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Abstract—One of the most influential algorithms in data
mining, k-means, is broadly used in practical tasks for its
simplicity, computational efficiency and effectiveness in high
dimensional problems. However, k-means has two major draw-
backs, which are the need to choose the number of clusters,
k, and the sensibility to the initial prototypes’ position. In
this work, systematic, evolutionary and order heuristics used
to suppress these drawbacks are compared. 27 variants of 4
algorithmic approaches are used to partition 324 synthetic data
sets and the obtained results are compared.

I. INTRODUCTION

Clustering is one of the main tasks in data mining and con-
sists of the organization of a data set in clusters, according to
their similarities [1], [2]. This task has applications in diverse
areas, such as market segmentation [3], bioinformatics [4],
text mining [5], intrusion detection [6], image processing
[7], taxonomy [8], and others.

Clustering algorithms can be divided into two main cat-
egories: partitional and hierarchical. Considering the data
set X = {x1,x2, ...,xN}, composed by vectors xj ∈ <n

(described for n attributes or features), an exclusive partition
is a collection C = {C1, C2, ..., Ck} of k clusters or subsets
Ci in which C1∪C2∪ ...∪Ck = X, Ci 6= ∅ and Ci∩Cl = ∅
for i 6= l. Non-exclusive partitions enable objects to belong
or have some degree of membership to distinct clusters,
while the aplication of hierarchical algorithms results in a
hierarchical nested sequence of partitions.

Among the huge variety of clustering algorithms in the lit-
erature [2], k-means deserves attention for two main reasons
[9]: (i) it is considered one of the most influential algorithms
in data mining; and (ii) it is simple and scalable, having
linear asymptotic execution time in relation to any parameter.
However, it presents two major drawbacks [9]: the need
for the number of clusters k as an input and sensibility
to the initial position of their respective prototypes. These
issues can make its practical usage difficult, as the way
the data set is distributed is unknown for most clustering
applications. For this reason, methods were developed to
suppress these drawbacks. The most simple one consists
of systematic repetitions of k-means with increasing or
randomly draw values of k in an interval defined by the user.
The resulting partitions are evaluated and the best is chosen.
However, sweeping incrementally across k values can be

inefficient for datasets with large numbers of clusters and
random draws can be inefficient for large intervals. Another
method consists of using algorithms that executes the fine
tuning of partitions obtained from k-means. Evaluating the
obtained partitions enables these algorithms to estimate the
data set’s approximate number of clusters. This is the case
of the algorithms Bisecting k-means [10], which generates
a hierarchical partition from the iterative division of the
dataset by k-means, and X-means [11], which uses k-means
to guide the dataset’s division and, then, refines the resulting
partition.

In addition to the methods described, hybridization of
k-means with other general proposal meta-heuristics were
adapted to the clustering problem [12]. A meta-heuristic
that deserves attention is the evolutionary algorithms (EAs),
broadly used in clustering problems [13]. The main interest
of this work are EAs that use k-means as a local search
operator, to refine the global search made by the evolutionary
method. There is not much research developed with evolu-
tionary operators for a variable number of clusters [13]. In
particular, the Evolutionary Algorithm for Clustering (EAC)
was developed aiming to evolve partitions with variable k
using elimination, division and agglomeration of clusters
systematically refined by k-means. The computational ef-
ficiency of EAC was improved in [14] with the usage of
guided mutation operators, self-adjustment of application
rates, among other features, which gave origin to the Fast
Evolutionary Algorithm for Clustering (F-EAC).

In [15], a new codification and changes in F-EAC data
structures reduced the computational time considerably in
relation to the original version of the algorithm, published
in [14]. In the present paper, an experimental methodology
is used to compare and estimate this algorithm with others
also based on k-means and capable of estimating the number
of clusters k, known as: ordered and random systematic
executions of k-means; variations of Bisecting k-means,
variations of X-means; and variations of F-EAC that incur
in stochastic local search procedures. All algorithms are
compared in terms of the obtained partition quality and
computational performance for the 324 data sets.

