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Abstract—Feature selection is an essential task in data
mining because it makes it possible not only to reduce computa-
tional times and storage requirements, but also to favor model
improvement and better data understanding. In this work, we
analyze three methods for unsupervised feature selection that
are based on the clustering of features for redundancy removal.
We report experimental results obtained in ten datasets that
illustrate practical scenarios of particular interest, in which one
method may be preferred over another. In order to provide
some reassurance about the validity and non-randomness of
the obtained results, we also present the results of statistical
tests.

Keywords-unsupervised feature selection; feature clustering;
clustering problems;

I. INTRODUCTION

Feature selection aims at choosing a subset of original
variables (attributes) by eliminating the redundant, uninfor-
mative, and noisy ones. This issue has been broadly inves-
tigated in supervised learning tasks, for which datasets with
many features are available, like in text mining and gene
expression data analysis. Under this perspective, there are
many potential benefits of feature selection like, for instance
[1], [2]: facilitating data visualization and understanding,
reducing the measurement and storage requirements, reduc-
ing training and utilization times, and defying the curse of
dimensionality to improve prediction performance. Many of
these benefits can also be achieved in unsupervised learning
(clustering). However, most of the existing supervised meth-
ods for feature selection rely on assessing how well some
features discriminate among a set of predefined classes.
These classes are not available in clustering tasks, in which
one seeks to identify a finite set of categories (clusters) to de-
scribe a given dataset, both maximizing homogeneity within
each cluster and heterogeneity among different clusters [3].
In this sense, it is difficult to assess the relevance of a subset
of features for describing classes that are not known a priori.

We assume that clustering involves the partitioning of
a set X of instances into a collection of mutually disjoint
subsets Ci of X whose union is X. Formally, let us consider
a set of N instances X = {x1,x2, . . . ,xN} to be clustered,
where each xi is a vector consisting of M measurements.

The instances must be clustered into non-overlapping groups
(here called a partition) C = {C1,C2, . . . ,Cc} where c is
the number of clusters, such that C1 ∪C2 ∪ · · · ∪Cc = X,
Ci 6= ∅, and Ci ∩Cj = ∅ for i 6= j.

Although many algorithms for clustering have been pro-
posed in the literature (e.g., see [4], [5]), relatively little
work has been done on feature selection for clustering [6]–
[12]. Most clustering methods assume that all features are
equally important [6]. However, some features may be more
important than others for inducing clusters. In these cases,
feature selection methods can be useful. A comprehensive
survey of feature selection algorithms for classification and
clustering is presented in [13]. In brief, there are two fun-
damentally different approaches for feature selection [14],
[15]: wrapper and filter. The former evaluates the subset
of selected features using criteria based on the results of
clustering algorithms, i.e., the clustering method is wrapped
into the feature selection procedure. The latter involves
performing feature assessments based on intrinsic properties
of the data. These properties are presumed to affect the
ultimate performance of the clustering algorithm, but the
feature set is filtered without considering the clustering
algorithm that will be ultimately used.

In this work, we analyze three unsupervised feature selec-
tion methods, namely: the filter proposed by Mitra et al. [16],
the Attribute Clustering Algorithm [17], and the Simplified
Silhouette Filter [18]. These methods are based on the
clustering of features for redundancy removal. To identify
redundancy between features, correlation measures are used.
Following [2], “it is widely accepted that two features are
redundant if their values are completely correlated”. Thus,
feature clustering can be defined as the partitioning of a set
A of attributes A = {A1, A2, . . . , AM}, into a collection
CA = {C1, C2, . . . , Ck} of mutually disjoint subsets of
correlated features Ci of A, where k is the number of cluster
of features (attributes), such that C1 ∪ C2 ∪ · · · ∪ Ck = A,
Ci 6= ∅, and Ci ∩ Cj = ∅ for i 6= j.

The remainder of this paper is organized as follows. The
next section elaborates on the feature selection methods
studied in this work. Section III describes the experimental
results obtained. Finally, Section IV concludes the paper and
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points out some future work.

