
Mining Models for Failing Behaviors

Cláudia Antunes
Department of Computer Science and Engineering

Instituto Superior Técnico / Technical University of Lisbon
Lisbon, Portugal

claudia.antunes@ist.utl.pt

Abstract— Understanding the causes for failure is one of the
bottlenecks in the educational process. Despite failure
prediction has been pursued, models behind that prediction,
most of the time, do not give a deep insight about failure
causes. In this paper, we introduce a new method for mining
fault trees automatically, and show that these models are a
precious help on identifying direct and indirect causes for
failure. An experimental study is presented in order to access
the drawbacks of the proposed method.

Keywords-mining behaviors, fault trees; pattern mining

I. INTRODUCTION
Failure models have been a reality for a long time, mostly

in areas where failures are not tolerable, like in nuclear
facilities or aviation. One of the most well-known is the
Fault Tree Analysis [15], where a logic tree is designed from
the scratch manually by domain experts. Fault trees are then
a model that makes explicit all possible causes for failure.

In educational environments such a failure model might
be of a great utility, since it could be used as a prevention
tool. For this reason, finding the causes for students’ failure
is one of the major goals in educational data mining.
Nevertheless, the research has been focused mainly on
determining students’ models (see for example [3] and [5]),
and more recently on mining frequent behaviors ([2] and
[10]). Exceptions to this general scenario are the works [12]
and [14] that try to identify failure causes. In the first case,
causes for failing in the first year at university are
determined, and in the second one, causes for failing to learn
object-oriented programming are investigated. Moreover,
and despite the expertise in the area, the manual design of
failure models is too hard, most of all due to the fact that all
the actors in the educational context are humans.

Since failure is a constant in educational environments,
we can think on identifying those models based on failure
data. In this paper, we propose a new automatic method to
design fault trees for students’ failure, based on their
evaluation results.

The rest of the paper is organized as follows: next, we
formalize the notion of fault trees and state their advantages
over traditional classifiers in the context of the educational
process. In section 3, we designed an automatic method to
construct those models and proposed an implementation of
it, by using association rules. The paper concludes with the
analysis of experimental results and some guidelines for
future work.

II. FAULT TREE ANALYSIS
A Fault Tree (FT for short) is a recursive data structure,

with the root corresponding to the failure in analysis. Its
particularity is that instead of having simple nodes
representing propositions, each internal node contains a
proposition and a logic gate. In this manner, the proposition
results from the combination of its children through the logic
gate.

Formally, a fault tree is a proposition (i.e. a pair attribute
/ value) or a triple (proposition, gate, set of fault trees).

Usually, logic gates are restricted to AND and OR gates,
but any others may be used. In this paper, we only consider
these two types of gates. Note, that an AND gate represents a
conjunction and an OR gate a disjunction. In this manner, the
first gate implies that all descendants have to be satisfied in
order to set the parent, while the OR gate only requires the
satisfaction of one of the descendants to be activated.

Consider for example, the enrolment of a student at an
under graduation subject: he is submitted to an exam
(Exam1) and has to deliver a final project (Proj). Whenever
student fails on the exam he has the opportunity to be
evaluated again (Exam2). In this case, the student is
approved if he has a grade different from F on the project
and on one of the exams. Figure 1 illustrates a fault tree that
describes the possible causes for student’s failure in that
subject: failing on the project or failing both on exams.

Figure 1. A simple fault tree for student failure.

A. Fault Trees versus traditional classifiers
Once discovered, the analysis of fault trees is simple, and

the direct and indirect causes for failure are all identified.
With such models, understanding the failure causes is easier,

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.122

1102

since each occurrence may be explained, i.e., decomposed.
For example, the FT above could be extended to include an
explanation why students fail on the project.

Reasons to consider fault trees as better failure models
than traditional classifiers, for example decision trees [8], are
several. The first reason is that decision trees are disperse
failure models, which means that for identifying failure
causes is necessary to discard all branches that end with a
non-failure classification, and analyzing the rest of them.
Indeed, decision trees do not try to capture the causes for
failure, but instead, they choose propositions that better
differentiates the instances on resulting branches, which, in
turn, makes usual the existence of several branches for the
same class.