The other sections of this article are organized as follows:
in Section II, algorithms of interest for this work based
on k-means are described; in Section III the methodology
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and the experimental results comparing these algorithms are
presented; the conclusions are reported in Section IV.

II. k-MEANS BASED ALGORITHMS

The k-means and its variants have been under investiga-
tion for half a century [16], especially due to their simplicity,
scalability and the fact that they can easily be modified to
deal with data streams and large data sets [9]. The k-means
version used in all implemented algorithms in this work
is described in detail in Algorithm 11, in which x̄i is the
centroid of cluster Ci and d(xj , x̄i) is the Euclidean distance
between x̄i and the object xj ∈ Ci. The method converges
when there are no differences between values of x̄i between
two consecutive iteractions and is limited to a maximum
number of t iteractions, given a priori. In this work, this limit
is set to t = 5 for all implemented algorithms, as empirical
evidence suggests that this value is usually sufficient for k-
means to find satisfactory solutions [17]. The computational
complexity of k-means, in terms of its potentially critical
variables, is O(N · k · n) [9]. Following this section, brief
descriptions of algorithms capable of determining k will be
made.

Algorithm 1 k-means
1: select initial cluster prototypes with attributes in the

interval [0,1];
2: repeat
3: for all xj ∈ X do
4: for all x̄i do
5: compute the dissimilarity d(xj , x̄i);
6: end for
7: assign object xj to cluster Ci for which i =

arg
k

min
l=1

d(xj , x̄l);
8: end for
9: for all x̄i do

10: update x̄i as the centroid of cluster Ci;
11: end for
12: until convergence is attained or the number of iterations

exceeds a given limit t.

A. Bisecting k-means

The algorithm Bisecting k-means [10] consists of a hierar-
chical variant of the k-means algorithm. In each interaction,
it selects a cluster previously generated and split into two
with k-means, producing a hierarchy. The algorithm works
as described in Algorithm 2, in which πa is the current
partition, inter is the number of repetitions of Step 5 (not
necessarily bigger than 1 [18], which is the case here) and
kmax is the maximum number of clusters established by the
user.

1Any other version could be adopted, as long the same version is used
in all algorithms investigated here.

Algorithm 2 Bisecting k-means
1: initialize πa as one cluster with all objects of the data

set;
2: repeat
3: select a cluster Cs ∈ πa;
4: for i = 1 to inter do
5: split Cs in C ′s and C ′′s by k-means and store the

result;
6: end for
7: select the split made in Step 5 which produces the

biggest similarity between objects and their centroids;

8: apply division selected in Step 7 to πa;
9: until one partition with kmax clusters is obtained.

10: return πa

The cluster to be split, Cs, can be chosen in many ways
(Step 3): from its size (e.g., diameter or no. of objects)
or similarity between objects and their centroids (e.g. vol-
ume). The complexity of the algorithm varies according to
the method used to select Cs. If kmax << N and the
selection is made from the clusters’ number of objects,
the algorithm’s complexity can be linear [10]. In general,
however, the complexity will be quadratic in N at least,
that is O(N2 · kmax · n). In this work, Cs is chosen by its
diameter, calculated in two ways:

(a) the diameter is calculated as two times the
major distance between the centroid and one of
the cluster’s objects;
(b) the diameter is calculated as two times the
mean of the distances between the centroid and
all cluster’s objects.

In this work, Bisecting k-means was modified to evaluate
the need to split the clusters, enabling the algorithm to
stop its execution and estimate a value k < kmax. Cluster
validation criteria were used to compare the quality of the
solution before dividing it with the quality after the division.
The first criterion is the well known Bayesian Information
Criterion (BIC - e.g. see [19]). The second is a more
computationally efficient version of the popular Average
Silhouette Width Criterion [1]. The version used here is
called Simplified Silhouette [20].