II. ANALYZED METHODS

A. Filter proposed by Mitra et al. [16]

The unsupervised filter proposed in [16] (here called
MMP from the last names of its authors: Mitra, Murthy,
and Pal) involves two main steps, namely: (i) the parti-
tioning of the complete feature set into clusters and; (ii)
the selection of a representative feature from each cluster.
Linear dependency is used to assess similarities between two
features and, consequently, to induce clusters. In particular,
it is shown in [16] that the proposed maximal information
compression index — λ(Ai, Aj) — in Eq. (1) is a measure of
the minimum amount of information loss (or the maximum
amount of information compression) possible. Hence, it is a
dissimilarity measure that may be suitably used for redun-
dancy reduction. Let Ai and Aj be two random variables
(here called features). λ(Ai, Aj) is defined as:

2λ2(Ai, Aj) = ξ −
√
ξ2 − 4s2Ai

s2Aj
(1− ρ(Ai, Aj)2), (1)

where s2Ai
denotes the variance of Ai, ξ = s2Ai

+ s2Aj
and

ρ(Ai, Aj) is the correlation coefficient between the features
Ai e Aj :

ρ(Ai, Aj) =
covariance(Ai, Aj)√

s2Ai
s2Aj

(2)

Clusters of features are obtained via the well-known k-
nearest neighbors (k-NN) principle. Initially (first iteration
of the algorithm), the k nearest neighbors (kNN ) of each
feature are computed. Among them, the feature that has the
most compact cluster is selected, and its kNN neighboring
features are discarded. The distance of a given feature to
its farthest neighbor measures the lack of compactness of
a given cluster. The process is repeated for the remaining
features, iterating until all of them are classified as either
selected or discarded. During the execution of the algorithm,
the kNN value is indirectly controlled by a parameter called
constant error threshold, ε, which is set equal to the distance
of the kth nearest-neighbor of the feature selected in the first
iteration. In subsequent iterations, the lack of compactness
value is checked to verify whether it is greater than ε or not.
If that is true, the kNN value is decreased. It is important to
note that the initial value of kNN is chosen by the user, and
it controls the cardinality of the subset of selected features.
As claimed by the authors [16], on the one hand it may be
useful to control the representation of the data at different
levels of details, performing some kind of exploratory data
analysis. On the other hand, the choice of the value of kNN
may be hard to be accomplished in practice, because the
user is left to estimate a critical parameter of the algorithm.
The overall computational complexity of the algorithm is
estimated in [16] as O(M2 ·N) for a given value of kNN . If

the kNN value is unknown, we shall note that an exploratory
data analysis can be performed by varying kNN in the range
[1, M -1], leading to a computational cost of O(M2 · N +
M3), where M and N stand for the number of features and
instances, respectively.

B. Filter proposed by Au et al. [17]

Au et al. [17] proposed a filter named Attribute Clus-
tering Algorithm (ACA) that suggests using a non-linear
correlation measure to group features. In principle, the
proposed correlation measure assumes that all features of
the dataset are discrete. In particular, let us assume that
A = {A1, A2, · · · , AM} is such a set of discrete features
and that ∀Ai ∈ A, dom(Ai) = {vi1, · · · , vimi

}. The
correlation measure used by ACA is the interdependence
redundancy measure, R(Ai, Aj), defined in [17] as:

R(Ai, Aj) =
I(Ai, Aj)
H(Ai, Aj)

(3)

where I(Ai, Aj) and H(Ai, Aj) are the mutual information
and the joint entropy between the features Ai and Aj ,
respectively:

I(Ai, Aj) =
mi∑
k=1

mj∑
l=1

P (vik, vjl) log
P (vik, vjl)
P (vik)P (vjl)

, (4)

H(Ai, Aj) = −
mi∑
k=1

mj∑
l=1

P (vik, vjl) logP (vik, vjl). (5)

Equation 3 reflects the dependence between Ai and Aj .
The denominator is basically a normalization term aimed
at avoiding a bias towards features with a large number
of values. R(Ai, Aj) ∈ [0, 1], where 1(one) indicates full
dependence (correlation) between features and 0 (zero) the
opposite.

The authors in [17] also introduced the concept of a mode
feature, which is the feature more correlated with the other
features of a given group. More precisely, the mode of the
group Cr is computed as:

ηr = argmax
Ai

∑
Aj∈Cr

R(Ai, Aj) (6)

For clustering features the authors [17] use a variant
of the well-known k-means, denominated k-modes. The
main differences between k-means and k-modes are: (i) the
replacement of the centroid (cluster mean vector) by the
mode feature; (ii) the replacement of the Euclidean distance
by the interdependence redundancy measure — R(Ai, Aj)
— in Eq. (3). The k-modes algorithm terminates when the
mode features of two consecutive iterations are equal. In
other words, k-modes can be seen as a variant of the well-
known k-medoids algorithm, used in ACA with a specific
similarity measure — R(Ai, Aj) — instead of the widely
used Euclidean distance.

