
Optimizing Linear and Quadratic Data Transformations for Classification Tasks

José M. Valls
Universidad Carlos III de Madrid

Madrid, Spain
jvalls@inf.uc3m.es

Ricardo Aler
Universidad Carlos III de Madrid

Madrid, Spain
aler@inf.uc3m.es

Abstract—Many classification algorithms use the concept of
distance or similarity between patterns. Previous work has
shown that it is advantageous to optimize general Euclidean
distances (GED). In this paper, we optimize data transforma-
tions, which is equivalent to searching for GEDs, but can be
applied to any learning algorithm, even if it does not use
distances explicitly. Two optimization techniques have been
used: a simple Local Search (LS) and the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). CMA-ES is an
advanced evolutionary method for optimization in difficult
continuous domains. Both diagonal and complete matrices
have been considered. The method has also been extended
to a quadratic non-linear transformation. Results show that
in general, the transformation methods described here either
outperform or match the classifier working on the original
data.

Keywords-Data transformations; General Euclidean Dis-
tances; Evolutionary Computation; Evolutionary-based Ma-
chine Learning;

Many classification algorithms use the concept of distance
or similarity between patterns. This is specially true for
local classification methods such as Radial Basis Neural
Networks [1] or Nearest Neighbor classifiers [2]. It has been
acknowledged that the Euclidean distance is not always the
most appropriate for a particular domain, and for that reason
other distances, like Mahalanobis or Chebyshev, have been
proposed. For instance, the Mahalanobis distance normalizes
attributes by taking into account variances and removing
correlations. This distance is computed according to Eq. 1.

dij = [(xi − xj)T S−1(xi − xj)]1/2

= [(xi − xj)T MT M(xi − xj)]1/2 (1)

where dij is the Mahalanobis distance between vectors xi

and xj , S is the variance-covariance matrix of all vectors in
the data set and M is the so-called Mahalanobis matrix [3],
[4], [5]. However, the Mahalanobis distance is computed in
an unsupervised way, without taking into account the class
or the training error of the classifier. In other words, the
distance is not optimized for the learning algorithm or the
classification task.

In [9], Genetic Algorithms have been used to evolve Gen-
eralized Euclidean Distances (GED) for Radial Basis Neural
Networks. GEDs look like Eq. 1, except that matrix S−1 (or
matrix M) is not computed from the data, but optimized

by the Genetic Algorithm, where the fitness function is the
classifier error on a training dataset.

However, this approach can only be used in classification
algorithms that explicitly use distances, like RBNN, but not
others like C4.5. However, a little algebra (Eq. 2) shows
that the GED is equivalent to computing an Euclidean
distance on a projected dataset, where the new patterns in
the projected space are linear transformations of the original
data: x′ = Mx.

dij = [(Mxi −Mxj)T (Mxi −Mxj)]1/2 (2)

Therefore, in this paper we will use a search method
to look for a transformation M (instead of a GED), that
optimizes the training error of a learning algorithm. Any
learning algorithm can be used but in the present work we
will consider a nearest neighbor algorithm (KNN). Eq. 3 dis-
plays several examples of such transformations: (a) rotation
of data points by θ degrees, (b) scaling of dimensions, and
(c) projection onto the y coordinate. However, our method
can be easily extended to some non-linear transformations.
In this paper, we will report some results of a quadratic
transformation.

(a) M =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

(b) M =

(
k 0
0 1

k

)

(c) M =

(
0 0
0 1

)

Two optimization techniques will be applied. First, a
simple local search method is proposed as a base line to
compare with more advanced optimization methods. Sec-
ond, we will use CMA-ES (Covariance Matrix Adaptation
Evolution Strategy), one of the best evolutionary techniques
for continuous optimization in difficult non-linear domains
[8], [7]. CMA-ES is an Evolution Strategy where search
is guided by a covariance matrix, which is adjusted and
updated during the search process. CMA-ES works well in
both local and global optimization tasks. One of the most
interesting features of CMA-ES for our purposes is the self-
adaptation of mutation (the update of the covariance matrix),

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.222

1025

allowing for a finely tuned local search at the end of the
optimization process.

The structure of this article is as follows. Section I
describes the method, Section II describes the synthetic and
real domains that have been used to test the approach, and
also reports the results of the experiments. Finally, Section
III draws some conclusions and points to future work.