Once the validation criteria is defined, the following two
stopping criteria can be used:

(i) evaluate the split of the cluster with the major
diameter. If there is no improvement, the split is
not done and execution is finished;
(ii) evaluate the split of all clusters in decreasing
order. If there is no improvement in any split,
execution is finished.

The combination of the methods to calculate diameter ((a)
or (b)) with the stopping criteria ((i) or (ii)) and the method
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of evaluation (BIC or Silhouette) results in 8 versions of the
Bisecting k-means algorithm studied in the present paper.

B. X-means

The algorithm X-means was proposed by Pelleg & Moore
[11] and consists of partitioning the data set into a number
of clusters in an interval [kmin, kmax], defined by the user,
using k-means. A simplified version of X-means is described
in Algorithm 3, in which πa is the current partition, πr is
the resulting partition, p is the cluster proportion to be kept
in Step 13 and | · | denotes set cardinality.

Algorithm 3 Algorithm X-means
1: apply k-means to create πa with kmin clusters;
2: evaluate πa;
3: πr := πa;
4: repeat
5: for all Ci ∈ πa do
6: split Ci in C ′i and C ′′i by k-means;
7: evaluate the improvement in πa resulted from Step

6;
8: end for
9: if at least one evaluation made in Step 7 improves

πa then
10: drop all splits which made the cluster quality worse,

evaluated in Step 7;
11: keep the best splits evaluated in Step 7 in which

|πa| ≤ kmax;
12: else
13: keep the proportion p of the splits having better

improvement evaluated in Step 7 in which |πa| ≤
kmax;

14: end if
15: k-means is used to fine tune πa;
16: evaluate πa;
17: if πa is better evaluated in Step 16 then πr then
18: πr := πa

19: end if
20: until |πa| = kmax

21: return πr

The BIC criterion is used in [11] to evaluate partitions
and clusters, in Steps 2, 7 and 16. Similarly to the algorithm
Bisecting k-means (see Section II-A), the X-means was also
adapted in this work to use a Simplified Silhouette [20]
as evaluation criterion. However, unlike the BIC criterion,
which can be calculated locally for the split cluster solely
(as the split does not affect the other clusters), Silhouette
is calculated considering the complete partition before and
after the split of each cluster.

Both versions evaluated by BIC and Silhouette were
implemented in Matlab language, which enables the com-
parison of the computational time with other algorithms
under investigation in this work, also implemented using the

same language. In addition to these versions, implemented
as described in the original paper [11]2, another two versions
of the algorithm were considered to compare the quality of
the obtained partition. One of them is the Pelleg’s C version
available at http://www.cs.cmu.edu/∼dpelleg/kmeans.html.
The code can be obtained by personal correspondence with
the author. Another version was developed in Java and
distributed in the developer’s version of Weka Software (ver-
sion 3.5), available at http://www.cs.waikato.ac.nz/ml/weka/.
There are some differences between these implementations
and the original paper [11], commented in the source code
and discussed in the author’s mailing list (see the URL
above). All versions use p = 0.5 in Step 13.

C. Systematic (repetitive) Methods

The determination of the number of clusters k systemati-
cally is generally a procedure consisting of two steps. Firstly,
the algorithm is executed multiple times, having distinct
prototypes initialization, with the number of clusters varying
in a predefined interval. Then, a relative validation criterion
is used to estimate the quality of the generated partitions. In
thi work, the Simplified Silhouette is used [20].

Two systematic approaches are studied: the Ordered Mul-
tiple Runs of k-means (OMRk) and Multiple Runs of k-
means (MRk). OMRk consists of executing the k-means
algorithm increasing the value of the number of clusters
k = 2, · · · , kmax. For each k value, np partitions must
be created with different initial prototypes. The partition
πr with the highest validation value is chosen among the
obtained solutions. A common practice consists of assuming
kmax =

√
N [22], [23], which will be used here. Previous

experiences and studies also suggest that the usage of
np = 10 or np = 20 to be enough to find partitions of
reasonable quality for a wide variety of data sets [15], [24]
and, therefore, these values will be adopted here.

