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Abstract

This paper introduces a robust prediction method for
symbolic interval data based on the simple linear regression
methodology. Each example of the data set is described by
feature vector, for which each feature is an interval. Two
classic robust regression models are fitted, respectively for
range and mid-points of the interval values assumed by
the variables in the data set. The prediction of the lower
and upper bounds of the new intervals is performed from
these fits. To validate this model, experiments with a syn-
thetic interval data set and an application with a cardiology
interval-valued data set are considered. The fit and predic-
tion qualities are assessed by a pooled root mean square
error measure calculated from learning and test data sets,
respectively.

1 Introduction

Most statistic methods for data analysis have been de-
signed in a relatively simple way: the statistical unit is an
individual (a person or an object) described by a well de-
fined set of (qualitative or quantitative) variables that as-
sume in just one single value. However, there are situations
in which uncertainty or variability must be taken into ac-
count to faithfully represent the real word and the classical

variables are not able to represent these nuances. In these
cases, other kinds of variables, such as interval variables,
are required. Interval data can arise through of natural ag-
gregation of repeated measures or bounds of the set of possi-
ble values of an item or variation range of a variable through
time. However, it is common that point outliers are present
and therefore interval outliers can also be identified.

The statistical treatment of interval data has been con-
sidered in the context of Symbolic Data Analysis (SDA)[1],
which is a domain in the area of knowledge discovery and
data management related to multivariate analysis, pattern
recognition and artificial intelligence. The aim of SDA is to
provide suitable methods (clustering, factorial techniques,
decision trees, etc.) for managing aggregated data described
by multi-value variables, for which the cells of the data ta-
ble contain set categories, intervals or weight (probability)
distributions in [1].

In the framework of regression models for symbolic in-
terval data, several approaches have been introduced ([2]
- [5]). In these works, the parameters are estimated by the
minimization of the squared error criterion function and this
function is highly influenced by unusual data values. The
main contribution of this paper is to introduce a robust pre-
diction method for symbolic interval-valued data based on
the robust linear regression methodology [6]. The proposed
model consists of fitting two classic linear robust regression
models to, respectively, the mid-point and the range of the
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intervals. The prediction of an interval is based on a combi-
nation between fitted models.

The structure of the paper is as follows: Section 2 shows
the real and synthetic interval data sets considered in the
work. Section 3 describes the robust regression model for
interval data. Section 4 presents a performance analysis of
the proposed method regarding synthetic and real interval
data sets. The assessment of the proposed method is based
on the estimation of a pooled root mean square error mea-
sure. Finally, Section 5 gives the concluding remarks.

2 Interval-valued data

In classical data analysis, the items to be grouped are
usually represented as vectors of quantitative or qualita-
tive measurements where each column represents a vari-
able. However, this model is too restrictive to represent
complex data, which may, for instance, comprehend vari-
ability and/or uncertainty. Interval variables also allow con-
sideration of imprecise data, coming from repeated mea-
sures or confidence interval estimation.

As this paper introduces a robust regression model for in-
terval valued-data that can be potentially used when hyper-
cube or rectangle outliers are present, a synthetic interval-
valued data set and a cardiology interval-valued data set in
�2 containing rectangle outliers are here adopted in the con-
text of a regression problem.

Let IY be a response interval variable that is related to
a predictor interval variable IX . Let E = {e1, . . . , en}
be an example set where each example ei (i = 1, . . . , n)
is represented as a interval quantitative feature vector z =
(IX(i), IY (i)) with IX(i) = [lX(i), uX(i)] ∈ � = {[a, b] :
a, b ∈ �, a ≤ b} and IY (i) = [lY (i), uY (i]] ∈ �.

Let Y c and Xc be, respectively, standard quantitative
variables that assume as their values the mid-points of the
intervals assumed by the symbolic interval-valued variables
IY and IX . Also, let Y r and Xr, respectively, quantitative
variables that assume as their values the ranges of the inter-
vals assumed by the symbolic interval-valued variables IY
and IX .

2.1 Synthetic interval-valued data sets
containing rectangle outliers

A synthetic interval-valued data set in �2 is generated
from a synthetic standard quantitative data set of 250 points
in �2 such that each point belonging to the standard quan-
titative data set is a mid-point (seed) for a rectangle in �2

and this rectangle is built from a randomly selected range
value. Here, the configuration for mid-point and range as-
sumes that the mid-point and range of the intervals are sim-
ulated independently from uniform distributions according
to [5].

Let Xc ∼ U [20, 40] and Xr ∼ U [1, 5] be, respec-
tively, mid-point and range variables associated to a inde-
pendent interval-valued variable IX . Let Y r ∼ U [1, 5]
be the range variable associated to the dependent interval-
valued variable IY . The mid-point variable Y c is related
to mid-point variable Xc as Y c = β0+ β1X

c + ε where
β0 ∼ U [−10, 10] and β1 ∼ U [−10, 10] and ε ∼ U [−5, 5]
is an error.

