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Abstract— Understanding the causes for failure is one of the 
bottlenecks in the educational process. Despite failure 
prediction has been pursued, models behind that prediction, 
most of the time, do not give a deep insight about failure 
causes. In this paper, we introduce a new method for mining 
fault trees automatically, and show that these models are a 
precious help on identifying direct and indirect causes for 
failure. An experimental study is presented in order to access 
the drawbacks of the proposed method. 
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I.  INTRODUCTION 
Failure models have been a reality for a long time, mostly 

in areas where failures are not tolerable, like in nuclear 
facilities or aviation. One of the most well-known is the 
Fault Tree Analysis [15], where a logic tree is designed from 
the scratch manually by domain experts. Fault trees are then 
a model that makes explicit all possible causes for failure. 

In educational environments such a failure model might 
be of a great utility, since it could be used as a prevention 
tool. For this reason, finding the causes for students’ failure 
is one of the major goals in educational data mining. 
Nevertheless, the research has been focused mainly on 
determining students’ models (see for example [3] and [5]), 
and more recently on mining frequent behaviors ([2] and 
[10]). Exceptions to this general scenario are the works [12] 
and [14] that try to identify failure causes. In the first case, 
causes for failing in the first year at university are 
determined, and in the second one, causes for failing to learn 
object-oriented programming are investigated. Moreover, 
and despite the expertise in the area, the manual design of 
failure models is too hard, most of all due to the fact that all 
the actors in the educational context are humans. 

Since failure is a constant in educational environments, 
we can think on identifying those models based on failure 
data. In this paper, we propose a new automatic method to 
design fault trees for students’ failure, based on their 
evaluation results. 

The rest of the paper is organized as follows: next, we 
formalize the notion of fault trees and state their advantages 
over traditional classifiers in the context of the educational 
process. In section 3, we designed an automatic method to 
construct those models and proposed an implementation of 
it, by using association rules. The paper concludes with the 
analysis of experimental results and some guidelines for 
future work. 

II. FAULT TREE ANALYSIS 
A Fault Tree (FT for short) is a recursive data structure, 

with the root corresponding to the failure in analysis. Its 
particularity is that instead of having simple nodes 
representing propositions, each internal node contains a 
proposition and a logic gate. In this manner, the proposition 
results from the combination of its children through the logic 
gate. 

Formally, a fault tree is a proposition (i.e. a pair attribute 
/ value) or a triple (proposition, gate, set of fault trees). 

Usually, logic gates are restricted to AND and OR gates, 
but any others may be used. In this paper, we only consider 
these two types of gates. Note, that an AND gate represents a 
conjunction and an OR gate a disjunction. In this manner, the 
first gate implies that all descendants have to be satisfied in 
order to set the parent, while the OR gate only requires the 
satisfaction of one of the descendants to be activated. 

Consider for example, the enrolment of a student at an 
under graduation subject: he is submitted to an exam 
(Exam1) and has to deliver a final project (Proj). Whenever 
student fails on the exam he has the opportunity to be 
evaluated again (Exam2). In this case, the student is 
approved if he has a grade different from F on the project 
and on one of the exams. Figure 1 illustrates a fault tree that 
describes the possible causes for student’s failure in that 
subject: failing on the project or failing both on exams. 

 
Figure 1.  A simple fault tree for student failure. 

A. Fault Trees versus traditional classifiers 
Once discovered, the analysis of fault trees is simple, and 

the direct and indirect causes for failure are all identified. 
With such models, understanding the failure causes is easier, 
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since each occurrence may be explained, i.e., decomposed. 
For example, the FT above could be extended to include an 
explanation why students fail on the project. 

Reasons to consider fault trees as better failure models 
than traditional classifiers, for example decision trees [8], are 
several. The first reason is that decision trees are disperse 
failure models, which means that for identifying failure 
causes is necessary to discard all branches that end with a 
non-failure classification, and analyzing the rest of them. 
Indeed, decision trees do not try to capture the causes for 
failure, but instead, they choose propositions that better 
differentiates the instances on resulting branches, which, in 
turn, makes usual the existence of several branches for the 
same class. 

