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Abstract

Nonnegative matrix factorization (NMF) is a widely-
used method for multivariate analysis of nonnegative data
to obtain a reduced representation of data matrix only using
a basis matrix and a encoding variable matrix having non-
negative elements. A NMF of a data matrix can be obtained
by finding a solution of a nonlinear optimization problem
over a specified cost function. In this paper we investigate
the formulation and then the computational techniques to
obtain orthogonal NMF, when the orthogonal constraint on
the columns of the basis is added. We propose a penalty ob-
jective function to be minimized on the intersection of the set
of non-negative matrices and the Stiefel manifold in order
to derive a projected gradient flow whose solutions preserve
both the orthogonality and the non-negativity.

1. Introduction

The problem of analysing a large amount of non-negative
data collected in large sparse matrices is essential for
many data mining applications, including document and
image analysis, recommendations systems, neural learning
process, remote sensing and object characterization, mole-
cular pattern discovery, and so on. Some common goals
can be identified in mining information stored in a non-
negative data matrix: to automatically cluster similar data
into groups; to retrieve items most similar to a user’s query,
to identify interpretable critical dimensions within the data
collection. Typically, the notion of low rank approximation
has played a fundamental role in processing and concep-
tualizing large sparse matrices effectively and efficiently.
Singular value decomposition (SVD), factor analysis (FA),
principal component analysis (PCA) are some examples of
classical methods used to accomplish the goal of reducing
the number of variables and detecting structures among the
variables. However, these classical tools are not able to
guarantee to maintain the non-negativity of the data ma-

trix. Moreover, the SVD (even it constitutes the basis of the
well known mechanism of Latent Semantic Indexing and
Analysis) fails to provide users with any interpretation of
its mathematical factors and of why it works so well. The
recent approach of low-rank non-negative matrix factoriza-
tion (NMF) thus becomes particularly attractive to obtain
a reduced representation of data by using additive compo-
nents only. This constraint have been motivated in a couple
of ways. First, in many applications one knows (for exam-
ple by the rules of physics) that the quantities involved can-
not be negative. Second, non-negativity has been argued for
based on the intuition that parts are generally combined ad-
ditively (and not subtracted) to form a whole; hence, these
constraints might be useful for learning parts-based repre-
sentations ([9]). An interesting example of the part-based
representation of the original data can be found in the con-
text of image articulation libraries. Here, NMF are able to
extract realistic parts (limbs) from image depicting stick fig-
ures with four limbs with different articulations [7].

The mathematical problem can be stated as follows:
given an initial dataset expressed by a n × m matrix Y ,
where each column is an n-dimensional non-negative vec-
tor of the original database (m vectors), find an approximate
decomposition of the data matrix into a basis matrix U and a
encoding variable matrix V having non-negative elements,
that is Y ≈ UV .

The dimensions of the two non-negative factors U and
V are n × p and p × m, respectively. Generally the rank
p of the matrices U and V is much lower than the rank of
Y (usually it is chosen so that (n + m)p < nm). Each
column of the matrix U contains a basis vector, while each
column of V contains the weights needed to approximate
the corresponding column in Y using the bases from U .

A NMF of the data matrix Y can be obtained by find-
ing a solution of a nonlinear optimization problem over
a specified cost function. Two simple objective func-
tions are often used to measure the error between the
original data Y and its low rank approximation UV : the
sum of squared errors (or Frobenius norm), which leads
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to the minimization of ‖Y − UV ‖2 subject to the non-
negativity constraints over the elements Uij and Vij , and
the generalized Kullback-Leibler divergence to the positive
matrices (Div(Y ‖UV ) =

∑
ij(Yij log(Yij/((UV )ij)) −

Yij(UV )ij)), subject to the non-negativity of U and V .
The most popular approach to solve the NMF problem is
the multiplicative update algorithm proposed in [10]. Other
techniques, such as alternating nonnegative least squares
method or bound-constrained optimization algorithms, such
as projected gradient method, have also been used [3, 4, 12].

The NMF can be adopted in place of other factorizations,
such as the singular value decomposition (SVD), because
due to the non-negativity constraints it produces advantages
in terms of storage and interpretability of its factor. In fact,
the factors U and V are generally naturally sparse, thereby
saving a great deal of storage. Moreover, they produce a
so called “additive parts-based” representation of the data
which allows some benefits in the interpretation since the
basis vectors naturally correspond to conceptual properties
of the data (for instance individual components of the struc-
ture of a picture in image recognition, or singular term in a
term-by-document matrix in a text retrieval context).