Here, an rectangle outlier is an rectangle that is remote in
the y coordinate of the mid-point of this rectangle. The ef-
fect that this rectangle has on the regression model depends
on the x coordinate of its mid-point and on the general dis-
position of the other rectangles in the data set.

Interval-valued outliers are created based on the mid-
point data set (Y c(i), Xc(i)) (i = 1, . . . , 250). First,
this set in �2 is sorted ascending by the dependent vari-
able Y c and a small cluster containing the m first points
of the sorted set (Y c(i),Xc(i)) are selected. The observa-
tions of this cluster are transformed into point outliers by
Y c(i) = Y c(i) − 3 ∗ SY c (i = 1, . . . ,m) where SY c is the
standard deviation of the values Y c(i) (i = 1, . . . , n) of the
data set.

After that, the lower and upper bounds of the intervals
IX(i) and IY (i) (i = 1, . . . , n) of the rectangle set are ob-
tained by IX(i) = [Xc(i)−Xr(i)/2, Xc(i)+Xr(i)/2 and
IY (i) = [Y c(i) − Y r(i)/2, Y c(i) + Y r(i)/2].

Figure 1 illustrates the interval-valued data set contain-
ing rectangle outliers. This interval-valued configuration
take into account low variability on the ranges of the rect-
angles. Note in this figure that, due to the low variability on
the ranges, there are rectangle ouliters that are remote in the
y coordinate.

Figure 1. Interval-valued data set containing
rectangle oultliers
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2.2 Cardiology interval-valued data set

The cardiology interval-valued data set consists of a set
of 59 patients described by 2 interval variables. In this data
set, the independent interval variable - Systolic Blood Pres-
sure has been considered for predicting the dependent inter-
val variable Pulse Rate. These cardiology data are presented
in [7] and [8]. They were collected by the department of
Nephrology of the Hospital Valle del Nalón, in the city of
Langreo, Spain.

Table 1 displays part of this data set. In this data set, two
intervals for each one of the 59 patientswu (u = 1, . . . , 59)
are recorded.

Table 1. Cardiology data set with two interval
variables

wu Pulse Rate Systolic Blood Pressure
IY IX

w1 [58,90] [118,173]
w2 [47,68] [104,161]
w3 [32,114] [131,186]
w4 [61,110] [105,157]
w5 [62,89] [120,179]
w6 [63,119] [101,194]
w7 [51,95] [109,174]
w8 [49,78] [128,210]
. . . . . . . . .
w56 [70,105] [120,188]
w57 [40,80] [95,166]
w58 [56,97] [92,173]
w59 [37,86] [83,140]

Figure 2 displays rectangles for the interval-valued pairs:
(Systolic Blood Pressure (IX),Pulse Rate (IY )). Note that
there are rectangle outliers that are unusual rectangles on
the ranges of the intervals of this data set.

Figure 2. Systolic Blood Pressure (x coord.) and
Pulse Rate (y coord.)

3 Robust regression model for interval-
valued data

In classic data analysis, there are many situations where
there are outliers that affect the regression model. A case
of considerable practical interest is one in which the obser-
vations follow a distribution that has longer or heavier tails
than normal. These heavy-tailed distributions tend to gener-
ate outliers, and these outliers may have strong influence on
the least squares method in the sense that there is no longer
an optimal estimation technique [9].

The importance of taking into account the mid-point and
range information in a linear regression model for predict-
ing interval-valued data were demonstrated [5]. In this
model, the estimation procedure is based on the least square
method that does not change probabilistic hypothesis on the
response variable. However, this model may also suffer
strong influence when there are interval outliers.

This section presents a robust regression model for
interval-valued data that considers two independent classic
robust regressions on the mid-point and range of the inter-
vals of a learning data set, respectively. The prediction of
the lower and upper bounds of new intervals is based on
information on the mid-point and range estimates.

3.1 Constructing the model

In this model, each example ei (i = 1, . . . , n) is rep-
resented by two vectors zc = (Xc(i), Y c(i)) and zr =
(Xr(i), Y r(i)) whereXc(i) = [lX(i)+uX(i)]/2,Xr(i) =
uX(i) − lX(i), Y c(i) = [lY (i) + uY (i)]/2 and Y r(i) =
uY (i) − lY (i).