A second, but more important, reason is that each
attribute (proposition in a node) is seemed as an observable
event that does not requires an explanation. Definitely, a
node in a decision tree is just an occurrence and its
successors are just other requirements to achieve a certain
classification value. On the other hand, in a fault tree each
depth level corresponds to an explanation for the precedent
level.

It is also important to note, that decision trees do not
distinguish temporal attributes, this is, they treat all attributes
equally, ignoring their instant of occurrence.

III. FAULT TREE CONSTRUCTION
Discovering fault trees from data requires a clear

formulation, where instances and attributes are defined
precisely.

An attribute is a variable which represents a feature or an
event. While features are static characteristics for entities,
like name and age; an event corresponds to the occurrence of
some important fact at a certain instant of time, like the grade
obtained in a test. Let I be a set of instances, A a set of
attributes, and C a set of possible classes; an instance xi from
I is described by a list of m attributes from A, ordered in
accordance to the ≺ partial order, and is represented as
xi=xi1xi2…ximci, where ci∈C corresponds to the class of xi.

The ≺ partial order is defined as follows: all feature
attributes are less than every event attribute; event attributes
are ordered according to their temporal order. Formally:

 (1)
where before is defined among temporal instants as proposed
in [7]. Note that the order among feature attributes is non-
relevant.

Given a set of instances from I and the failure value for
the class cf, the problem of finding the fault tree for cf
consists on identifying all the combinations of direct causes
for an instance to be classified as cf and simultaneously,
identifying all direct causes for those causes, recursively,
considering only preceding attributes according to the partial
order ≺.

Mining fault trees may be done as in Figure 2:

Figure 2. Pseudo code for algorithm extendFT.

Initially, the algorithm is called with a fault tree only
constituted by a node, corresponding to the class failure
value and the entire dataset, with instances described by all
available attributes.

The first step consists on finding the direct causes for
failure; this is, to achieve the class failure value. If some
causes are identified, the fault tree is extended by adding the
causes as children, the fault tree gate is set as an OR,
whenever there is more than one cause. In the presence of
only one cause, the gate is set to an AND only if that cause is
a composed one, which means that it is required that multiple
situations occur simultaneously to cause the failure.

After extending the tree, the algorithm mines each sub-
tree recursively, only considering instances described by a
subset of attributes that are less than the sub-tree root
attribute, in accordance to the ≺ partial order.

The algorithm stops whenever it does not discover any
cause for the root node or it corresponds to a feature
attribute. Note that procedure reduceData creates a new
dataset with instances described by fewer attributes as the
depth of the tree increases; and it uses the new node to set
the dataset class.

The simplicity of the proposed algorithm just opens one
problem: to identify direct causes for achieving required
failure values. Next, we propose an implementation of that
algorithm using Class Association Rules for identifying
direct causes for failure.

A. Class Association Rules
Association analysis is an unsupervised task, which tries

to capture existing dependencies among attributes and its
values, described as association rules. The problem was first
introduced in 1993 [1], and is defined as the discovery of “all
association rules that have support and confidence greater
than the user-specified minimum support and minimum
confidence, respectively”.

An association rule corresponds to an implication of the
form A⇒B, where A and B are propositions (sets of pairs
attribute / value), that expresses that when A occurs, B also
occurs with a certain probability (the rule’s confidence). The
support of the rule is given by the relative frequency of
instances that include A and B, simultaneously. In this case,

FT extendFT (FT ft, Instances data)
 FT[] children process(ft.root,data)
 if (~∃c∈children) then
 return ft
 else
 ft addChildren(ft,children)
 for all ti∈children(ft) do
 if (ti.isAND) then
 for all tij∈children(ti) do
 d2 reduceData(tij.root,data)
 tij extendFT(tij,d2)
 else
 d2 reduceData(ti.root,data)
 ti extendFT(ti,d2)
 return ft

1103

A and B are named the antecedent and the consequent of the
rule, respectively.

A Class Association Rule (CAR for short) is an
association rule, which consequent is a single proposition
related to the value of the class attribute. In this manner, a set
of CARs can be seen as a classifier [11].