Of course, NMF presents also some disadvantages con-
cerning the lack of uniqueness of its factors and the lack
of a robust computation. The problem of uniqueness of the
solution can be overcome considering the orthogonal non-
negative factorization (ONMF), where additionally to low-
rank and non-negativity, the factor U is required to possess
orthogonal columns.

The main advantages of considering ONMF are the
uniqueness of the solution and the capability of cluster-
ing the rows of the data matrix in an equivalent manner
to k-means clustering [6]. Of course, the computation of
ONMF becomes a harder problem with respect to the stan-
dard NMF. Some modifications of the multiplicative update
algorithm have been proposed in different applicative con-
texts (thus incorporating prior information on the problem
into the estimation mechanism), but this issue lacks of a
general approach [1, 11].

The aims of the present paper is to investigate the for-
mulation and then the computational technique to obtained
NMF, when the orthogonal constraint on the columns of the
matrix U is added. Particularly, the orthogonal NMF can be
reformulated as an optimization problem, in the Frobenius
norm, on the intersection of the Stiefel manifold (the set of
rectangular matrices with orthogonal columns) and the cone
(with many facets) of non-negative matrices. Even the un-
derlying geometry of the problem is easy to understand, the
difficulty lies in the fact that it is hard to characterize which
and when a facet of the cone of the nonnegative matrices is
active or not in the optimization. As concerning the com-
putational mechanisms, projected gradient flow approaches
can be adopted which take into account the special orthog-

onal structure of the solution and preserve both the orthog-
onality and the non-negativity.

The rest of this paper is organized as follows. The
next section describes how the orthogonal NMF can be
formulated as an optimization problem on a intersection
of the Stiefel manifold and the cone of non-negative ma-
trices. Then, making use of the underlying geometry of
the problem, we propose a penalty objective function to
be minimized in order to derive a projected gradient flow
whose solutions preserve both the orthogonality and the
non-negativity.

2. Background and gradient flow

Let us denote by Y ∈ Rn×m a given non-negative data
matrix. A Non-negative Matrix Factorization (NMF) con-
sists of finding an approximate decomposition of the data
matrix into a basis matrix and a encoding variable matrix
having non-negative elements, i.e.,

Y ≈ UV, (1)

where the basis factor U ∈ Rn×k
+ and the encoding factor

V ∈ Rk×m
+ (where Rp×q

+ represents the cone of all p × q
matrices whose elements are non-negative). Generally, the
rank of the matrices U, V is much lower than the rank of Y
(i.e., k << min(m,n)).

In this paper we consider constrained NMF, and partic-
ularly, we farther require that the columns of the matrix U
satisfy an orthogonality constraint, that is the basis matrix
U ∈ O(n, k), where

O(n, k) = {Q ∈ Rn×k|Q�Q = Ik}

denotes the set of all real n × k matrices with orthogonal
columns. This set is known as the Stiefel manifold and
forms a smooth manifold.

The orthogonal non-negative matrix factorization prob-
lem (ONMF) can be defined in terms of the following cost
function

min 1
2‖Y − UV ‖2

F

subject to U ∈ O(n, k) ∩ Rn×k
+ and V ∈ Rk×m

+ ,
(2)

where ‖ · ‖F is the Frobenius norm on matrices defined as:

‖M‖2
F = trace(MM�) := 〈M,M〉,

being 〈·, ·〉 the Frobenius inner product on Rn×m.
The cone of non-negative matrices can be parameterized

as follows

Rp×q
+ = {S ∈ Rp×q |S = E � E, E ∈ Rp×q}, (3)

where � denotes the Hadamard product (i.e., the element-
wise matrix multiplication).
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Using (3), the ONMF of the data matrix Y can be ob-
tained by finding a solution of the following constrained
nonlinear optimization problem:

min F (Q; Σ) = min 1
2‖Y − (Q � Q)(Σ � Σ)‖2

F

subject to U = (Q � Q) ∈ O(n, k) (4)

Note that we have also assumed V = Σ � Σ, with Σ ∈
Rk×m .