The predictor interval variable IX is related to the re-
sponse interval variable IY according to two linear regres-
sion equations, respectively, on their mid-point and range
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values

Y c = βc
0 + βc

1X
c

Y r = βr
0 + βr

1X
r (1)

The values of βc
0, βc

1 , βr
0 and βr

1 are estimated minimiz-
ing a criterion function based on a function ρ of the residu-
als ec

i and a function ρ of the residuals er
i

n∑
i=1

ρ(ec
i) + ρ(er

i ) (2)

where

ρ(ec
i) = ρ(Y c(i) − βc

0 + βc
1X

c)
ρ(er

i ) = ρ(Y r(i) − βr
0 + βr

1X
r) (3)

The equation (2) yields two minimization problems:

1. to find βc
0 and βc

1 that minimizes

n∑
i=1

ρ(Y c(i) − βc
0 + βc

1X
c) (4)

2. to find βr
0 and βr

1 that minimizes

n∑
i=1

ρ(Y r(i) − βr
0 + βr

1X
r) (5)

To minimize the equation (4) equate the first partial
derivatives of ρ with respect to βc

0 and βc
1 to zero, yield-

ing a necessary condition for a minimum. This gives the
system of two equations

n∑
i=1

Xc(i)ψ
(
Y c(i) − βc

0 + βc
1X

c

s

)
= 0

n∑
i=1

ψ

(
Y c(i) − βc

0 + βc
1X

c

s

)
= 0

ψ = ρ′ and s is a scale parameter This system must be
solved by iterative methods. The iteratively reweighted
least squares is most widely used.

The robust estimate of βc
0 and βc

1 which minimizes the
equation (4) is in matrix notation the solution to

β = (βc
0, β

c
1)

T = A−1b

where

A =
( ∑n

i=1 w
c
i

∑n
i=1 w

c
iX

c(i)∑n
i=1 w

c
iX

c(i)
∑n

i=1 w
c
i (X

c(i))2

)

and

b =
( ∑n

i=1 w
c
iY

c(i)∑n
i=1 w

c
iX

c(i)Y c(i)

)
with wc

i being the weight given to the residual ec
i (i =

1, . . . , n).
The same procedure is applied to the minimization prob-

lem 2. and the robust estimate of βr
0 and βr

1 which mini-
mizes the equation (5) is in matrix notation the solution to

β = (βr
0 , β

r
1)T = A−1b

where

A =
( ∑n

i=1 w
r
i

∑n
i=1 w

r
iX

r(i)∑n
i=1 w

r
iX

r(i)
∑n

i=1 w
r
i (Xr(i))2

)

and

b =
( ∑n

i=1 w
r
i Y

r(i)∑n
i=1 w

r
iX

r(i)Y r(i)

)
with wr

i being the weight given to the residual er
i (i =

1, . . . , n).
There are a number popular robust criterion functions

and the robust regression method can be classified by the
their ψ function that controls the weight given to each resid-
ual [6]. For example, Tukey’s biweight criterion function
ρ(x) has a monotone ψ(x) function and does not weigh
large residuals as heavily as least squares.Tukey’s biweight
function ρ(x) , its corresponding ψ(x) function and its cor-
responding weight functionw(x) are, respectively, given as:

ρ(x) =

{
c2

6 (1 − [1 − (x/c)2]3) for |x| ≤ c
c2

6 for |x| > c

ψ(x) =
{
x[1 − (x/c)2]2 for |x| ≤ c
0 for |x| > c

w(x) =
{

[1 − (x/c)2]2 for |x| ≤ c
0 for |x| > c

3.2 Rule of prediction

The prediction of the lower and upper bounds ÎY (v) =
[l̂Y , ûY ] of a new example v is based on the prediction of
Ŷ c(v) and Ŷ r(v). Given the interval IX(v) = [lX , uX ]
with Xc(v) = (lX + uX)/2 and Xr(v) = (uX − lX)/2,
the interval ÎY (v) = [l̂Y , ûY ] is obtained as follows:

l̂Y = Ŷ c(v) − Ŷ r(v)/2 and ûY = Ŷ c(v) − Ŷ r(v)/2

where
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Ŷ c(v) = β̂c
0(v) + β̂c

1X
c(v)

Ŷ r(v) = β̂r
0(v) + β̂r

1X
r(v)

4 Performance Analysis

To show the usefulness of the robust model presented in
this paper, experiments with a synthetic interval-valued data
set and an application with a real interval-valued data set
in �2 are considered in this section. These interval-valued
data sets contain rectangle outliers. Moreover, the proposed
robust regression model is compared with the non-robust
regression model for interval-valued data introduced in [5].

4.1 Results for the synthetic interval data
set

Here, the analysis was performed in the framework of a
Monte Carlo experiment with 100 replications of the data
set. Test and learning sets are are randomly selected from
each synthetic interval data set.The learning set corresponds
to 75% of the original data set and the test data set corre-
sponds to 25%.

