60%. The absolute position of the crossover point for each
parent is computed by multiplying 0.6 by the number of
genes of the parent and rounding up the result. This results
in crossover points at positions 4 and 5 in the first and
second parents, respectively. The genetic material being
swapped is shown in Figure 6.

R A Y L E G T H E A T R L C W

R A Y R L C W H E A T L E G T

(a)

(b)
Figure 6. One-point crossover between variable-length

parents: (a) original parents, (b) offspring

The crossover operator introduced here also has another
feature that distinguishes it from conventional crossover
operators. This feature consists of monotonically
increasing the fitness of the children with respect to their
parents, and it was introduced to eliminate the potentially-

1138

destructive effect of crossover (which can produce
offspring with fitness worse than the parents). This idea
works as follows. After crossover has been done, all the
corresponding four individuals (two parents and two
children) are compared to each other and the best two
individuals are passed to the next population, no matter
whether the individuals being passed are parent or
offspring.

This work introduces four kinds of mutation operators
tailored for the variable-length sequence of amino acids
represented by each individual, as follows:
a) Addition to the Left (AE) – a letter – representing an
amino acid – is randomly generated and inserted into the
leftmost end of the sequence of amino acids;
b) Addition to the Right (AR) – analogous to AE, with the
difference that the new amino acid is inserted into the
rightmost end of the sequence of amino acids;
c) Multiple Mutations (MM) – each of the amino acids
from a randomly-generated starting position up to the end
of the sequence is replaced by another randomly-generated
amino acid. The starting position can be any position in the
sequence except the first and the last positions.
d) Removal (RM) – the amino acid in a randomly-chosen
position is removed from the sequence. Notice that after
removal of an amino acid the sequence will still have at
least three amino acids. If this condition is not met then
this operator is not applied, and another mutation operator
is applied instead.

These mutation operators also have the feature of
monotonically increasing the fitness of offspring with
respect to the parents, as explained for the crossover
operator. That is, if the fitness of the offspring is worse
than the fitness of the parent then the offspring is thrown
away and the parent is passed to the next generation.

The system also has an extra genetic operator designed
specifically for the target problem. This operator, called
the expansion operator, performs a kind of local search in
the solution space, so that the MAHATMA can be
considered a hybrid method or a memetic algorithm [14].
The expansion operator works as follows.

The basic idea is to increase the length of the motif
represented by an individual – making that motif more
specific to a given class – while at the same time
increasing the motif’s ability to discriminate between
different classes of proteins. The operator starts by
randomly selecting a protein among those that contain the
motif represented by the individual to be expanded. (If
there is no protein with that motif, the operator is not
applied.) The selected protein is then used as a source of
amino acids to be inserted into the individual, as follows.

First, the amino acid which is located immediately to
the left of the motif in the protein is inserted into the
leftmost end of the individual’s sequence of amino acids,
and the individual’s fitness is recomputed. If the new
fitness is worse than the previous one, then this operation

is undone – i.e. the just-added amino acid is removed from
the individual’s sequence of amino acids – and the
expansion based on the current protein is terminated.
Otherwise the just-inserted amino acid is kept in the
individual, and the process continues. Next, the amino acid
which is located immediately to the right of the motif in
the protein is inserted into the rightmost end of the
individual’s sequence of amino acids, and the fitness of the
individual is recomputed. Again, if the new fitness is
worse than the previous one, this operation is undone and
the expansion based on the current protein is terminated.
Otherwise the just-inserted amino acid is kept in the
individual, and the process continues. This process is
repeated, considering amino acids that are 2,3,….,
positions away from the motif in the current protein,
alternating between amino acids to the left and to the right
of that motif, until an attempt to further expand the
individual would lead to a reduction in its fitness.

Next, this process is repeated for all other proteins that
also contain the individual’s motif and that belong to the
same class as the class of the protein that was used in the
first step of the operator.

