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Abstract

In this paper we consider the problem of finding a global 
optimum of an unconstrained multimodal function within the 
framework of adaptive memory programming, focusing on
an integration of the Scatter Search and Tabu Search
methodologies. Computational comparisons are performed 
on a test-bed of 11 types of problems. For each type, four 
problems are considered, each one with dimension 50, 100, 
200 and 500 respectively; thus totalling 44 instances.  Our
results show that the Scatter Tabu Search procedure is 
competitive with the state-of-the-art methods in terms of the 
average optimality gap achieved.

1. Introduction

From a naive standpoint, virtually all heuristics other 
than complete randomization induce a pattern whose 
present state depends on the sequence of past states,
and therefore incorporate an implicit form of 
“memory.”  However, such an implicit memory, as 
indicated in [5], does not take a form normally viewed 
to be a memory structure.  By contrast, the explicit use 
of memory structures constitutes the core of a large 
number of intelligent solving methods. They include 
tabu search, scatter search and evolutionary path 
relinking among others.  These methods focus on 
exploiting a set of strategic memory designs. Tabu 
search (TS), the metaheuristic that launched this 
perspective, is the source of the term Adaptive Memory 
Programming (AMP) to describe methods that use 
advanced memory strategies (and hence learning, in a 
non-trivial sense) to guide a search. In linguistic terms, 
to define semantic hierarchies, we can say that AMP is 
the hyperonym of tabu search in a similar way that 
mathematical programming is the hyperonym of linear 
programming.

The unconstrained continuous global optimization 
problem may be formulated as follows:

(P) Minimize f(x) 
subject to nxuxl , ,

where f(x) is a nonlinear function and x is a vector of 
continuous and bounded variables. We investigated in 
[2] AMP methods for P; in particular we hybridized
Scatter Search (SS) [7] and Tabu Search (TS) [5] for 
an efficient exploration of its solution space.  In this 
paper we first summarize the main elements of this 
method, and then perform computational testing on the 
benchmark set of problems collected by Herrera and 
Lozano [6] for which global optima are known.

2. Scatter Search

The fundamental structure of our Scatter Search 
(SS) procedure is sketched in Figure 1. The method 
starts with the creation of an initial large set of diverse 
solutions D with the Diversification Generation 
Method. 

Since we want the solutions in D to be diverse, we 
do not directly admit a generated solution x to become 
part of D, but only admit those with an Euclidean
distance to the solutions already in D, d(x,D), larger 
than a pre-established distance threshold value dthresh.
Therefore, in the initialization we generate solutions 
with a frequency mechanism until DSize solutions 
qualify to enter in D. Instead of the one-by-one 
selection of diverse solutions typically employed in 
Scatter Search to build the Reference Set, RefSet, we 
propose solving the max-min diversity problem 
(MMDP) [3] in the Step 5 of Figure 1.

Considering that the MMDP is a hard problem, we 
apply the D2 method [4] because it provides a good 
balance between solution quality and speed, attributes 
that are important in order to embed it as part of the 
overall solution method.  The MMDP consists of 
finding, from a given set of elements (D in this case) 
and corresponding distances between elements, 
Euclidean in this case, the most diverse subset of a 
given size (the RefSet size b).  The diversity of the 
chosen subset is given by the minimum of the distances 
between every pair of elements. 
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1. Start with D = Pool = RefSet = Ø.
while (|D| < DSize) {
2. Use the Diversification Generation Method 

to construct a solution x.
3. If x D and d(x,D) > dthresh then add x

to D (i.e., D = D {x} ).
4. Evaluate the solutions in D and build 

RefSet = { x1, …, xb1 } with the best b1
solutions according to f. NumEval = |D|

}
while (NumEval < MaxEval ) {
5. Solve the MMDP in D to obtain b2 diverse

solutions (b2=b-b1) w.r.t. the solutions 
in RefSet.

6. Build RefSet = { x1, …, xb } with the b1
quality and b2 diverse solutions.

7. Evaluate the solutions in RefSet and
order them according to their objective 
function value (x1 is the best sol).

8. Make NewSolutions = TRUE
while ( NewSolutions ) {
9. Pool = Ø. NewSolutions = FALSE
10. Generate NewSubset (all pairs of 

solutions in RefSet that include at 
least one new solution.)

while ( NewSubset ) {
11. Select the next subset s in

NewSubset.
12. Apply the Solution Combination 

Method to s to obtain a new
solution x.

13. Evaluate x. NumEval++
14. Add x to Pool.
15. Apply the Improvement Method to 

the best b solutions in Pool.
Replace these b solutions with 
the outputs of the Improvement 
Method. Update NumEval adding
the number of evaluations 
performed.