994



In principle, the clustering algorithm used by ACA needs
the definition of the number of groups a priori, but the
authors [17] suggest that the sum of the multiple significant
interdependence redundancy measure in Eq. (7) can indicate
the best value for k.

k = argmax
k∈{2,...,M}

k∑
r=1

∑
Ai∈{Cr−ηr}

R(Ai, ηr). (7)

After partitioning the features into distinct clusters, the
authors propose to select, from each cluster, the r features
with the higher correlation with the other features from the
cluster, being r a user-defined value. Although this approach
may sound persuasive at a first glance, note that it favors
the selection of redundant features. In what concerns com-
putational efficiency issues, the computational complexity
of ACA is estimated in [17] as O(k · N ·M2 · t), where
t is the number of k-modes iterations and k is the given
number of clusters. If the number of clusters is unknown
and k is varied in the range [2,M -1], we can estimate
the overall computational complexity of ACA as O(M3).
The computational complexity in terms of computing the
correlation between features is estimated as O(N), when
the PKID algorithm [19] is used for discretization (as done
in this work).

C. Simplified Silhouette Filter [18]
The Simplified Silhouette Filter (SSF) was introduced in

[18], in which it was assessed in classification problems.
In our current paper, we investigate the use of SSF for
clustering problems, comparing it to the state of the art
feature selection methods just described in previous sections.
In addition, three additional correlation measures are here
used, and a promising variant of SSF is now described. In
particular, such a variant selects two features from each clus-
ter and it can provide better performance than its predecessor
in some applications, as discussed in the sequel.

SSF is also based on feature clustering (as defined in
the introductory section). After the partitioning of the set
of features A into k mutually disjoint subsets of correlated
features, it is expected that features that belong to the same
cluster should be more similar (correlated) to each other
than features that belong to different clusters. Therefore,
it is necessary to devise means of evaluating similarities
(correlations) between feature sets. This problem is often
tackled indirectly, i.e. distance measures can be used to
quantify dissimilarities (lack of correlation) between fea-
tures. In this work, we employ four correlation measures for
finding clusters of features, namely: the maximal information
compression index in Eq. (1), the correlation coefficient in
Eq. (2), the interdependence redundancy measure in Eq. (3),
and the symmetrical uncertainty [20]:

SU(Ai, Aj) = 2
[

IG(Ai, Aj)
H(Ai) +H(Aj)

]
(8)

where IG(Ai, Aj) and H(Ai) denote the information gain
[20] between features Ai and Aj and the entropy of feature
Ai, respectively. The value of the symmetrical uncertainty
is in the range [0,1], 1 (one) indicating full correlation and
0 (zero) indicating that the two features are independent.

Attempting to find a globally optimum solution for clus-
tering problems is usually not computationally feasible [3].
This difficulty has stimulated the search for efficient approx-
imate algorithms. This work follows this trend, employing
a heuristic procedure, which is based on the simplified
silhouette criterion [21], for finding the number of clusters
and the corresponding feature partitions.

To define the simplified silhouette (SS) [21], consider a
feature Ai belonging to cluster Ca. The dissimilarity of Ai
to the medoid of Ca is denoted by a(i). Now let us take
into account cluster Cj . The dissimilarity of Ai to medoid
of Cj will be called d(Ai, Cj). After computing d(Ai, Cj)
for all clusters Cj 6= Ca, the smallest one is selected, i.e.
b(i) = min d(Ai, Cj), Cj 6= Ca. This value represents the
dissimilarity of Ai to its neighbor cluster, and the silhouette
s(i) is given by:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. (9)

The higher s(i) the better the assignment of Ai to a given
cluster. In addition, if s(i) is equal to zero, then it is not
clear whether the feature should have been assigned to its
current cluster or to a neighboring one [4]. Finally, if Ca
is a singleton, then s(i) is not defined and the most neutral
choice is to set s(i) = 0 [5]. The average of s(i), i = 1, 2,
. . . , M , can be used as a criterion to assess the quality of
a given feature partition. By doing so, the best clustering is
achieved when the silhouette value is maximized.

The computation of the simplified silhouette (SS) [21]
depends only on the achieved partition and not on the
adopted clustering algorithm. Thus, the SS can be applied to
assess partitions (taking into account the number of clusters)
obtained by several clustering algorithms. We adopt the
well-known k-medoids algorithm to obtain partitions to be
evaluated by the SS. This algorithm is interrupted as soon as
medoids from two consecutive iterations are equal. Roughly
speaking, k-medoids is designed to minimize the sum of
distances between features and nearest medoids. From the
SS criterion viewpoint, good partitions are also obtained
when this minimization is suitably performed, as well as
when clusters are well separated.

The SS is a numeric criterion that allows estimating the
number of clusters automatically. Thus, it can provide a way
of circumventing an important limitation of k-medoids, i.e.
the number of clusters k must be determined a priori. In
this sense, one can perform multiple runs of k-medoids (for
different values of k) and then choose the best available
partition, which corresponds to the maximum achieved value
for the SS. It is also well-known that k-medoids may get
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stuck at suboptimal solutions for a given k [22]. To alleviate
this problem, one can perform multiple runs of k-medoids
for a fixed k.