A second, but more important, reason is that each 
attribute (proposition in a node) is seemed as an observable 
event that does not requires an explanation. Definitely, a 
node in a decision tree is just an occurrence and its 
successors are just other requirements to achieve a certain 
classification value. On the other hand, in a fault tree each 
depth level corresponds to an explanation for the precedent 
level.  

It is also important to note, that decision trees do not 
distinguish temporal attributes, this is, they treat all attributes 
equally, ignoring their instant of occurrence. 

III. FAULT TREE CONSTRUCTION 
Discovering fault trees from data requires a clear 

formulation, where instances and attributes are defined 
precisely. 

An attribute is a variable which represents a feature or an 
event. While features are static characteristics for entities, 
like name and age; an event corresponds to the occurrence of 
some important fact at a certain instant of time, like the grade 
obtained in a test. Let I be a set of instances, A a set of 
attributes, and C a set of possible classes; an instance xi from 
I is described by a list of m attributes from A, ordered in 
accordance to the ≺ partial order, and is represented as 
xi=xi1xi2…ximci, where ci∈C corresponds to the class of xi. 

The ≺ partial order is defined as follows: all feature 
attributes are less than every event attribute; event attributes 
are ordered according to their temporal order. Formally: 

 

  (1) 
where before is defined among temporal instants as proposed 
in [7]. Note that the order among feature attributes is non-
relevant. 

Given a set of instances from I and the failure value for 
the class cf, the problem of finding the fault tree for cf 
consists on identifying all the combinations of direct causes 
for an instance to be classified as cf and simultaneously, 
identifying all direct causes for those causes, recursively, 
considering only preceding attributes according to the partial 
order ≺.  

Mining fault trees may be done as in Figure 2: 

 
Figure 2.  Pseudo code for algorithm extendFT. 

Initially, the algorithm is called with a fault tree only 
constituted by a node, corresponding to the class failure 
value and the entire dataset, with instances described by all 
available attributes.  

The first step consists on finding the direct causes for 
failure; this is, to achieve the class failure value. If some 
causes are identified, the fault tree is extended by adding the 
causes as children, the fault tree gate is set as an OR, 
whenever there is more than one cause. In the presence of 
only one cause, the gate is set to an AND only if that cause is 
a composed one, which means that it is required that multiple 
situations occur simultaneously to cause the failure. 

After extending the tree, the algorithm mines each sub-
tree recursively, only considering instances described by a 
subset of attributes that are less than the sub-tree root 
attribute, in accordance to the ≺ partial order. 

The algorithm stops whenever it does not discover any 
cause for the root node or it corresponds to a feature 
attribute. Note that procedure reduceData creates a new 
dataset with instances described by fewer attributes as the 
depth of the tree increases; and it uses the new node to set 
the dataset class. 

The simplicity of the proposed algorithm just opens one 
problem: to identify direct causes for achieving required 
failure values. Next, we propose an implementation of that 
algorithm using Class Association Rules for identifying 
direct causes for failure. 

A. Class Association Rules 
Association analysis is an unsupervised task, which tries 

to capture existing dependencies among attributes and its 
values, described as association rules. The problem was first 
introduced in 1993 [1], and is defined as the discovery of “all 
association rules that have support and confidence greater 
than the user-specified minimum support and minimum 
confidence, respectively”.  

An association rule corresponds to an implication of the 
form A⇒B, where A and B are propositions (sets of pairs 
attribute / value), that expresses that when A occurs, B also 
occurs with a certain probability (the rule’s confidence). The 
support of the rule is given by the relative frequency of 
instances that include A and B, simultaneously. In this case, 

FT extendFT (FT ft, Instances data) 
 FT[] children process(ft.root,data) 
 if (~∃c∈children) then 
  return ft 
 else 
  ft addChildren(ft,children) 
  for all ti∈children(ft) do  
   if (ti.isAND) then 
    for all tij∈children(ti) do 
     d2 reduceData(tij.root,data) 
     tij extendFT(tij,d2) 
   else 
    d2 reduceData(ti.root,data) 
    ti  extendFT(ti,d2) 
  return ft 
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A and B are named the antecedent and the consequent of the 
rule, respectively. 