16. Delete s from NewSubset
}

while ( Pool ) {
17. Select the next solution x in

Pool.
18. Let yx be the closest solution in 

RefSet to x.
if (f(x)<f(x1) or (f(x)<f(xb) &

d(x, yx)>dthresh) )
19. Add x to the RefSet and

remove xb.
20. Make NewSolutions = TRUE.
21. Remove x from Pool

}
}
22. Remove the worst b2 solutions from the 
RefSet

}

Figure 1. Outline of the SS procedure.

In the Step 4 of the method, the best b1 solutions in 
terms of the objective function f are selected from D.
Then, the b2 (b2=b-b1) most diverse solutions in D
found with the D2 method considering that b1 solutions 
are already selected, are chosen in Step 5 to form the 

RefSet. The initialization of the SS algorithm finishes in
the Step 6 with the construction of RefSet = {x1,…, xb}.

The search is then initiated by assigning the value 
TRUE to the Boolean variable NewSolutions.  In Step 
10, NewSubset is constructed with all pairs of solutions 
in RefSet.  The pairs in NewSubset are selected one at a 
time in lexicographical order and the Solution 
Combination Method is applied to generate a new 
solution in Step 12.  The (b2-b)/2 combined solutions 
are stored in a new set called Pool.  The Improvement 
Method is applied to the best b solutions in Pool in 
Step 15.  Each of these b solutions is replaced with the 
output of the Improvement Method. 

If a solution x obtained by combination qualifies to 
enter RefSet, then, the worst solution xb is removed 
from it (Step 19).  The NewSolutions flag is switched to
TRUE.  If a new solution entered the RefSet, in the next
main loop, when generating the pairs of solutions in the 
RefSet (Step 10), only pairs containing new solutions 
are included in NewSubset.  Finally, when no new 
solutions are admitted to the reference set in the main 
while loop in Figure 1, the SS methodology dictates 
that the search either terminates or a RefSet rebuilding 
step is performed.  The rebuilding step consists of 
eliminating all but the best b2 reference solutions and 
reinitializing the process from the Step 5 in Figure 1. In 
our implementation, we have chosen to terminate the 
SS method after a pre-specified number of solution 
evaluations MaxEval as in most of the previous 
applications.

In the final steps of the SS algorithm, we test 
whether the solutions in Pool qualify to enter the 
RefSet.  Given a solution x in Pool, let yx be the closest 
solution to x in RefSet.  We admit x to RefSet if it 
improves upon the best solution in it, x1, or 
alternatively, if it improves upon the worst solution, xb,
and its distance to the closest solution in the RefSet, yx,
is larger than the pre-established distance threshold 
dthresh introduced above.

The Improvement Method is based on the so-
called line-search.  Given a solution x and an index i of 
a variable xi, the line-search from x in the i-direction 
can be represented as the set ls(x,h,i) where h is the 
width of the uniform grid of the discretized search 
space.  This set contains all the feasible solutions that 
can be obtained in the h-grid by modifying variable xi
in solution x.

Given a solution x, we first order the variables in a 
random fashion and then perform the line search 
associated with each variable in this order.  In other 
words, at a given step, we scan the set ls(x,h,i)
associated with variable xi and if it contains a better 
solution than x, we move to this improved solution (and 
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replace x with it).  The improvement method performs 
iterations until no further improvement is possible 

The Combination Method considers the line 
through two solutions x and y, given by the 
representation z( ) = x + (y – x), where is a scalar 
weight.  We consider three points in this line: the 
convex combination z(1/2), and the exterior solutions 
z(-1/3) and z(4/3). We evaluate these three solutions 
and return the best as the result of the combination of x
and y.

3. Tabu Search
Our AMP method couples the SS design described 

in Section 2 with Tabu Search elements.  We have 
considered two alternative extensions for the 
improvement method; the first one introduces memory 
structures in the line-search scheme described above, 
and the second one replaces the line searches with an 
implementation of the Nelder-Mead simplex method 
[1], which we also modify by incorporating memory 
structures to improve its performance. 

3.1 Tabu Line Search

Our improvement method consists of a short term 
Tabu Search procedure based on line-searches.  A 
global iteration first orders the variables according to 
their attractiveness for movement in the current 
solution.  Given a solution x=(x1, x2,…, xi, …, xn), we 
compute for each variable xi two associated solutions, 
xi+h =(x1, x2,…, xi+h, …, xn) and xi-h =(x1, x2,…, xi-h,
…, xn). We then evaluate the attractiveness for 
movement of each variable xi in x, A(x,i), as

A(x,i) = max ( f(x)-f(xi+h) , f(x)-f(xi-h) ).