Algorithm 4 presents an example of this method, as
implemented here, in which πa is the current partition and
kmax is the maximum number of clusters permitted for the
resulting partitions.

MRk consists of executing k-means multiple times with
random k values drawn between 2 and kmax. The generated
partitions are evaluated with Simplified Silhouette criterion
and the best is returned by the algorithm, halted after a
stopping criterion SC is satisfied. Possible choices for the
practical use of this criterion are the interruption of the
algorithm after a defined number of k-means executions or
after a determined time limit. The first option will be used
here, with the number of k-means executions equal to those
executed by OMRk, which will be np · (kmax− 2+1) with
np assuming 10 or 20. The MRk is ilustrated in Algorithm
5.

2Except for the BIC implementation, whose log-likelihood function
follows the classical description [21] instead of the approximation adopted
in [11].
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Algorithm 4 Ordered Multiple Runs of k-means
1: for k = 2, ..., kmax do
2: for i = 1, ..., np do
3: create a partition with k clusters with random

prototypes;
4: apply k-means;
5: evaluate the resulting partition πa;
6: if πa has the best validation value then
7: πr := πa;
8: end if
9: end for

10: end for
11: return πr;

Algorithm 5 Multiple Runs of k-means
1: repeat
2: randomly select k ∈ {2, ..., kmax};
3: create a partition with k clusters with random proto-

types;
4: apply k-means;
5: evaluate the resulting partition πa;
6: if πa has the best validation value then
7: πr := πa;
8: end if
9: until stopping criterion SC is satisfied.

10: return πr;

The complexity of OMRk and MRk is estimated as O(N ·
k2

max · n). More details about these algorithms, including a
detailed asymptotic analysis, can be found in [15].

D. F-EAC

The Fast Evolutionary Algorithm for Clustering (F-EAC)
[14], an improvement of the well established EAC [13], [20],
[25], was developed to evolve partitions generated by the use
of k-means and evolutionary operators. These partitions are
represented by individuals, that in turn are codified by geno-
types, whose set is called population. Algorithm 6 presents
the main F-EAC steps, in which g is the current generation,
Pg is the current population, |P | is the population size and
SC is the stopping criterion.

The Simplified Silhouette [20] is used here once more,
now as the fitness function (Step 6). An elitist strategy
keeps the best solution (Step 9) [26]. The other solutions are
chosen by a selection operator (e.g., proportional selection
such as the roulette selection [26] − Step 10).

Some possible stopping criteria SC for F-EAC, applied
in Step 17, can be: the definition of a maximum number
of generations, a threshold for population diversity, and
others [27]. In this work, SC is satisfied if the best obtained
fitness value keeps constant for gSC

consecutive generations.
Different values for gSC

will be evaluated.

Algorithm 6 F-EAC.
1: g ← 1;
2: initialize randomly a population Pg;
3: repeat
4: for i = 1, ..., |P | do
5: apply the k-means algorithm to each genotype;
6: evaluate each genotype according to the fitness

function;
7: end for
8: if SC is not satisfied then
9: apply elitist strategy;

10: select genotypes from Pg;
11: for all selected genotypes do
12: select which clusters will be mutated by propor-

tional selection;
13: apply the mutation operators in the selected

clusters to create new genotypes;
14: end for
15: copy the new genotype to the next population Pg+1

and increments g;
16: end if
17: until SC is satisfied
18: return Pg;

One parameter of F-EAC is the population size |P |.
Empirical evidence suggests that this type of algorithm is
robust for distinct value choices for this parameter [14],
[15], [25] and values such as |P | = 10 enable the algorithm
to obtain good partitions in reasonable computational time.
This value will be adopted in the present work.

The F-EAC uses two cluster oriented mutation operators.
The first eliminates one or more clusters, adding its objects
into the clusters with the closest centroids. The second splits
one or more clusters into two new clusters each. The pro-
portion of application between the two operators is adjusted
dynamically based on the performance each obtained in the
previous generation. One simple way of doing this, adopted
in this work, is considering the performance of the operators
individually for each genotype. If the usage of one operator
generated a child with a fitness higher than its father, this
operator will be used in the mutation of this child afterwards.
Otherwise, the other operator will be used. If the genotype
belongs to the initial population or was selected by elitism,
it has 50% of chance of being mutated by each operator.