I. DESCRIPTION OF THE METHOD

In this paper we have applied two optimization algorithms
for finding a linear transformation of a dataset that mini-
mizes the classification error of a learning technique. The
first one is a simple local search method that is used only as
a baseline to compare with a second more advanced method:
CMA-ES. In both methods, transformations are represented
as matrices, which are coded directly as lists of real numbers.
CMA-ES is extensively described in [8], [7] 1.

With respect to the local search method, Algorithm 1
provides a summary of the algorithm. First, matrix M is
initialized to the identity matrix I (line 1). In fact this
means that the starting matrix M corresponds to the Eu-
clidean distance (Matrix I). Then, the training dataset T is
transformed by matrix M (line 2) and the error EM of the
learning algorithm L on TM is computed (line 3). In order to
prevent overfitting, we have computed EM by means of 10-
fold crossvalidation. Then, the main loop is entered (line 4)
where M is mutated (line 5) and the error of M ′ is computed
(line 6). If M ′ is more accurate than M , then M ′ is kept
(line 8).

Algorithm 1: Local Search
M = I1

TM = M ∗ T2

EM = error(L, TM)3

while not stopping condition do4

M ′ = mutate(M)5

EM ′ = error(L, TM ′)6

if EM ′ <= EM then7

M ←M ′8

EM = EM ′9

end10

end11

We have considered two types of matrices: diagonal ma-
trices (where all elements outside the diagonal are zero) and
arbitrary non-diagonal matrices (n×n square matrices) that
we call complete matrices. Using diagonal matrices amounts
to just a weighting of the attributes by the corresponding
element in the diagonal. The reason for testing these two
types of structures is to check whether complete matrices are
actually useful beyond a mere attribute weighting. In other
words, complete matrices involve fitting many parameters

1We have used the Matlab code available at
http://www.lri.fr/h̃ansen/cmaes_inmatlab.html

(n × n) and it is important to know whether they improve
accuracy or rather produce overfitting because of the extra
degrees of freedom, or underfitting because of not being able
to adjust properly all the parameters.

Mutation in local search is carried out by adding a
random sample from a Gaussian N(0, 1) distribution. We
have set the probability of mutating a matrix element to
pm = 1√

n×n
, where n is the number of attributes and n×n

is the size (the number of elements) of the complete square
matrix. This means that for a complete matrix, the average
number of elements that will be mutated is n. This setting
worked well in preliminary experiments. One of the main
differences of the simple local search algorithm and CMA-
ES is that in the latter, the mutation step is controlled by
a multivariate Gaussian distribution where the covariance
matrix is adjusted during the course of the search, allowing
for a finely tuned optimization at the end of the optimization
process. In the experimental section, we will determine to
what extent this feature contributes to a high accuracy in the
classification task.

With respect to CMA-ES, we have used the same param-
eter setting as in the local search. First, CMA-ES also starts
from the identity matrix. Second, its initial step size is 1.0
(although CMA-ES will adjust this value in the course of
the search). Third, both CMA-ES and local search stop after
the same maximum number of matrix evaluations, which is
determined experimentally for every domain.

Any learning algorithm L could be used. In this paper,
the neighborhood-based algorithm KNN (with k = 1) has
been selected. KNN makes very intuitive to think about what
data transformations could be useful for this method. This
has provided some guidance for proposing several of the
synthetic domains that will be presented in the next section.

Although the main thrust of this paper is to optimize linear
transformations (x’ = Mx) for non-linear classification
algorithms, the method can be easily extended to generate
non-linear transformations by applying a non-linear function
F to each component of the output, as shown in Eq. 3 for a
2-attribute problem.

(
x′

1

x′
2

)
= F

((
m11 m12

m21 m22

)(
x1

x2

))

=

(
F (m11x1 + m12x2)
F (m21x1 + m22x2)

)
(3)

In the case of F(x) = xn, the method generates attributes
made of polynomials of degree n. Such polynomials have
been typically used for providing non-linearity to linear
methods [11]. For simplicity, let us suppose that F(x) = x2,
A = 2, and that the original dataset {(x1, x2)} is slightly
transformed to {(x1, x2, 1)}. Also, let us suppose that 2× 3
matrices are to be evolved. In that case, Eq. 4 shows that
the transformed attributes (x′

1, x
′
2) become quadratic expres-

sions (Eq. 4). Thus, a linear separation in the transformed

1026

space (x′
1, x

′
2) would be equivalent to a quadratic separation

in the original space {(x1, x2)}. This method permits to
work with polynomials of degree 2 (n in general), without
explicitly considering the monomials x2

i or xixj .