Then, given an initial solution x, a global iteration of 
the improvement method first computes A(x,i) for i=1 
to n, and then orders the variables according to their A-
values (where the variable with the largest A-value 
comes first).  The first ts variables are selected one at a 
time in this order, and their corresponding line-searches
are performed.  Say for instance that j is the first 
variable in the list. Then we scan ls(x,h,j) and select the 
best solution x’ in this set.  We then consider the 
second variable in the list, say xk, and scan its 
associated line search from x’: ls(x’,h,k) selecting the 
best solution x’’ in this set if it improves upon the 
current solution, and so on.

As it is customary in Tabu Search implementations, 
we permit non-improving moves that deteriorate the 
objective value.  Specifically, in the first step, the 
method selects the best solution x’ in ls(x,h,i) and the 
search moves from x to x’, even if f(x’)>f(x).  In a 

similar way, in the second step the method moves from 
x’ to x’’ thus defining the trajectory of the Tabu Search 
algorithm.  Also note that when we select the second 
variable in the list, say k, to perform the move from x’ 
to x’’, its attractiveness, A(x,k), is computed with 
respect to the initial solution x and we do not perform 
an update by computing A(x’,k), so that the 
attractiveness value A(x,i) for any given variable xi only 
represents an indicator.  This is why the attractiveness 
information is updated after ts iterations and we do not 
explore additional variables in the list. At this point the 
search can either stop or continue with the next global 
iteration.  In the latter case the A-values are first 
computed with respect to the solution obtained in the 
previous global iteration and the variables are ordered 
according to the values obtained. 

Our Tabu Search algorithm implements a short term 
memory structure incorporating the following simple 
design. When a variable xi is selected and we move to 
the best solution in its associated line-search, we label 
xi tabu and we do not allow the method to select it 
during the next tenure iterations.  Therefore, in each 
global iteration, the TS algorithm selects the first ts 
non-tabu variables in the list computed with the A-
values.  When TS finishes it returns as the output the 
best solution visited during its application.  If no 
improvement has been found, it returns the initial 
solution as the output.

3.2 Nelder-Mead Simplex Search

The simplex search procedure of Nelder and Mead 
maintains a set of n+1 points, located at the vertices of 
a n-dimensional simplex.  Each major iteration 
attempts to replace the worst point by a new and better 
one using reflection, expansion, and contraction steps.  
Given a solution x, our Improvement Method starts by 
perturbing each variable to create an initial simplex 
from which the local search begins.

Tabu restrictions in continuous spaces can be based 
both on direction and location, where location is
usually expressed in terms of proximity to solutions 
previously visited.  In our present work, we adopt a 
proximity criterion for generating tabu restrictions, 
which operates by reference to a distance threshold.
Accompanying this, we use a simple memory structure 
to record all trial solutions we operate on with our 
modified simplex method.  Then, at a given iteration, 
before applying the improvement method to a given 
trial solution, we test whether the trial solution lies 
within a hypersphere centered at any solution 
previously submitted to the simplex method (or 
centered at any of the perturbed solutions). If, so, the 
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trial solution is considered tabu, and the improvement 
method is not applied. In order to reduce the 
computational effort associated with this memory 
structure, as in a customary short term tabu list, we 
limit the memory by maintaining a record only of the 
last NumSol solutions submitted to the simplex search. 

4 Computational Experiments
The first set of experiments determines the key 

search parameters of our method. We refer the reader 
to the exhaustive preliminary experimentation in [2] to 
set the values of the search parameters as 
h=MinRange/100 where MinRange is the minimum of 
the variables ranges, (b1 ,b2)=(2, 6), and
dthresh=dgrid/3 where dgrid is the distance grid. Here 
we only highlight one of these experiments in which we 
compare the following five alternative designs of our 
algorithm:

SS: SS method described on Section 2,
SS+TS: SS with Tabu Line Search,
SS+Sx: SS with the original simplex method,
SS+TSx: SS with TS simplex method, 
STS: SS+TS +TSx.

In this preliminary experiment we set the maximum 
number of solution evaluations MaxEval to 10,000 and 
we employ the following well-known 9 non-linear 
multimodal functions [7]: Branin, Rosenbrock(2),
Shekel(5), Rastrigin(10), Rastrigin(20), Powell(24),
Ackley(30), Beale and Powersum(8,18,44,114). As 
typically done in global optimization, we define the 
optimality gap as:

)()( *xfxfGAP

where x is a heuristic solution and x* is the optimal 
solution. We have implemented our procedures in C 
and all the experiments were conducted on a Pentium 4 
computer at 3 GHz with 3 GB of RAM.