Hence, the expansion operator aims at generating the
longest (most specific) motif for a given class, but notice
that the expansion process never decreases the fitness of
the individual being expanded. Therefore, this operator
also has the feature of monotonically increasing the fitness
of the offspring with respect to its parent, like the
crossover and mutation leaf operators.

2.3. Fitness Function

As mentioned earlier, an individual represents a protein
motif that will be used as a predictor attribute by a given
classification algorithm. Since the goal is to maximize
classification accuracy, the quality of a motif is determined
by its ability in discriminating enzymes of different
classes. That is, ideally a motif should represent an amino
acid sequence that occurs in many proteins of a given class
and in no (or few) proteins of other classes. The fitness
function was designed to take this basic principle into
account. Hence, the fitness of an individual (motif) is
computed as follows.

At first, MAHATMA computes, for each class i,
i=1,…,6 (for the enzyme dataset used in this work), the
relative frequency of occurrence of the motif in that class.
This is simply the number of proteins of the i-th class
where the motif occurs in the protein’s primary sequence.
Secondly, the EA computes, for each class i, a measure of
the ability of the motif to discriminate between class i and
the other classes, denoted Disci and given by the equation
1, where Fi is the relative frequency of the individual’s
motif in the i-th class, n is the number of classes (n = 6 in
this work), and k is the number of classes that contain at

1139

least one protein whose primary sequence contains the
individual’s motif.

�
�

�
�
	

��
�

��
�

�
�

��� �
�

�
n

j

ijj
ii k

F
FDisc

1

,

)1(
1

Equation 1. Fitness function

The rightmost term of the formula simply computes the
average relative frequency of the motif in all the (n – 1)
classes j with j�i. This term is subtracted from 1, so that
the term between square brackets is to be maximized – the
higher its value, the better the value of Disci. Similarly, the
value of Fi (the first term of the formula) is also to be
maximized, so that a high value of Disci means that the
motif occurs very often in class i but rarely in the other
classes.

Finally, once the value of Disci has been calculated for
all classes i, i=1,…,n, the motif is associated with the class
i that has the largest value of Disci, and that value is
considered the fitness of the individual.

Hence, the motif is considered as a characteristic
pattern of proteins belonging to class i. In other words, the
occurrence of that motif in a protein of unknown class will
be considered, by the classification algorithm, as evidence
that the protein belongs to class i.

2.4. Result Designation

As explained earlier, each individual represents a motif

which is associated with a given class of proteins.
Therefore, it is not enough to return, as solution found by
the method, only the best motif found throughout the
evolutionary process – as usual in conventional
evolutionary algorithms. It is necessary to return a set of
motifs, in order to perform a comprehensive classification
of proteins into known families. In this work, we return the
best M motifs found throughout the evolutionary process,
where M is a user-defined parameter.

The set of motifs returned is used for classification as
follows. Each returned motif is interpreted as a binary
attribute. For each protein in the data being mined, the
value of a given attribute is true if its motif occurs in its
primary sequence, and false otherwise. Hence, each protein
can be described by a set of M binary attributes.

Note that the result returned is used to create a new
data set, containing data about the same proteins used to
evolve the motifs, but representing those proteins at a
higher-level of abstraction, with binary attributes
corresponding to the presence or absence of motifs, rather
than representing the proteins at the very low-level of
abstraction associated with their sequence of amino acids.
Once this new, higher-level data set has been produced, the
next step is to apply a classification algorithm to it, in

order to finally produce a classification model that can
predict the class of a protein based on the motifs occurring
in it.

We used a well-known five-fold cross validation
method [15]. The average error rate on the test set (unseen
during training) over all five folds is the so-called cross-
validated error rate.

3. Computational experiments

The data set to be mined consists of data about
enzymes. The data was extracted from the PDB (Protein
Data Bank), version 102, by identifying the PDB entries
which had an EC number. This is an enzyme code
provided by IUBMB (International Union of Biochemistry
and Molecular Biology). From a data mining viewpoint,
each EC number corresponds to a class, i.e., a specific
protein function. More precisely, the EC number consists
of four digits, where each pair of adjacent digits is
separated by a dot (“.”), and it specifies the chemical
reaction catalyzed by the corresponding enzyme. For
instance, the enzyme Alcohol dehydrogenase has the
number EC.1.1.1.1.