In order to solve the above constrained optimization
problem we can adopt the project gradient technique. This
mechanism consists in computing the gradient of the ob-
jective function in (4) and then projecting it on the tangent
space of the involved constrains. This piece of information
is valuable and useful to apply many iterative scheme avail-
able in the literature. On the other hand, we find it most
nature and convenient to use the dynamical system. Here
we briefly summarise the main steps of the gradient flow
technique, addressing the reader to [2, 5] for a complete de-
scription of the overall approach.

The main steps of the projected gradient flow technique
are:

1. Compute the gradient of the objective function F in
the ambient space Rn×k × Rk×m, that is ∇F =
(∂F

∂Q , ∂F
∂Σ )�;

2. Evaluate the projections P(∂F
∂Q ) onto the tangent space

of O(n, k) ∩ Rn×k
+ and of P(∂F

∂Σ ) onto the tangent
space Rk×m;

3. Solve the dynamical system:

Q̇ = −P(
∂F

∂Q
), Σ̇ = −P(

∂F

∂Σ
). (5)

At the end of the overall process, the approximate factoriza-
tion is equal to the product of the limiting solutions of (5),
that is U∞ = Q∞ � Q∞ and V∞ = Σ∞ � Σ∞.

From the Riesz representation theorem with respect to
the Frobenius inner product, the first component of the gra-
dient of F can be represented as

∂F

∂Q
= −2Q � (δ(Q,Σ)(Σ � Σ)�), (6)

where, for convenience, we have adopted

δ(Q,Σ) := Y − (Q � Q)(Σ � Σ). (7)

Similarly, the second component of the gradient is given by

∂F

∂Σ
= −(2Σ � (Q � Q))τδ(Q,Σ). (8)

Formulas (6) and (8) constitute the gradient of the ob-
jective function F . To obtained the projected gradient flow

of (4), we should first note that the factor U ∈ O(n, k),
therefore, U̇ = Q̇ � Q + Q � Q̇. Moreover, by tak-
ing advantage of the product topology, the tangent space
T(U,Σ)(O(n, k)×Rk×m) of the product manifold O(n, k)×
Rk×m at (U,Σ) ∈ O(n, k)×Rk×m can be decomposed as
the product of tangent spaces, i.e.,

T(U,Σ)(O(n, k) × Rk×m) = TUO(n, k) × Rk×m. (9)

The projection of ∇F (U,Σ) onto T(Q,Σ)(O(n,m) ×
Rk×m), therefore, is the product of the projection of the
∂F
∂Q onto TQO(n, k) and the projection of ∂F

∂S onto Rk×m,
respectively.

Firstly note that the projection of ∂F
∂Σ onto Rk×m is just

itself. As concerning the projection ∂F
∂U , it should be ob-

served that O(n, k) can be embedded in the Euclidean space
Rn×k equipped with the Frobenius inner product, hence any
vector H in the tangent space TU (O(n, k)) is of the form

H = UK + (In − UU�)W, (10)

where K ∈ Rk×k and W ∈ Rn×k are arbitrary, and K
is skew-symmetric. Furthermore, the space Rn×k can be
written as the direct sum of three mutually perpendicular
subspaces

Rn×k = US(k) ⊕N (U�) ⊕ US(k)⊥, (11)

where S(k) is subspace of k×k symmetric matrices, S(k)⊥

is the subspace of k × k skew-symmetric matrices, and
N (Q�) := {X ∈ Rn×k|U�X = 0}. Any M ∈ Rn×k

can be uniquely split as

M = U
U�M − M�U

2
+(I−UU�)M+U

U�M + M�U

2
.

(12)
Hence, it follows that the projection PO(n,k)(M) of any
M ∈ Rn×k onto the tangent space TU (O(n, k)) is given
by

PO(n,k)(M) = U
U�M − M�U

2
+ (I − UU�)M. (13)

The projected gradient flow (to be numerically solved) is
given by:

U̇ = −PTU (O(n,k))(∂F
∂U ),

Σ̇ = Σ � (Q � Q)�δ(Q,Σ).
(14)

where ∂F
∂U = ∂F

∂Q U̇ (for a more detailed formulation of the
projection operator we address the reader to the description
reported in [5]).
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3. The penalized gradient flow approach

In order to preserve U ∈ O(n, k)∩Rn×k
+ a penalty term

can be added so that the functional to minimize becomes:

F (Q,Σ) = 1
2‖Y − (Q � Q)(Σ � Σ)‖2

F + 1
2P (Q)

(15)
where, U = Q � Q, V = Σ � Σ and the penalty term is
given by

P (Q) = ‖(Q � Q)�(Q � Q) − I‖2
F . (16)

From the Riesz representation theorem, with respect to
the Frobenius inner product, the Fréchet derivative of P at
Q is given by

∂P

∂Q
= 2[(Q � Q)Δ � Q + Q � (Q � Q)Δ), (17)

where the additional matrix function Δ is defined as

Δ = [(Q � Q)�(Q � Q) − I].