The performance assessment of the robust linear re-
gression model presented in this paper is based on the
pooled root mean-square error (PRMSE). This mea-
sure is obtained from the observed interval values IY (i) =
[lY (i), uY (i)] (i = 1, . . . , n) of IY and from their corre-
sponding predicted interval values ÎY (i) = [l̂Y (i), ûY (i)]
and it is estimated in the framework of a Monte Carlo sim-
ulation with 100 replications in two ways.

For each learning synthetic interval-valued data set the
PRMSE measure is given by

PRMSE1 =

√∑250
i=1 ω(i)error(i)

250

where,

error(i) = [(lY (i) − l̂Y (i))2 + (uY (i) − ûY (i))2]

and ω(i) is the weight of the residual ri = Y c(i) − Ŷ c(i)
(i = 1, . . . , n controlled by a influence function corre-
sponding to robust criterion function adopted to fit (Y c(i),
Xc(i)). Here, the robust fit is obtained using the Tukey’s bi-
weight criterion function. In the non-robust linear model,
the least squares criterion function weights all residuals
equally to 1.0.

For each test synthetic interval-valued set the PRMSE
measure is given by

PRMSE2 =

√∑125
i=1 error(i)

125
The PRMSE1 and PRMSE2 measures are estimated

for each fixed configuration. At each replication of the
Monte Carlo method, a robust linear regression model to the
learning data set is fitted. Thus, the fitted model is used to
predict the interval values of the dependent interval-valued
variable IY in the test and learning data sets and these are
calculated.

For each PRMSEk (k = 1, 2), the average and stan-
dard deviation over the 100 Monte Carlo simulations is cal-
culated and a statistical Student’s t-test for paired samples at
a significance level of 1% is then applied to compare the ro-
bust regression model proposed in this paper with the non-
robust regression model for interval-valued data introduced
by [5]. Let μR

k and μNR
k be the average of the PRMSEk

for robust and non-robust models, respectively. The null
and alternative hypotheses are, respectively:
H0 : μR

k = μNR
k

H1 : μR
k < μNR

k .
For further consistency in the results, this procedure is

repeated considering 100 different values for the vector β.
At each iteration, the comparison between models is accom-
plished by a statistical Student’s t -test applied to each mea-
sure. For specific values of the parameters β0 = 5 and
β0 = 1.5, the values of the t-test statistic for learning and
test data sets are, respectively, -141.109 and -38.184. Re-
garding the 100 different values for the vector β, the re-
jection ratio of H0 is equal to 100% for both learning and
test data sets. These results show clearly that the robust
regression model for interval-valued data is superior to the
regression model proposed in [5].

4.2 Results for Cardiology interval-valued
data set

Below are presented two regression equations Ŷ c and Ŷ r

for the cardiology interval-valued data set according to the
robust linear model using Tukey’s biweight criterion func-
tion and the non-robust linear model using least squares cri-
terion function, respectively.

• Robust Linear Model
Ŷ c = 64.6044 + 0.0645Xc

Ŷ r = 39.6555− 0.0019Xr

• Non-Robust Linear Model
Ŷ c = 65.6057 + 0.0620Xc

Ŷ r = 41.3228− 0.0051Xr

The fitted values for the interval-valued variable IY
are computed from IY (i) = [Ŷ c(i) − Ŷ r(i)/2, Ŷ c(i) +
Ŷ r(i)/2] (i = 1, . . . , 59).
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The performance of the models is also evaluated through
the PRMSE2. This measure is estimated by the leave-on-
out method and the results are 19.09 and 18.37 for non-
robust and robust linear models, respectively. The com-
parison between the methods shows that, for cardiology
interval-valued data set, the robust model proposed in this
paper is the best option.

5 Conclusions

A robust linear prediction model for symbolic interval-
valued data is introduced in this paper. The input data set is
described by feature vectors, for which each feature is an in-
terval. The relationship between a dependent interval vari-
able (response variable) and an independent interval vari-
able is modeled by information contained in the range and
mid-point of intervals. Two classic robust regression mod-
els are fitted independently for range and mid-points, re-
spectively, and the prediction of the lower and upper bounds
of the intervals is performed from these fits.

In order to validate the introduced robust model for in-
terval data, experiments with a synthetic interval data data
set and an application with a cardiology interval-valued
data set containing interval outliers are considered. The fit
and prediction qualities are assessed by on a pooled root
mean square error and the results provided by the proposed
method are compared with the correspondence results pro-
vided by non-robust regression model for interval data pre-
sented in [5]. The results showed that the robust model out-
performed the non-robust model. This fact indicates, ac-
cording to used interval data sets, the introduced robust lin-
ear model is not sensitive in the presence of interval-valued
outliers.
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