(
x′

1

x′
2

)
= Fx2

((
m11 m12 m13

m21 m22 m23

)(x1

x2

1

))

=

(
(m11x1 + m12x2 + m13)

2

(m21x1 + m22x2 + m23)
2

)

=

(∑
i
A1ixi +

∑
i�=j

B1ijxixj + C1∑
i
A2ixi +

∑
i�=j

B2ijxixj + C2

)
(4)

To summarize, our method can either search for lin-
ear transformations for non-linear learning algorithms
(like KNN), or search for non-linear transformations (e.g.
quadratic) for linear/non-linear classifiers. For the latter
case, we have chosen a linear classifier: Fisher Discriminant
Analysis.

II. EXPERIMENTS

In this Section, we will carry out experiments on several
domains where linear and non-linear transformations are
explored.

A. Domains

We have used five synthetic domains and three real world
domains. All of them correspond to classification problems
and have numerical attributes. They are described next.

1) Artificial data domains: We have used a well-known
synthetic dataset, the Ripley [6] data domain, which has
been widely used in Machine Learning literature, and three
more artificial domains that we have called RandomAttr,
Straight0 and Straight45, specifically designed to check
if approach works properly. We have also generated the
Quadratic domain with the aim of exploring quadratic
transformations.

In the Ripley data set each pattern has two real-valued
coordinates and a class which can be 0 or 1. Each class
corresponds to a bimodal distribution that is a balanced com-
position of two normal distributions. Covariance matrices are
identical for all the distributions and the centers are different.
One of the issues that make this domain interesting is the
big overlap existing between both classes.

RandomAttr is a two-class domain with four real-valued
attributes x1, x2, x3, x4. The examples have been randomly
generated following an uniform distribution in the interval
[0, 1] for attributes x1, x2 and the interval [0, 100] for at-
tributes x3, x4. If x1 < x2 then the example is labeled as
class ’1’. Otherwise, if x1 > x2 the example belongs to
class ’0’. Thus, attributes x3 and x4 are irrelevant. Because
the ranges of irrelevant attributes are much bigger, the
classification accuracy of KNN is very bad (about 50%).

The dataset is composed of 300 examples, 150 from each
class.

Straight-45 is a two-class domain with two real-valued
attributes. The examples have been generated in this way:
initially 100 examples of class 1 are located ar regular
intervals in a straight line passing through the origin (0, 0)
with an angle of 45 degrees respect to the horizontal axe. The
distance between two consecutive points is 1. 100 examples
of class 0 are generated in the same way in a parallel straight
line passing through the point (0,−1) in such a way that
the nearest point of a given point always belongs to the
opposite class, because it is located in the opposite parallel
straight line. Then all points are perturbed by adding to
each coordinate a random number uniformly distributed in
[−0.5, 0.5].

The idea behind this domain is that the nearest neighbor
algorithm will achieve a very bad result because most of
the times the nearest neighbor of a given point belongs
to the opposite class. But certain transformations of the
data involving rotations and coordinate scaling will allow
a good classification rate. Figure 1 (left) shows a graphical
representation of a subset of the domain.

Straight-0 is very similar to Straight45. The only dif-
ference is that all the points have been rotated 45 degrees
anti-clockwise. The motivation for using this domain is that
in this case with a simpler transformation the data could be
properly classified because no rotation is needed. In Figure 1
(rigth) we can see the representation of a subset of points.
In short, Straight45 requires both rotation and scaling (a
complete matrix) whereas Straight-0 requires scaling only
(a diagonal matrix).

Quadratic Domain. This domain was generated in the
following way. First, coefficients were randomly generated
for the quadratic expression 5. There are 8 variables xi,
where i ranges from 1 to 8. Then, 2000 data points were
generated by giving random values in the range -2 to 2,
to variables xi. Finally, the data points were assigned the
positive class if expression 5 is larger than zero, and the
negative class otherwise. The goal of the learning algorithm
is to re-discover the quadratic frontier represented by Eq. 5.

∑
i

Aix
2
i +

∑
i

Bixi +
∑
ij

Cijxixj + D = 0 (5)

2) Real world data domains: We have used the well
known Iris, Car, Bupa2, and Wine domains from the
UCI Machine Learning Repository 3. Table I displays the
characteristics of these UCI domains.