The complexity of the F-EAC is estimated as
O(N · k̂max · n) [15]. For a more detailed description
of the algorithm, its data structure, evolutionary operators
and complexity, see [14], [15].

E. Evolutionary local search methods

Besides the F-EAC, another two variants of this algorithm
that incur in stochastic local search procedures will be
evaluated in this work. These variants use deterministic
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selection methods based on ranks: the (µ, λ) and the (µ+λ)
[28]. The (µ, λ) method consists of generating λ children
solution by applying evolutionary operators in µ parent
solutions. After that, the µ best solutions are selected from
the resulted children solutions. The other method, (µ+ λ),
selects the µ best solutions from the union of the parent
with the children solutions. Besides deterministic selection,
the F-EAC variants uses µ = 1, with the objective of
carrying out an evolutionary search without the need of a
population, which incurs in a local search strategy of the
hill-climbing stochastic type. Different values of λ are taken
into consideration in this work. The initial solutions are
generated randomly with k ∈ {2, ..., kmax}, as done for
each individual of F-EAC’s population.

III. EXPERIMENTS

The main objective of the experiments presented here
is to compare the algorithms described in Section II in
terms of quality of the resulted partitions and computational
performance. To achieve it, a set of 324 data sets was
artificially generated as described in [29], although with
more objects (N = 1000). This set consists of 108 data
set types, each of them resulting from a combination of the
following characteristics: number of attributes n = 2, ..., 10;
number of clusters k = 4, 6, 8, 10; and three methods to
balance the objects between the clusters. Three distinct data
sets were generated for each of the 108 types described,
resulting in 324 data sets in total, with attributes normalized
in the unitary interval ([0, 1]). The quality of the obtained
partitions is measured based on the ideal partitions, using
the well known Jaccard external criterion (e.g. see [19]).
The algorithms described were compared in 27 versions3:

1) Bisecting k-means (Section II-A) with the diameter
calculated by method (a), using stop criterion (i) and
partition evaluated by Silhouette.

2) Bisecting k-means with the diameter by method (a),
stopping criterion (ii) and evaluation by Silhouette.

3) Bisecting k-means with the diameter by method (b),
stopping criterion (i) and evaluation by Silhouette.

4) Bisecting k-means with the diameter by method (b),
stopping criterion (ii) and evaluation by Silhouette.

5) Bisecting k-means with the diameter by method (a),
stopping criterion (i) and evaluation by BIC.

6) Bisecting k-means with the diameter by method (a),
stopping criterion (ii) and evaluation by BIC.

7) Bisecting k-means with the diameter by method (b),
stopping criterion (i) and evaluation by BIC.

8) Bisecting k-means with the diameter by method (b),
stopping criterion (ii) and evaluation by BIC.

9) OMRk (Section II-C) with the number of distinct
initializations np = 10 and evaluation by Silhouette.

3Note that selections (1, λ1) and (1+λ2) are applied to the same number
of candidate solutions if λ2 = λ1 − 1, which was done here.

10) OMRk with np = 20 and evaluation by Silhouette.
11) MRk (Section II-C) with the number of distinct initial-

izations set as np = 10 and evaluation by Silhouette.
12) MRk with np = 20 and evaluation by Silhouette.
13) Local Search (Section II-E): stopping criterion with

gSC
= 3 and selection (1, λ) with λ = 5.

14) Local Search: gSC
= 5, selection (1, λ) with λ = 5.

15) Local Search: gSC
= 3, selection (1, λ) with λ = 10.

16) Local Search: gSC
= 5, selection (1, λ) with λ = 10.

17) Local Search: gSC
= 3, selection (1 + λ) with λ = 4.

18) Local Search: gSC
= 5, selection (1 + λ) with λ = 4.