The explicit formulation of the gradient flow obtained by
using the penalty function (15) is given by

Q̇ = Q � [δ(Q,Σ)(Σ � Σ)�] − 1/2∂P
∂Q ,

Σ̇ = Σ � [(Q � Q)�δ(Q,Σ)].
(18)

The flow (18), which we shall call the penalised flow for
later reference, moves along the steepest descent direction
to minimize the objective functional F in (15). Since (18)
defines a descent flow by an analytic vector field, it is known
by the Lojasiewicz theorem that the flow converges to a sin-
gle point (Q;U) of equilibrium at which

U = Q � Q and V = Σ � Σ, (19)

is locally the best non-negative matrix factorization of Y
subject to orthogonal constraint on the columns of U .

It is important to note that the cost function F (Q,Σ) is
convex in each of the factors Q and Σ, but it is not con-
vex in the two factors at the same time. Hence, important
challenges affecting the numerical solution of the penalized
dynamical system flow (18) include the existence of differ-
ent local minima due to the non-convexity of the objective
function. Therefore, the “locally” best non-negative matrix
factorization in (19) means that the point (Q;U) may be a
local minima of (18).

4. Numerical Experiments

In this section we report some experimental results from
using the above-mentioned dynamical system. At the mo-
ment, our primary concern is not so much on the efficiency

of this mechanism. Rather, we focus on the behavior of the
resulting flow from this differential system. For the pur-
pose of demonstration, we shall employ existing routines in
Matlab as the ODE integrators. It is understood that many
other ODE solvers, especially the recently developed geo-
metric integrators, can be used as well. The ODE Suite [13]
in Matlab contains in particular a Klopfenstein-Shampine,
quasi-constant step size, stiff system solver ode15s. As-
suming the original data matrix Y is not precise in its own
right in practice, high accuracy approximation of Y is not
needed. We set both local tolerance AbsTol = RelTol =
10−6 while maintaining all other parameters at the default
values of the Matlab codes. The numerical tests have been
conducted using non-negative matrices Y randomly gen-
erated. The initial value for the the penalised flow are
a non-negative randomly generated matrix Σ0 and a ran-
dom perturbation of a permutation matrix U0. We mea-
sure the orthogonality of bases by ‖UU� − I‖ and GOF by
‖Y − UV ‖2. Figure 1 shows the decreasing behaviour of
the orthogonal error during the integration of the penalized
flow for a 20 × 10 example approximated by rank 5 matri-
ces in the time-interval [0, 1000]. Figure 2, instead, plots the
behaviour of the goodness-of-fit (GOF) for the same exam-
ple during the first part of the numerical integration, i.e. in
the time interval [0, 100] where the GOF-values have been
stabilized.

Figure 1. Orthogonal Error during the integra-
tion of penalized flow
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5. Conclusions and Future Work

We have presented a penalised projected gradient flow
for orthogonal NMF where orthogonality on the non-
negative basis matrix vectors is imposed in learning the de-
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Figure 2. GOF during the integration of penal-
ized flow
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composition. The core idea was to directly use the projected
gradient in Stiefel manifold in order to obtain a dynami-
cal system, whose solutions evolve on the intersection of
the Stiefel manifold and the cone of non-negative matrices.
Moreover, bearing in mind that we adopted a continuous
technique, based on the solution of a dynamical system, ad-
ditional feature information can be obtained for the approx-
imation matrices: this represents a clear advantage when
comparing our approach with other standard methods.

An interesting issue, strictly tied with the computation of
the orthogonal NMF when the adopted cost function is the
generalized KL-divergence, is the connections with some
family of probabilistic latent variable models. Particularly,
in [6], it has been pointed out that the objective function of
a probabilistic latent semantic indexing model is the same
of the objective function of NMF with an additional orthog-
onal constraint. It should be of interest to further explore
this relationship and also the implication that the adoption
of continuous computational techniques for ONMF could
have in treating texts analysis task [8].
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