2Liver Disorders Data Set
3http://archive.ics.uci.edu/ml/

1027

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

x
2

x1

Straight-45

Class 1
Class 0

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

x
2

x1

Straight-0

Class 1
Clase 0

Figure 1. Subsets of the Straight-45 and Straight-0 domains

B. Experimental Results. Evolving linear transformations
for KNN

In this subsection we show the experimental results
obtained by our method when linear transformations are
evolved and KNN (with k=1) is used as classifier in the
transformed space. As we explained in Section I, two op-
timization techniques have been used: a basic Local Search
method (LS) and CMA-ES.

The parameters for the search methods have been chosen
in the following way: for CMA-ES, the initial standard
deviation has been set to 1.0 for all the experiments. For
LS, the standard deviation for the Gaussian mutation of an
element is also 1.0 in all cases. The maximum number of
fitness evaluations has been set to the same value for both
search methods by means of preliminary experiments for
every domain. It is considered that the training error rate has
converged when it does not decrease by more than 10−3 in
two successive iterations. For LS, the probability of mutating
a matrix element is pm = 1√

n×n
, as explained in Section I.

This probability is the same for all the experiments. The rest
of CMA-ES parameters are set to their default values.

In all domains we compare the classification results in five
situations: for each fold, KNN classifies the original data, the
data transformed by a diagonal matrix optimized by CMA-
ES, by a diagonal matrix optimized by LS, by a complete
matrix optimized by CMA-ES and finally, by a complete ma-
trix optimized by LS. In all cases linear transformations are
done by means of square matrices and thus, the dimension of
the transformed spaces remain unaltered. Using a diagonal
matrix is equivalent to scaling the original data coordinates.
If a complete matrix is used there are no restrictions, being
the linear transformation completely general.

Table I
UCI DOMAINS CHARACTERISTICS

Domain Instances Attributes Classes
Iris 150 4 3
Car 1728 6 4

Bupa 345 7 2
Wine 178 13 3

Table II shows the mean classification accuracy rates
obtained for all the domains and their standard deviations.
The means have been obtained by averaging 10 executions
of a 10-fold crossvalidation procedure. The best results have
been highlighted in boldface. Differences between each one
of the four methods and the original data have been marked
with a † if they are statistically significant (α = 0.05). A
Corrected Repeated 10x10-fold Crossvalidation T-Test has
been used in all cases for testing [10].

In the Straight0 domain, with a simple transformation
of the space, just compressing the x1 coordinate, a good
classification rate can be achieved because points belonging
to the same class can get as close to each other as needed.
This simple transformation can be done with a diagonal
matrix and therefore with a complete matrix too. The results
show that KNN only obtains a classification rate of 10.5% on
the original data set, but if the data is linearly transformed
with a diagonal matrix the rate is 100% and 99.7% if a
complete matrix is used. In this case both optimization
methods achieve the same results for each matrix type. The
slightly worse result obtained with the complete matrix is
explained because the number of parameters to adjust is
bigger.

In the Straight45 domain, we see that a more complex
transformation must be done because it is not enough to
scale the coordinates but to rotate the points as well. This
linear transformation cannot be obtained with a diagonal
matrix. The second row of Table II shows the results as
expected: KNN obtains a very bad classification accuracy
on the original data (8.45%). A diagonal matrix is useless
to obtain an adequate transformation and we can see that the
results are very bad too, around 8%, independently of the
optimization method used. On the contrary, when a complete
matrix is used, the results are near to 100%.

The RandomAttr domain has two irrelevant attributes
whose numeric range is much bigger that the relevant
attributes range. That is the reason why the accuracy of KNN
on the original data is 50%. Scaling the irrelevant attributes
should be enough to attain a much better accuracy, thus both
diagonal and complete matrices should be appropriate. The

1028

Table II
CLASSIFICATION RATE (PERCENTAGE) WITH KNN (K=1) FOR THE ORIGINAL DATA SET AND FOR THE TRANSFORMED DATA WHEN

DIAGONAL AND COMPLETE MATRICES ARE USED.