19) Local Search: gSC
= 3, selection (1 + λ) with λ = 9.

20) Local Search: gSC
= 5, selection (1 + λ) with λ = 9.

21) F-EAC with |P | = 10 and gSC
= 1 (Section II-D).

22) F-EAC with |P | = 10 and gSC
= 3.

23) F-EAC with |P | = 10 and gSC
= 5.

24) X-means evaluated by BIC (Section II-B).
25) X-means evaluated by Silhouette.
26) X-means Pelleg’s version (source code in C).
27) X-means distributed in Weka (source code in Java).

The implemented algorithms were executed 30 times for
each of the 324 data sets, storing their running time and the
external Jaccard criterion values of the obtained partitions
(related to the ideal partitions of the artificial data). Due
to differences between platforms, algorithms 26 (in C) and
27 (in Java) were not compared with the others (in Matlab)
in terms of computational time. All experiments involving
algorithms implemented in Matlab (version 7.6.0 R2008a)
have the same k-means (described in Algorithm 1) and
were executed in the same computer: processor Intel Core
2 E8400 with 3 Ghz, 4Gb RAM, operating system Ubuntu
8.04 64 bits Kernel Linux 2.6.24-23-generic.

All algorithms were executed with the number of clusters
limited between kmin = 2 and kmax =

√
N [22], [23], [25].

For the evolutionary algorithms (F-EAC and Evolutionary
Local Search) this interval is applied only to the initial
solutions, as these algorithms can increase or decrease
freely the number of clusters in the partition(s) during the
evolutionary process.

The mean values of the Jaccard external criterion obtained
for each of the algorithms are presented in Table I.

Table I
MEAN VALUES OBTAINED BY THE COMPARED ALGORITHMS FOR

JACCARD CRITERION.

12 11 10 9 16 23 20 15 22
0.9639 0.9636 0.9600 0.9562 0.9522 0.9495 0.9468 0.9463 0.9417

19 14 18 13 21 17 27 7 5
0.9387 0.9371 0.9274 0.9270 0.9197 0.9107 0.8714 0.8593 0.8555

6 8 2 4 24 25 26 3 1
0.8505 0.8475 0.8387 0.8387 0.8188 0.7530 0.7230 0.7162 0.7110

To determine statistical difference between the Jaccard
values obtained for each algorithm, a hypothesis test was
used. The test ANalysis Of VAriance (ANOVA) [30] as-
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sumes that the compared samples are drawn from popula-
tions with normal distribution and that the tested random
variables have similar variances [31]. As these requirements
are not ensured here, the no parametric test of Friedman [32]
was applied with α = 5%.

Since the null hypothesis was rejected, which indicates
that the compared means are significantly distinct, post-hoc
tests were applied to find which differences have a statistical
significance. Conclusions involving various means based on
comparisons of two algorithms may not be as precise as
they should, as the test level of significance is distorted.
In fact, the larger the number of comparisons made, the
higher the probability to reject the test by chance [30].
Thus, the Nemenyi’s post-hoc test is adopted to maintain the
significance of the test, which is 95% for the experiments
made in this work.

The significant differences between the mean of the
Jaccard ranks obtained by Friedman’s test are presented in
Table II, in descending order. The symbol in position ij of
this table indicates the relation between the means resulting
from the i-th and the j-th algorithms. If this symbol is 5 ,
the mean of the i-th algorithm is statistically lower than
the j-th, if it is 4 this mean is higher and © indicates
that there is no statistical difference between the compared
means. It is important to note that, unlike Table I, Table II
considers the means of the ranks of Jaccard values and not
the mean of the Jaccard values themselves.

Table II
STATISTICAL DIFFERENCE BETWEEN THE MEAN RANKS OF JACCARD

VALUES OBTAINED BY TH ALGORITHMS UNDER INVESTIGATION.