A Class Association Rule (CAR for short) is an 
association rule, which consequent is a single proposition 
related to the value of the class attribute. In this manner, a set 
of CARs can be seen as a classifier [11]. 

The main drawback on mining CARs and association 
rules is the explosive number of discovered rules and the 
human inability to deal with that explosion.  

Several efforts have been made to minimize this effect, 
namely on defining interestingness measures to filter off 
non-relevant rules (see [13] for an overview) or to reduce the 
number of discovered ones [4]. 

B. Finding the Fault Tree with CARs 
Association rules are privileged tools for representing 

direct causes, since they relate propositions to one another, in 
a quantified manner. Indeed, both confidence and support 
measure the certainty and the coverage for the cause, 
allowing for assessing the rule contribution to the occurrence 
of the consequent. 

By making use of CARs, the implementation of the 
proposed algorithm is trivial (Figure 3). Note the need of 
imposing the minimum thresholds for support and 
confidence (sp and cf, respectively). 

 
Figure 3.  Pseudo code for algorithm CARExtendFT and function 

process. 

It is also important to note that the procedure for 
processing each tree node (process in Figure 3) just mines all 
CARs with root as the consequence, and filters out any that 
do not satisfy the interestingness thresholds specified. (Note 

that Apriori is a class in WEKA software [16], for 
implementing the apriori algorithm [1]). 

IV. EXPERIMENTS 
In this chapter we study how interestingness thresholds, 

for support and confidence, influence on the size and 
accuracy of the fault tree discovered. To support our study, 
the dataset used stores the results of students enrolled in the 
last five years, in the subject of Foundations of 
Programming of an undergraduate program at Instituto 
Superior Técnico. The dataset has 2050 instances, each one 
with 16 event attributes describing evaluation results. From 
these, 11 corresponds to weekly exercises (Ei), and the other 
five to an intermediate test (T1), a final project (P), a second 
test (T2), another optional test (T3) and an optional Oral . All 
have a classification from A to F (and NA – meaning not 
evaluated). The last attribute corresponds to the classification 
obtained at the end of the semester (App – if A, B, C, D or E, 
and Fail for F). Table 1 exemplifies three cases: the first 
student is approved, missing the last test (T3) and Oral; the 
second one fails on T2 and is approved on T3, and the third 
one fails, since he is not evaluated on T2 and fails both on T3 
and on Oral. 

TABLE I.  EXAMPLE OF THREE STUDENTS’ RECORDS 

E1 … E6 T1 E7 … E11 P T2 T3 Oral App 

A … A B A … A A B NA NA App

A … C C A … B C F D NA App

B … E D D … D D NA F F Fail

The accuracy of the model (equation 2) will be assessed 
as usual, by consider its global precision, its sensibility and 
its specificity (see equation 3). While the first measure gives 
an idea about how correct are the predictions made by the 
model, sensibility captures the ability to identify positive 
cases for a class and specificity the ability to exclude 
negative cases for a class. The three measures are computed 
using equations 2 and 3, where TP and TN correspond to true 
positives (positive cases predicted as positive) and true 
negatives (negative cases predicted as negative), and FP and 
FN to false positives (negative cases predicted as positive) 
and false negatives (positive cases predicted as negative), 
respectively). ܽܿܿݕܿܽݎݑ ൌ ்ା்ே்ାிேାிା்ே                      (2) ݕݐ݈ܾ݅݅݅ݏ݊݁ݏ ൌ ்்ାிே ݕݐ݂݅ܿ݅݅ܿ݁ݏ    ൌ ்ே்ேାி    (3) 

It is clear, from our experiments, that our model, the fault 
tree, achieves interesting results, reaching 94% of accuracy, 
which compares with the 96% achieved with decision trees 
trained in the same data with algorithm C4.5 [9]. 