Original Data CMA-ES LS CMA-ES LS
Diagonal Diagonal Complete Complete

Straight-0 10.50 ± 1.99 100.00 ± 0† 100.00 ± 0† 99.70 ± 0.35† 99.80 ± 0.35†
Straight-45 8.45 ± 2.07 8.55 ± 2.05 8.15 ± 2.42 98.70 ± 0.54† 98.55 ± 0.50†
RandomAtt 50.03 ± 1.48 95.33 ± 2.21† 92.93 ± 1.55† 81.13 ± 4.62† 59.77 ± 3.41

Ripley 88.60 ± 0.49 88.84 ± 0.35 88.77 ± 0.52 88.43 ± 0.54 88.57 ± 0.38
Car 87.47 ± 0.15 95.82 ± 0.30† 95.75 ± 0.25† 97.39 ± 0.25† 97.20 ± 0.39†
Iris 95.87 ± 0.28 94.67 ± 0.99 94.33 ± 1.01 96.07 ± 0.80 95.87 ± 1.03

Bupa 62.20 ± 1.29 60.52 ± 1.29 58.58 ± 1.78 65.33 ± 2.39 63.54 ± 3.01
Wine 76.38 ± 1.42 93.63 ± 0.9† 94.61 ± 1.53† 85.61 ± 2.33† 77.62 ± 1.48

results show that diagonal matrices obtain results over 90%.
It can also be seen that in this domain, complete matrices
do not perform as well as diagonal matrices because the
number of elements to adjust is bigger and only a scaling
of the coordinates is necessary.

With regard to the remaining domains, only the statis-
tically significant results will be described. For instance,
Bupa and Iris display some improvement, but it is not
significant. In the case of Car, all methods display large
and significant differences with respect to the original data.
The best one is complete-CMA with 97.39% (vs. 87.47%
of the original data). Additional significance tests show that
differences between diagonal-CMA and complete-CMA are
significant but not large: 95.82% vs. 97.39% (similar results
can be seen for LS). Contrariwise, in the Wine domain, it
is diagonal matrices that obtain the best results (94.61%
diagonal-LS vs. 76.38% original data). Complete matrices
perform poorly and the differences with diagonal matrices
are large and significant (a similar behavior was observed in
the RandomAttr domain).

Summarizing the results, it can be observed that the
four methods behave as expected in the artificial domains,
although in one of them (RandomAttr) complete matrices
display worse accuracies than diagonal ones, even though
the set of complete matrices include diagonal ones. A similar
behavior can be observed in the Wine domain. Presumably
this is due to complete matrices having more parameters to
be adjusted. Second, in two of the real domains (Car and
Wine), the methods significantly improve the original data,
while in the other two (Iris and Bupa) there is no significant
improvement, but no significant worsening either. Third, in
at least two cases (Straight45 and Car) complete matrices are
necessary to obtain the best results (significant differences4),
although in the rest of domains, diagonal matrices seem
to be enough (there are no significant differences between
diagonal and complete matrices in Ripley, Iris, and Bupa,
while diagonal matrices are significantly better in Wine and

4Please, note that these tests are additional significance tests: they do not
appear in Table II in order to avoid cluttering the table.

RandomAttr). Fourth, other tests show that there are almost
no significant differences in any of the real domains, between
CMA-ES and LS (except in Wine, where Complete CMA-
ES significantly outperforms Complete LS).

C. Experimental Results. Evolving quadratic transforma-
tions for a linear classifier

As it was explained in section I, our approach can
also search for non-linear transformations (e.g. quadratic)
for linear classifiers. We have done the experiments us-
ing a discriminant analysis based classifier applied to the
Quadratic, Ripley, Car, Iris, Bupa, and Wine domains. As
in the former subsection, the classifier has been applied to
either the original data and the transformed data by means
of quadratic transformations. In this case, only complete
matrices are used. As before, both CMA-ES and LS have
been used to optimize the projection matrices. Table III
shows the mean classification accuracies and Standards
deviations obtained by the linear classifier on either the
original and the projected data. As in the previous section,
a repeated 10x10 crossvalidation has been carried out (and
the Corrected Repeated 10x10-fold Crossvalidation T-Test
has been used for statistical significance [10].). Column 2
refers to the original data, column 3 and 4 refers to the
transformed data when the matrices have been optimized by
CMA-ES and LS.

Table III
CLASSIFICATION RATE WITH LINEAR CLASSIFIER FOR THE

ORIGINAL SET AND THE PROJECTED DATA WITH QUADRATIC
PROJECTIONS.