Note that this is a hierarchical classification [16, 17]
consisting of four levels, so that the first digit represents
the most general classes and the last digit the most specific
subclasses. In this work we address the prediction of the
first digit only, corresponding to the prediction of the most
general class to which the example belongs.

We emphasize that this is still a useful, challenging
prediction, and other projects have also focused on the
prediction of the first digit only – see e.g. [18]. The first
digit can take on six different values, corresponding to the
following six different classes: EC.1 – oxidoreductases;
EC.2 – transferases; EC.3 – hydrolases; EC.4 – lyases;
EC.5 – isomerases and EC.6 – ligases.

Some of the enzymes stored in the PDB contained non-
standard amino acids, from which no useful motif can be
discovered. Therefore, as part of our data preparation
procedure, we have only retrieved from PDB the enzymes
whose primary sequence has at least 30 standard amino
acids. After this simple filtering, the total number of
proteins retrieved from the PDB was 8,399, distributed
across the six classes as follows: 1,483 proteins in class
EC.1; 1,766 in class EC.2; 3,285 in class EC.3; 675 in
class EC.4; 381 in class EC.5 and 209 in class EC.6.

4. Computational results

As described earlier, MAHATMA has several
parameters. Hence, this paper describes experiments
performed to find good values for some of these
parameters. In these experiments the expansion operator
was initially turned off, because this is a computationally

1140

expensive operator and we wanted to perform some
relatively quick experiments to set other parameters.

The initial parameter settings are: number of
generations: 20, population size: 500, structural crossover
and mutation probability: 60% each, hill climbing: 10%
probability, leaf crossover and mutation probabilities: 20%
and 70%, stochastic tournament size: 3%, edition active
and expansion deactivated. From now on these parameter
values will be referred to as the initial values. Each result
table reports sensitivity (Se), specificity (Sp), performance
(P) (Se multiplied by Sp) [19] and hit rate (HR). We have
bolded the best results (better performance).

The first step was to find a good value for generation
number (G) and population size (PS). The results obtained
via 5-fold cross-validation are reported in Table 1.

Table 1. Generation number and population size

G PS Se (%) Sp (%) P (%) HR(%)
20 500 87.28±0.12 43.35±0.31 61.51±0.21 79.03±0.74
40 250 86.85±0.12 37.60±0.30 57.15±0.20 78.28±0.81
50 200 86.87±0.12 42.37±0.36 60.67±0.26 77.40±1.12
70 150 85.56±0.12 32.32±0.30 52.59±0.20 77.30±0.79

The second step was to adjust structural crossover (SC)

and mutation (SM) probabilities (%). The results are
reported in Table 2.

Table 2. Structural mutation and crossover probabilities

SM SC Se (%) Sp (%) P (%) HR (%)
30 60 87.17±0.12 38.37±0.32 57.83±0.22 78.68±0.99
20 70 87.70±0.11 41.62±0.30 60.42±0.21 79.85±1.01
10 80 86.70±0.12 36.18±0.32 56.01±0.21 77.76±0.98
60 60 87.28±0.11 43.35±0.32 61.51±0.23 79.03±0.74
60 30 87.18±0.11 42.09±0.32 60.58±0.23 78.40±0.92
70 20 87.49±0.10 39.61±0.31 58.87±0.22 79.32±0.68
80 10 88.31±0.10 42.34±0.28 61.15±0.20 81.34±0.87

The third step adjusted the hill climbing (HC)
probability (%). As shown in Table 3, higher values for
this parameter do not assure better results. In fact, when we
used 70%, performance decreased significantly. This
happens because this parameter does not guarantee the
offspring’s improvement. It simply states that a parent will
be copied for next generation if the offspring has lower
fitness than that parent.

Since the experiments that generated the table 3 leaded
to the conclusion that higher classification accuracy was
achieved with hill climbing probability 40% - instead of
10%, this value (40%) was used to run the experiments
summarized in tables 4 and 5.