The main drawback on mining CARs and association
rules is the explosive number of discovered rules and the
human inability to deal with that explosion.

Several efforts have been made to minimize this effect,
namely on defining interestingness measures to filter off
non-relevant rules (see [13] for an overview) or to reduce the
number of discovered ones [4].

B. Finding the Fault Tree with CARs
Association rules are privileged tools for representing

direct causes, since they relate propositions to one another, in
a quantified manner. Indeed, both confidence and support
measure the certainty and the coverage for the cause,
allowing for assessing the rule contribution to the occurrence
of the consequent.

By making use of CARs, the implementation of the
proposed algorithm is trivial (Figure 3). Note the need of
imposing the minimum thresholds for support and
confidence (sp and cf, respectively).

Figure 3. Pseudo code for algorithm CARExtendFT and function

process.

It is also important to note that the procedure for
processing each tree node (process in Figure 3) just mines all
CARs with root as the consequence, and filters out any that
do not satisfy the interestingness thresholds specified. (Note

that Apriori is a class in WEKA software [16], for
implementing the apriori algorithm [1]).

IV. EXPERIMENTS
In this chapter we study how interestingness thresholds,

for support and confidence, influence on the size and
accuracy of the fault tree discovered. To support our study,
the dataset used stores the results of students enrolled in the
last five years, in the subject of Foundations of
Programming of an undergraduate program at Instituto
Superior Técnico. The dataset has 2050 instances, each one
with 16 event attributes describing evaluation results. From
these, 11 corresponds to weekly exercises (Ei), and the other
five to an intermediate test (T1), a final project (P), a second
test (T2), another optional test (T3) and an optional Oral . All
have a classification from A to F (and NA – meaning not
evaluated). The last attribute corresponds to the classification
obtained at the end of the semester (App – if A, B, C, D or E,
and Fail for F). Table 1 exemplifies three cases: the first
student is approved, missing the last test (T3) and Oral; the
second one fails on T2 and is approved on T3, and the third
one fails, since he is not evaluated on T2 and fails both on T3
and on Oral.

TABLE I. EXAMPLE OF THREE STUDENTS’ RECORDS

E1 … E6 T1 E7 … E11 P T2 T3 Oral App

A … A B A … A A B NA NA App

A … C C A … B C F D NA App

B … E D D … D D NA F F Fail

The accuracy of the model (equation 2) will be assessed
as usual, by consider its global precision, its sensibility and
its specificity (see equation 3). While the first measure gives
an idea about how correct are the predictions made by the
model, sensibility captures the ability to identify positive
cases for a class and specificity the ability to exclude
negative cases for a class. The three measures are computed
using equations 2 and 3, where TP and TN correspond to true
positives (positive cases predicted as positive) and true
negatives (negative cases predicted as negative), and FP and
FN to false positives (negative cases predicted as positive)
and false negatives (positive cases predicted as negative),
respectively). ܽܿܿݕܿܽݎݑ ൌ ்ା்ே்ାிேାிା்ே (2) ݕݐ݈ܾ݅݅݅ݏ݊݁ݏ ൌ ்்ାிே ݕݐ݂݅ܿ݅݅ܿ݁ݏ ൌ ்ே்ேାி (3)

It is clear, from our experiments, that our model, the fault
tree, achieves interesting results, reaching 94% of accuracy,
which compares with the 96% achieved with decision trees
trained in the same data with algorithm C4.5 [9].

A deep analysis of the results (Figure 4- top) shows that
the accuracy rises while confidence decrease from 100% to
95%; and then, it begins to decrease rapidly when
confidence continues to decrease. This scenario is repeated
with different levels of support. Best results are then

FT CARExtendFT(FT ft, Instances data,
 float sp, float cf)
 CAR[] rul process(ft.root,data, sp,cf)
 if (~∃r∈rul) then
 return ft
 else
 ft addChildren(ft,rul)
 for all ti∈children(ft) do
 if (ti.isAND) then
 for all tij∈children(ti) do
 d2 reduceData(tij.root,data)
 tij CARExtendFT(tij,d2,sp,cf)
 else
 d2 reduceData(ti.root,data)
 ti CARExtendFaultTree(ti,d2,sp,cf)
 return ft

CAR[] process(Attribute root,
 Instances data, float sp, float cf)
 Apriori ap new Apriori()
 ap.setLowerBoundMinSupport(minSp)
 ap.setMinMetric(minCf)
 ap.setClassIndex(data.classIndex())
 CAR[] rules ap.mineCARs(data)
 for all r∈rules do
 if (r.support<sp
 && r.confidence<cf) then
 rules rules\{r}
 return rules

1104

achieved with 5% of support and 95% of confidence,
reaching 94% of accuracy.