Original Data CMA-ES LS
Complete Complete

Quadratic 64.48 ± 0.20 93.67 ± 0.26† 87.00 ± 1.19†
Ripley 87.86 ± 0.11 89.27 ± 0.26† 89.30 ± 0.38†

Car 76.06 ± 0.24 88.24 ± 0.47† 86.30 ± 0.37†
Iris 98.00 ± 0 96.67 ± 0.66 96.74 ± 0.70

Bupa 62.32 ± 8.21 68.73 ± 1.44† 66.92 ± 2.17
Wine 98.69 ± 0.39 97.94 ± 1.01 98.31 ± 0.84

In the Quadratic domain, the accuracy on the transformed
data is much better than the obtained on the original data,

1029

as expected. With respect to the rest of domains, CMA-ES
outperforms significantly the original data in Ripley, Car,
and Bupa but not in Iris and Wine. Differences between
CMA-ES and LS are significant for the Quadratic domain
and Car, but not for the rest.

III. CONCLUSION

In this work we have applied two optimization algorithms
(Local Search and CMA-ES) for finding linear and quadratic
transformations for datasets (represented by matrices), in
order to improve the accuracy on classification tasks. The
goal of the search is to find matrices that minimize the
classification error on the training data. We have consid-
ered both diagonal and complete matrices. The non-linear
classifier KNN has been used for the linear transformations,
and the linear Fisher Discriminant for the quadratic ones.
The method has been tested with nine different domains,
both synthetic and real, and the results show that in general
matrices found by the methods described, either outperform
or match the classifier on the untransformed data. CMA-
ES tends to get better results than the simpler LS method,
although in many cases differences are not significant. In
some of the domains, complete matrices are required in order
to obtain the best results, but in others, complete matrices
can get stuck in local minima. The latter issue is an important
issue that will be dealt with in future research.

In this paper, we have used KNN and a linear classifier
as the base algorithms, but because we use domain indepen-
dent optimization methods, the approach can be applied to
any other classifier. In the future, we will test what other
learning methods benefit from data transformations. Also,
using rectangular matrices instead of square ones, we could
study the performance of the method as a dimensionality
reduction technique in a similar vein to [12]. Finally, non-
standard CMA-ES features, like re-starts, might be of use
to solve the local minima / underfitting issues for complete
matrices reported in this paper.

ACKNOWLEDGMENT

This work has been funded by the Spanish Ministry of
Science under contract TIN2008-06491-C04-03 (MSTAR
project)

REFERENCES

[1] J.E. Moody and C. Darken. Fast learning in networks of locally
tuned processing units. Neural Computation, 1:281–294, 1989.

[2] T.M. Cover and P.E. Hart. Nearest neighbor pattern classifica-
tion. IEEE Trans. Inform. Theory, 13(1):21–27,1967.

[3] C.G.Atkenson, A.W.Moore, and S.Schaal. Locally weighted
learning. Artificial Intelligence Review, 11:11–73, 1997.

[4] J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles.
Addison-Wesley, 1974.

[5] S. Weisberg. Applied Linear Regression. New York: John
Wiley and Sons, 1985.

[6] B.D. Ripley. Pattern Recognition and Neural Networks Cam-
bridge: Cambridge University Press, 1996.

[7] N. Hansen and A. Ostermeier. Completely Derandomized Self-
adaptation in Evolution Strategies. Evolutionary Computation
9(2):159–195. 2001.

[8] A. Ostermeier, A. Gawelczyk and N. Hansen. A Derandomized
Approach to Self-Adaptation of Evolution Strategies. Evolu-
tionary Computation. 4(2):369-380. 1994.

[9] J.M. Valls, R. Aler and O. Fernández. Evolving Generalized
Euclidean Distances for Training RBNN. Computing and In-
formatics. 26:33-43. 2007.

[10] R.R. Bouckaert and E. Frank. Evaluating the Replicability
of Significance Tests for Comparing Learning Algorithms.
Advances in Knowledge Discovery and Data Mining (PAKDD).
3-12. 2004.

[11] A. Sierra. High-order Fishers discriminant analysis. Pattern
Recognition, 35:1291-1302, 2002.

[12] A. Sierra and A. Echeverra. Evolutionary discriminant analy-
sis. IEEE Transactions on Evolutionary Computation, vol. 10
(1), 81-92, 2006

1030