12 11 10 9 16 20 15 23 19 14 22 27 18 13 17 21 7 5 4 2 6 8 24 3 1 26 25
12©©4444444444444444444444444
11©©©444444444444444444444444
10 5©©©44444444444444444444444
9 55©©©4444444444444444444444

16 555©©©444444444444444444444
20 5555©©©©4444444444444444444
15 55555©©©4444444444444444444
23 55555©©©©444444444444444444
19 5555555©©©44444444444444444
14 55555555©©©©444444444444444
22 555555555©©©444444444444444
27 555555555©©©444444444444444
18 555555555555©©4444444444444
13 555555555555©©4444444444444
17 55555555555555©©44444444444
21 55555555555555©©44444444444
7 5555555555555555©©©©4444444
5 5555555555555555©©©©©444444
4 5555555555555555©©©©©©44444
2 5555555555555555©©©©©©44444
6 55555555555555555©©©©©44444
8 555555555555555555©©©©44444

24 5555555555555555555555©4444
3 55555555555555555555555©©44
1 55555555555555555555555©©©4

26 555555555555555555555555©©4
25 55555555555555555555555555©

The results presented in Tables I and II show that the
highest mean values of Jaccard were obtained with the
algorithms based on systematic multiple execution of k-
means (algorithms 9 to 12), followed by the evolutionary
algorithms (EAs 13 to 23), with no statistical difference
between algorithms 9 and 16. Among the EAs, the largest
values of gSC

and λ resulted in the highest Jaccard means.

When a fixed value of gSC
is considered, no hegemony

of performance can be observed, in terms of mean Jaccard
values, between the F-EAC and its evolutionary local search
variants. It is important to cite that these algorithms dis-
tinguish between themselves only by the type of selection
and by the usage of a population of solutions. In what
concerns the population usage, previous experiments, includ-
ing experiments with real data sets from text mining and
bioinformatics, indicates that the guided and cluster oriented
mutation operators of F-EAC are aggressive and effective
at the same time, which allows the algorithm to present
good results even for small population sizes like |P | = 4 or
|P | = 5 [15], [20]. In fact, extensive experimental analysis
indicates that these algorithms are robust to the choice of
|P | [14], [15], [25]. As the usage of one unique solution is
the particular case in which |P | = 1, it is not surprising that
there are no expressive differences in the obtained results,
especially considering the fact that the data sets used here are
well behaved (volumetric clusters with normal distributions).
The above observations are valid apart from the value used
for the λ parameter, which is clearly not critical.

Generally, algorithms X-means and Bisecting k-means
resulted in the lowest means for the Jaccard index compared
to the other algorithms, which can be observed by the test
used. The Bisecting k-means present better results than most
X-means implementations. The exceptions are the X-means
algorithm distributed with Weka (no. 27) and the Bisecting
k-means versions implemented with stopping criterion (i)
and evaluation by Silhouette (no. 1 and 3). The first showed a
high mean of Jaccard ranks, resembling some EAs (namely,
14 and 22), although the mean of the Jaccard values,
presented in Table I, is visually much lower in comparison
to these EAs. Algorithms 1 and 3, in turn, resulted in the
worst means found between the studied algorithms.

In addition to the Jaccard values, the mean values of the
execution times were compared for the algorithms imple-
mented in Matlab, presented in ascending order in Table III.
To determine statistical significance between the obtained
execution times, the same methodology used before with
the Friedman test is used again. The results are presented
in Table IV, in a similar way as done in Table II. However,
the symbol 5 in position ij indicates that the mean of the
i-th algorithm is higher than the mean of the j-th algorithm.
The symbol 4 indicates the opposite.

Table III
MEAN EXECUTION TIMES OF THE COMPARED ALGORITHMS.

1 3 4 2 7 5 6 8 17
0.2210 0.2249 0.4811 0.4834 0.4914 0.4930 1.3153 1.3394 1.7381

13 18 21 14 19 15 22 20 25
2.0934 2.3146 2.7049 2.8228 3.4297 4.1392 4.1517 4.4671 5.0549

23 16 24 11 9 12 10
5.4596 5.5563 7.8515 11.3113 11.4646 22.6472 22.9463

1011



Table IV
MEAN RANKS OF THE EXECUTION TIMES FROM THE COMPARED

ALGORITHMS.