Table 3. Hill climbing probability

HC Se (%) Sp (%) P (%) HR (%)
0% 87.31±0.11 42.38±0.30 60.83±0.21 79.19±0.89

40% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
70% 87.12±0.11 38.52±0.34 57.93±0.24 77.98±0.85

The fourth step fixed a good value for the parameter
tournament size. This parameter was given special
attention, because it is potentially one of the most
important parameters of an evolutionary algorithm. The
reason is that this parameter directly determines the
selective pressure of the algorithm. The larger the
tournament size, the larger the selective pressure. We have
performed experiments with four different values of
tournament size, namely 1%, 3%, 5% and 7% of the
population size. The results are reported in Table 4.

Table 4. Experiments to adjust the tournament size

TS Se (%) Sp (%) P (%) HR (%)
1% 86.85±0.14 37.60±0.34 57.15±0.27 77.87±0.89
3% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
5% 87.10±0.14 42.31±0.39 60.71±0.31 77.99±1.08
7% 86.94±0.13 42.43±0.37 60.74±0.28 77.05±0.71

Surprisingly, the value of tournament size had little

impact in the classification accuracy. In any case, we
decided to fix the default value of this parameter to 3%,
since this value led to slightly higher classification
accuracy.

Having fixed this parameter, the next experiment
evaluated the influence of the expansion operator in the
classification accuracy. The expansion operator was
somewhat effective, leading to a slight increase of the
classification accuracy (performance of 64.69%), but the
processing time increased exponentially (twenty two hours
instead of thirty seven minutes).

Finally, we performed experiments to determine the
influence – in the classification accuracy – of another
important parameter of the algorithm, the number of motifs
(NM) (or rules) used for each class. In the experiments
reported so far this parameter was set to 5 motifs per class.
The new experiments evaluated four different values of
this parameter, namely 1, 5, 10, 15 and 20, which produced
the results shown in Table 5.

Table 5. Effect of number of motifs per class

NM Se (%) Sp (%) P (%) HR (%)
1 86.15±0.17 28.76±0.25 49.78±0.15 78.42±0.91
5 87.26±0.16 35.68±0.27 55.80±0.16 81.19±0.87
10 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
15 87.64±0.15 41.98±0.30 60.66±0.21 80.25±0.75
20 87.11±0.16 41.61±0.31 60.20±0.22 81.15±0.73

As it can be observed in Table 5, there was some

variation in predictive accuracy when the number of motifs
(rules) changed. However, three values of this parameter
were considerably more successful than the value of 5
which had been used in earlier experiments. Hence, it is
important to return a larger number of motifs per class, in
order to give more predictor attributes to the classification
algorithm.

1141

5. Results and discussion

We have proposed a system based on a modified
Genetic Programming method for motif discovery, aiming
to classify unknown-class proteins.

We have performed experiments to adjust the
parameters of our method in an enzyme subset of the PDB,
containing 8,399 enzymes, distributed across the six
classes as follows: 1,483 proteins in class EC.1; 1,766 in
class EC.2; 3,285 in class EC.3; 675 in class EC.4; 381 in
class EC.5 and 209 in class EC.6.

The proposed MAHATMA system uses not only
conventional GP operators, but also operators specifically
designed for the problem of finding protein motifs. Despite
the complexity of the algorithm, the use of these problem-
specific operators was very beneficial in the sense that it
allowed MAHATMA to reach better motifs (motifs with
higher fitness).

The predictive performance was measured using
sensitivity (Se) and specificity (Sp) and best results are
86.65±0.12 and 47.09±0.34, respectively.

Future work includes more extensive tests of the system
in datasets involving enzymes’ secondary structures [20]
and comparisons with other methods. Also, it is intended
to apply this system to alternative sets of proteins, like
transmembranes, globins, hormones and others.

6. References

[1] Lehninger A.L., Nelson D.L. and Cox M.M., Principles of
Biochemistry. 2nd ed. Worth Publishers, New York, 1998.