An important issue is that for small values of support
(≥5%) and confidence≥85%, the model classifies all
instances as failure, like it happens when the algorithm does

not find any rule to extend the model (support≥20%).
Similarly, for higher levels of support (≥10%), with the
decrease of confidence (≥80%) the phenomenon is repeated.

Figure 4. Accuracy, sensibility and specificity for different thresholds of confidence and support

Figure 5. Number of rules discovered and tree nodes for different values of confidence

0%

20%

40%

60%

80%

100%

100% 95% 90% 85% 80% 75%

A
cc

ur
ac

y

Confidence

Accuracy vs. Confidence

Sp>20% Sp>15% Sp>10% Sp>5%

0%

20%

40%

60%

80%

100%

20% 15% 10% 5%

A
cc

ur
ac

y

Support

Accuracy vs. Support

Cf>100% Cf>95% Cf>90% Cf>85% Cf>80% Cf>75%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100% 95% 90% 85% 80% 75%

Se
ns

ib
ili

ty

Confidence

Sensibility vs. Confidence

Sp>20% Sp>15% Sp>10% Sp>5%

0%

20%

40%

60%

80%

100%

100% 95% 90% 85% 80% 75%

Sp
ec

ifi
ci

ty

Confidence

Specificity vs. Confidence

Sp>20% Sp>15% Sp>10% Sp>5%

0%

20%

40%

60%

80%

100%

20% 15% 10% 5%

Se
ns

ib
ili

ty

Support

Sensibility vs. Support

Cf>100% Cf>95% Cf>90% Cf>85% Cf>80% Cf>75%

0%

20%

40%

60%

80%

100%

20% 15% 10% 5%

Sp
ec

ifi
ci

ty

Support

Specificity vs. Support

Cf>100% Cf>95% Cf>90% Cf>85% Cf>80% Cf>75%

4

36

80

130

153
172

0

50

100

150

200

100% 95% 90% 85% 80% 75%

N
r.

 R
ul

es

Confidence

Nr. Rules vs. Confidence

Sp>20% Sp>15% Sp>10% Sp>5%

4

39

83

133

156
175

0

50

100

150

200

100% 95% 90% 85% 80% 75%

N
r.

 N
od

es

Confidence

Nr. Nodes vs. Confidence

Sp>20% Sp>15% Sp>10% Sp>5%

1105

The values for sensibility (Figure 4-middle) and
specificity (Figure 4-bottom) also show interesting results.
For support≥5% and confidence≥95% it reaches 90% and
96% for sensibility and specificity, respectively. These
results show that the fault tree discovered is able to
recognize 90% of failures, only making 4% of mistakes
(given by the complement of specificity – 100%-
specificity).

Naturally, these results derive from the number of
discovered rules, by using class association rules. With the
small values of support and confidence, the number of
discovered rules explodes, and consequently the number of
nodes per tree (Figure 5). It is interesting to note that the
number of nodes exceeds the number of rules discovered in
these limit situations. This is due to the fact that the
explosion results from the existence of long patterns. In our
algorithm, long patterns represent conjunctions – AND
nodes, that result on more nodes in the tree. As a result of
long trees, the accuracy and sensibility falls, as stated in the
Occam’s razor [6].

Figure 6. Fault tree for 10% of support and 95% of confidence.

The best fault tree found reaches 94% of accuracy with
35 nodes as noted, but for a support of 10% and the same
level of confidence (95%) the fault tree found has only 3
nodes and achieves 93% of accuracy (Figure 6). However,
both these trees have only one level of depth, which means
that they do not present any indirect cause for failure. In
order to achieve that, we have to decrease the confidence
threshold to 90%, which results in a tree with 151 nodes in
two levels, but identifying several indirect causes.