1 3 4 2 7 5 6 8 17 13 18 21 14 19 15 22 20 25 16 23 24 11 9 12 10
1 ©©44444444444444444444444
3 ©©44444444444444444444444
4 55©©©©4444444444444444444
2 55©©©©4444444444444444444
7 55©©©©4444444444444444444
5 55©©©©4444444444444444444
6 555555©©44444444444444444
8 555555©©44444444444444444
17 55555555©4444444444444444
13 555555555©444444444444444
18 5555555555©44444444444444
21 55555555555©©444444444444
14 55555555555©©444444444444
19 5555555555555©44444444444
15 55555555555555©©444444444
22 55555555555555©©©44444444
20 555555555555555©©44444444
25 55555555555555555©©©44444
16 55555555555555555©©©44444
23 55555555555555555©©©44444
24 55555555555555555555©4444
11 555555555555555555555©444
9 5555555555555555555555©44
12 55555555555555555555555©4
10 555555555555555555555555©

Analyzing the results presented in Tables III and IV,
it can be concluded that the versions of the Bisecting k-
means algorithm were the fastest of the considered algo-
rithms. However, these execution times are associated to
poor Jaccard values (see tables I and II). Although the EAs
(algorithms 13 to 23) execution time means higher than those
resulted from Bisecting k-means, these means are lower than
the obtained by other studied algorithms. The mean times
of the EAs increase together with the values of gSC

, λ and,
consequently, with the mean Jaccard value obtained. The
Friedman test suggests statistical differences between the
mean ranks of these algorithms.

The implemented X-means algorithms presented execu-
tion time means which were higher than those obtained by
most of the EAs. The only exceptions were algorithms 16
and 23, which resulted in time means closer to the X-means
algorithm of no. 25. However, EAs 16 and 23 obtained high
Jaccard mean values, similar or statistically equivalent to
systematic algorithms based on multiple executions of k-
means (OMRk and MRk). This fact does not occur with
any version of X-means.

As expected, the systematic algorithms based on multiple
executions of k-means, from number 9 to 12, were the
algorithms with highest execution times. Although they are
the algorithms with the highest Jaccard means, the mean
times obtained by these algorithms are more than 10 times
the means of some EAs and can be one hundred times larger
than some versions of the Bisecting k-means algorithm. In
this context, it is important to mention that, despite the large
quantity and diversity of the data sets used in this work,
these data sets have well behaved distributions. In previous
work, with data sets of higher complexity, algorithms of the
family (F-)EAC showed to be more efficient than systematic
algorithms based on multiple executions of k-means, not
only in terms of computational time, but also in terms of

mean quality of the obtained partitions [15], [20]. Unlike
the present paper, however, these results were observed in
experiments with a reduced amount of data sets.

IV. CONCLUSION

In this work, various versions of algorithms capable of
estimating the number of clusters and the initial prototypes
to be used by the algorithm k-means were compared to unsu-
pervised data set partitioning. In general, systematic methods
of multiple executions of k-means produced partitions of
better quality in relation to the ideal partitions (known
a priori), but with the highest associated computational
costs. The evolutionary algorithm F-EAC and variants based
on stochastic local searching were capable of obtaining
partitions with quality similar to (in some cases, with no
statistical relevance) those obtained by systematic methods
based on multiple executions of k-means, in considerably
less computational time. In addition, the quality of the
partitions obtained by these evolutionary algorithms was sig-
nificantly higher than those obtained by versions of Bisecting
k-means and X-means investigated in this work. Although
the versions of the Bisecting k-means showed to be the
fastest between the investigated algorithms, they produced
the worst partitions in terms of mean quality. Comparisons of
the algorithms involving different classes of data sets (other
than those considered in the present work), possibly real
ones, constitute an interesting subject that deserves further
investigation.
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