[2] Branden, C.I., Tooze, J. Introduction to protein structure.
Garland Publishing Inc, New York, 1999.

[3] I. Friedberg., “Automated protein function prediction – the
genomic challenge”. Briefings in Bioinformatics, vol. 7, no. 3,
2006, pp. 225-242.

[4] B. Rost, J. Liu, R. Nair, K.O., Wrzeszczynski and Y. Ofran,
“Automatic prediction of protein function”. CMLS Cellular and
Molecular Life Sciences, n. 60, 2003, pp. 2637-2650.

[5] L.J., Jensen, R. Gupta, N. Blom, D. Devos, J. Tamames, C.
Kesmir, H. Nielsen, H.H. Staerfeldt, K. Rapacki, C. Workman,
C.A.F. Andersen, S. Knudsen, A. Krogh, A. Valencia and S.
Brunak, “Prediction of human protein function from post-
translational modifications and localization features”. J. Mol.
Biol., 319, 2002, pp. 1257-1265.

[6] H. Chua, W. Sung, and L. Wong, “Exploiting indirect
neighbors and topological weight to predict protein function from
protein interactions”. Bioinformatics, v. 32, n. 13, 2006, pp.
1623-1630.

[7] X.-M. Zhao, Y. Wang, L. Chen, and K. Aihara, “Protein
function prediction with high-throughput data”. Amino Acids, v.
35, n. 3, 2008, pp. 517-530.

[8] Koza, J.R. Genetic Programming – on the programming of
computers by means of natural selection, The MIT Press,
Cambridge, 1992.

[9] Koza, J.R. Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, Cambridge, 1994.

[10] W.H. Hsu, “Genetic Programming”. Encyclopedia of Data
Warehousing and Mining. In: Wang, J. (Ed.), 2nd ed. Idea Group
Inc. Global, 2009, pp. 926-931.

[11] Banzhaf, W., P. Nordin, R.E. Keller, and F.D. Francone,
Genetic Programming: an Introduction, Morgan Kaufmann, San
Mateo, 1998.

[12] Goldberg, D.E., Genetic Algorithms in Search, Optimization
& Machine Learning, Addison-Wesley, Reading, 1989.

[13] Larose D.T., Data Mining Methods and Models, John Wiley
& Sons, Hoboken, New Jersey, 2006.

[14] Moscato, P. On evolution, search, optimization, genetic
algorithms and martial arts: towards memetic algorithms.
Technical Report Caltech Concurrent Computation Program, n.
826, California, 1989.

[15] Witten I.H., Frank E., Data mining: practical machine
learning tools and techniques, 2nd ed., Elsevier, Morgan
Kaufmann, USA, 2005.

[16] A.A. Freitas and A.C.P.L.F. de Carvalho, “A Tutorial on
Hierarchical Classification with Applications in Bioinformatics”.
In: D. Taniar (Ed.) Research and Trends in Data Mining
Technologies and Applications, Idea Group, 2007, pp. 175-208.

[17] N. Holden and A.A. Freitas, “Improving the Performance of
Hierarchical Classification with Swarm Intelligence”. In: E.
Marchiori and J.H. Moore (Eds.) Proc. Sixth European Conf. on
Evolutionary Computation, Machine Learning and Data Mining
in Bioinformatics (EvoBio-2008), Lecture Notes in Computer
Science, n. 4973, 2008, pp. 48-60.

[18] W. Weinert and H.S. Lopes, “Neural networks for protein
classification”. Applied Bioinformatics, v. 3, n.1, 2004, pp. 38-41.

[19] Lopes, H.S. Analogia e Aprendizado Evolucionário: uma
Aplicação em Diagnóstico Clínico. PhD Thesis, Brazil, 1996.

[20] K.H. Kaminska, K. Milanowska and J.M. Bujnicki, The
Basics of Protein Sequence Analysis. In: J.M. Bujnicki (Ed.)
Prediction of Protein Structures, Functions, and Interactions,
2009, pp. 1-38.

1142