Method Avg. GAP # Optima
SS 0.029 7

SS+TS 0.004 7
SS+Sx 0.001 8

SS+TSx 0.001 8
STS 0.000 9

Table 1. Scatter Search variants

Table 1 shows that the five variants considered are 
able to provide high quality results for this problem, 
since the average gap values are, in all the cases, below 
0.1%.  Moreover, comparing SS with SS+TS we can 
see that significant marginal improvement is achieved 

by replacing the simpler form of the line-search with 
the tabu line-search in the Scatter Search algorithm.  
Further, comparing SS+Sx with SS+TSx, we see the 
advantage of including a memory structure to modify 
the improvement method (the Nelder-Mead simplex 
method in this case), so that successive applications of 
the method are restricted to operate only with solutions 
relatively far from those already submitted to the 
improvement method.  Finally, the STS method, which 
couples the SS+TS with the TS-modified Nelder-Mead 
simplex procedure outperforms the other Adaptive 
Memory Programming variants.  Thus, in sum, the 
combination of two different improvement methods 
provides the best results, producing a variant that is 
able to obtain optimal solutions to all of the 9 instances 
tested.

Having determined the values of the key search 
parameters for our algorithm in the first set of 
experiments, we perform a second set of experiments to 
execute the best variant, STS, over the proposed set of 
11 scalable function optimization problems by Herrera 
and Lozano [6]:

F1 to F6 functions of the CEC'2008 [8] test suite.
Schwefel’s Problem 2.22 (F7), Schwefel’s 
Problem 1.2 (F8), Extended f10 (F9), 
Bohachevsky (F10), and Schaffer (F11).

Following the guidelines of the organizers, STS is
run for 25 independent times on each instance. 

Min Max Mean
F1 0.13 0.64 0.25
F2 74.87 94.23 86.08
F3 102.38 384.62 208.23
F4 0.16 0.49 0.26
F5 1.09 1.13 1.12
F6 0.08 0.25 0.14
F7 0.00 0.00 0.00
F8 587.69 1915.55 1159.37
F9 0.00 0.40 0.03
F10 0.00 0.00 0.00
F11 0.00 0.35 0.05

Table 2. Results with n=50

The study is performed with dimensions n=50, 100, 
200 and 500 (i.e., the 11 functions above are 
instantiated for each value of n considered), and the 
maximum number of evaluations is 5,000n. Each run 
stops when the maximum number of evaluations is 
achieved. We then record the best value (Min), the 
worst value (Max) and the mean value (Mean) over the 
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25 runs for each instance.  Tables 2 to 5 report the 
results for each dimension respectively.

Min Max Mean
F1 0.84 4.48 2.12
F2 87.67 118.51 106.19
F3 698.94 1156.16 897.29
F4 1.75 4.23 2.99
F5 1.23 1.26 1.24
F6 1.22 1.48 1.38
F7 0.00 0.00 0.00
F8 4253.12 13217.69 7581.45
F9 0.00 0.46 0.09
F10 0.00 0.00 0.00
F11 0.00 0.61 0.21

Table 3. Results with n=100

Min Max Mean
F1 28.30 52.49 37.04
F2 104.58 134.19 123.08
F3 2391.61 5131.75 3340.09
F4 19.60 26.67 22.67
F5 1.48 1.55 1.53
F6 1.09 1.71 1.60
F7 0.00 0.00 0.00
F8 23070.83 52254.88 33918.05
F9 0.09 3.78 0.61
F10 0.00 0.00 0.00
F11 0.00 15.50 2.09

Table 4. Results with n=200

Min Max Mean
F1 146.42 152.99 150.40
F2 133.05 151.20 144.05
F3 7833.68 14696.60 11409.55
F4 66.79 83.85 80.46
F5 2.30 2.42 2.37
F6 1.25 1.83 1.71
F7 0.00 0.00 0.00
F8 153165.44 325991.44 241959.97
F9 1.18 47.38 16.96
F10 0.00 0.00 0.00
F11 6.21 67.63 27.89

Table 5. Results with n=500

As expected, the results in these tables confirm that 
the larger the dimension the more difficult the instance.  
The STS method provides optimal or near optimal 
solutions for problems F1, F4 to F7 and F9 to F11

(especially in lower dimensions). Problems F2, F3 and 
F8 emerged as very difficult to solve, especially F8 for 
which our method seems inadequate.

5. Conclusions
We have described the development and 

implementation of an adaptive memory programming 
procedure integrating Scatter Search and Tabu Search 
for unconstrained nonlinear optimization.  Our 
experimentation shows that we significantly improve 
the local search methods by introducing a memory 
structure.  This is especially true for the line search 
based method, but we were also able to appreciably 
improve the popular Nelder and Mead simplex method.  
Moreover, our study reveals that a combination of line 
search with the simplex algorithm, when both are 
equipped with a suitable memory structure, produces 
high quality outcomes for the preponderance of the test 
functions considered.
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