A deep analysis of the results (Figure 4- top) shows that 
the accuracy rises while confidence decrease from 100% to 
95%; and then, it begins to decrease rapidly when 
confidence continues to decrease. This scenario is repeated 
with different levels of support. Best results are then 

FT CARExtendFT(FT ft, Instances data, 
                   float sp, float cf) 
 CAR[] rul process(ft.root,data, sp,cf) 
 if (~∃r∈rul) then 
  return ft 
 else 
  ft addChildren(ft,rul) 
  for all ti∈children(ft) do  
   if (ti.isAND) then 
    for all tij∈children(ti) do 
     d2 reduceData(tij.root,data) 
     tij CARExtendFT(tij,d2,sp,cf) 
   else 
    d2 reduceData(ti.root,data) 
    ti CARExtendFaultTree(ti,d2,sp,cf) 
  return ft 

CAR[] process(Attribute root,  
    Instances data, float sp, float cf) 
 Apriori ap  new Apriori() 
 ap.setLowerBoundMinSupport(minSp) 
 ap.setMinMetric(minCf) 
 ap.setClassIndex(data.classIndex()) 
 CAR[] rules  ap.mineCARs(data) 
 for all r∈rules do 
  if (r.support<sp  
      && r.confidence<cf) then 
   rules rules\{r} 
 return rules 
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achieved with 5% of support and 95% of confidence, 
reaching 94% of accuracy. 

An important issue is that for small values of support 
(≥5%) and confidence≥85%, the model classifies all 
instances as failure, like it happens when the algorithm does 

not find any rule to extend the model (support≥20%). 
Similarly, for higher levels of support (≥10%), with the 
decrease of confidence (≥80%) the phenomenon is repeated. 

 

 
Figure 4.  Accuracy, sensibility and specificity for different thresholds of confidence and support 

 
Figure 5.  Number of rules discovered and tree nodes for different values of confidence 
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The values for sensibility (Figure 4-middle) and 
specificity (Figure 4-bottom) also show interesting results. 
For support≥5% and confidence≥95% it reaches 90% and 
96% for sensibility and specificity, respectively. These 
results show that the fault tree discovered is able to 
recognize 90% of failures, only making 4% of mistakes 
(given by the complement of specificity – 100%-
specificity). 

Naturally, these results derive from the number of 
discovered rules, by using class association rules. With the 
small values of support and confidence, the number of 
discovered rules explodes, and consequently the number of 
nodes per tree (Figure 5). It is interesting to note that the 
number of nodes exceeds the number of rules discovered in 
these limit situations. This is due to the fact that the 
explosion results from the existence of long patterns. In our 
algorithm, long patterns represent conjunctions – AND 
nodes, that result on more nodes in the tree. As a result of 
long trees, the accuracy and sensibility falls, as stated in the 
Occam’s razor [6]. 

 
Figure 6.  Fault tree for 10% of support and 95% of confidence. 

The best fault tree found reaches 94% of accuracy with 
35 nodes as noted, but for a support of 10% and the same 
level of confidence (95%) the fault tree found has only 3 
nodes and achieves 93% of accuracy (Figure 6). However, 
both these trees have only one level of depth, which means 
that they do not present any indirect cause for failure. In 
order to achieve that, we have to decrease the confidence 
threshold to 90%, which results in a tree with 151 nodes in 
two levels, but identifying several indirect causes. 

V. CONCLUSIONS 
The existence of automatic means to create failure 

models, from failure data, brings a new breath in the 
understanding of failure behaviors. Indeed, these means can 
reveal unknown events as causes for failure, and 
consequently, contribute to improve the design and 
organization of curricular units. 

In this paper, we stated the problem of developing fault 
trees using failure data, and proposed a simple approach to 
deal with it. Experimental results show that this approach is 
sufficient to create accurate models, which can be used 
effectively. However, it is clear that the fault trees 

discovered are too large, and some post-processing applied 
to the discovered rules should reduce their size enormously. 
This post-processing, however, has to compact the identified 
rules combining them in order to reduce the number of 
branches in the tree. One possibility is to combine rules that 
share propositions, for example using Boolean algebra 
properties, like the distributive property. 

Naturally, other approaches resulting from the work on 
classification are expected to overcome the proposed here, 
which in turn would create more comprehensive models, i.e. 
smaller models. Indeed, measures like the information gain 
based on the entropy, can reach more accurate models than 
class association rules. Measures like that should be explored 
in order to implement the proposed algorithm in a more 
efficient. 

From this work, is now clear that fault trees can be 
trained based on past data, and that those trees present failure 
causes more clearly than other classifiers, even decision 
trees. 
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