V. CONCLUSIONS
The existence of automatic means to create failure

models, from failure data, brings a new breath in the
understanding of failure behaviors. Indeed, these means can
reveal unknown events as causes for failure, and
consequently, contribute to improve the design and
organization of curricular units.

In this paper, we stated the problem of developing fault
trees using failure data, and proposed a simple approach to
deal with it. Experimental results show that this approach is
sufficient to create accurate models, which can be used
effectively. However, it is clear that the fault trees

discovered are too large, and some post-processing applied
to the discovered rules should reduce their size enormously.
This post-processing, however, has to compact the identified
rules combining them in order to reduce the number of
branches in the tree. One possibility is to combine rules that
share propositions, for example using Boolean algebra
properties, like the distributive property.

Naturally, other approaches resulting from the work on
classification are expected to overcome the proposed here,
which in turn would create more comprehensive models, i.e.
smaller models. Indeed, measures like the information gain
based on the entropy, can reach more accurate models than
class association rules. Measures like that should be explored
in order to implement the proposed algorithm in a more
efficient.

From this work, is now clear that fault trees can be
trained based on past data, and that those trees present failure
causes more clearly than other classifiers, even decision
trees.

REFERENCES
[1] R. Agrawal., T. Imielinski, A. Swami, Mining association rules

between sets of items in large databases. ACM SIGMOD Conf. on
Management Data, pp. 207-216. 1993

[2] C. Antunes, Acquiring background knowledge for intelligent tutoring
systems". Baker, Barnes and Beck (eds.), Educational Data Mining
2008, pp. 18-27. 2008

[3] R. Baker, A. Carvalho, Labeling student behavior faster and more
precisely with text replays. Baker, Barnes and Beck (eds.),
Educational Data Mining 2008, pp. 38-47. 2008

[4] R. J. Bayardo, R. Agrawal, D. Gunopulos, Constraint-based rule
mining in large, dense databases. Proc Int’l Conf Data Engineering,
pp. 188-197, IEEE Press 1999

[5] J.E Beck, Difficulties in inferring student knowledge from
observations (and why should we care). Workshop of Educational
Data Mining – Int’l Conf of Artificial Intelligence in Education, pp.
21-30. 2007

[6] P. Domingos, The role of Occam's razor in knowledge discovery.
Data Minining and Knowledege Discovery, 3(4): 409-425. 1999

[7] P. Hayes, A datalog of temporal theories, Tech report UIUC-BI-AI-
96-01, University of Illinois, 1995

[8] J. Quinlan, Induction of decision trees. Machine Learning , 81-106.
1986

[9] J. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann.
1993

[10] C. Romero, S. Ventura, P. Espejo, C. Hervás, Data mining algorithms
to classify students, Baker, Barnes and Beck (eds.), Educational Data
Mining 2008 (pg. 8-17). 2008

[11] T. Scheffer, Finding association rules that trade support optimally
against confidence. European Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD'01) (pp. 424-435).
Springer-Verlag. 2001

[12] J.F. Superby, J.-P. Vandamme, N. Meskens, Determining of factors
influencing the achievement of first-year university students using
data mining methods. . Intelligent Tutoring System (ITS):
Educational Data Mining Workshop. pp. 37-44, 2006

[13] S. Ventura, C. Romero, C. Hervas, Analyzing rule evaluation
measures with educational datasets: a framework to help the teacher.
Baker, Barnes and Beck (eds.), Educational Data Mining 2008 (pg.
177-181). 2008

[14] M.H. Vee, B. Meyer, K.L. Mannock, Understanding novice errors
and error paths in object-oriented programming through log analysis.

1106

Intelligent Tutoring System (ITS): Educational Data Mining
Workshop. pp. 13-20, 2006

[15] W.E. Vesely, F. Goldberg, N.H. Roberts, D.F. Haasl, Fault tree
handbook. U.S. Nuclear Regulatory Commission, 1981.

[16] I. Witten, E. Frank, Data mining: practical machine learning tools and
techniques with java implementations. Morgan Kaufmann. 2000.

1107