We here investigate two alternatives for selecting features
from each obtained cluster. The first one involves selecting
only the feature more correlated to the other features in
the same cluster. The selected feature is indeed the medoid
of the cluster and it can be viewed as the representative
feature of that cluster. Doing so, a subset of k features is
achieved. This approach is particularly useful if the clusters
are well separated. In the second approach, besides selecting
the medoid of the cluster, the feature less correlated (less re-
dundant) with the medoid is also selected. Thus, two features
from each cluster are chosen, resulting in the selection of 2k
features. Contrarily to the ACA [17], this approach tends to
avoid the selection of undesirable redundant features, being
more interesting when one faces with overlapping clusters.
In this case, we could roughly say that SSF is more suitable
than ACA [17] for avoiding information loss, in the sense
that the feature less correlated to the medoid would not be
discarded by this filter. This feature may contain important
information not encoded into the medoid, but it would be
discarded in most of the cases by ACA, which selects the r
features more correlated to the others in the same cluster.

The overall computational complexity of SSF is very
similar to ACA, and it is estimated as O(M2) for a given
value of k and as O(M3) when k is varied in the range
of [2,M -1]. In what concerns the computational complexity
of SSF in terms of the number of instances (N ), it will
depend upon the adopted correlation measure. In this work,
all the correlation measures have a computational complexity
of O(N) (in the case of entropy-based measures, this holds
when the algorithm PKID [19] is used for discretization, as
done in this work).

III. EXPERIMENTAL EVALUATION

Our experimental setting is based on the desire to evaluate
the relative performance of the feature selection algorithms
being studied under controlled conditions. With this pur-
pose in mind, we have used ten datasets. Six of them are
bioinformatics datasets used by [23]. These authors created
five types of synthetic array datasets with error distributions
derived from bioinformatics real data. These datasets (here
called Bio1, Bio2, Bio3, Bio4, and Bio5) are composed
of 400 genes (instances), described by 20 measurements
(features). There are six approximately equal-sized clusters
in each dataset. Four clusters represent sine waves shifted in
phase relative to each other (a periodic pattern) and the two
remaining ones represent linear functions (non-periodic).
Error is added to the synthetic patterns (for each data
point) using an experimentally derived error distribution. In
addition, we tested the described feature selection algorithms
in a real-world dataset (Yeast Galactose data [23]), which is
composed of 20 measurements (nine single-gene deletions,

Table I
SUMMARY OF THE EMPLOYED DATASETS.

Dataset N M # clusters (distribution - %)
Bio1, . . . , Bio5 400 20 6 (≈ equally distributed)

Yeast 205 20 4 (40.5 - 7.3 - 45.4 - 6.8)
10 250 250 10 5 (equally distributed)
12 200 200 12 4 (equally distributed)
20 250 250 20 5 (equally distributed)

1000 1000 1000 1000 5 (equally distributed)

one wild-type experiment with galactose and raffinose, nine
deletions, and one wild-type experiment without galactose
and raffinose) and 205 genes. In this dataset, the expression
patterns reflect four functional categories (clusters). The
datasets used in the experiments reported here take into
account four repeated measurements, what may yield more
accurate and more stable clusters. The repeated measure-
ments are taken into account by averaging the expression
levels over all repeated measurements. Other four datasets
were artificially generated by using procedures inspired on
the ideas by Milligan [24], [25]:

• 10 250: This dataset is composed of 250 instances (50
instances in each cluster) and 10 features (attributes).
The first two features describe five clusters if combined,
but individually each of them only allows recovering
three clusters. The other eight features are noisy, hav-
ing values derived from a normal distribution that is
independent of the distribution of the clusters.

• 12 200: This dataset is composed of 200 instances (50
instances in each cluster) and twelve features. The first
feature is created using the data generator proposed in
[25], and describes four clusters. The second feature
describes two clusters. Features 3, 5, 7, 9, and 11 are
correlated with the first feature having 10%, 20%, 30%,
40%, and 50% of noisy values, respectively. Features 4,
6, 8, 10, and 12 are correlated with the second feature
and have 10%, 20%, 30%, 40%, and 50% of noisy
values, respectively.

• 20 250: This dataset is composed of 250 instances (50
instances in each cluster) and 20 features. The first
two features describe five clusters if combined, but
individually each of them only describes three clusters.
Features 3, 5, 7, 9, and 11 are correlated with the first
feature and have 10%, 20%, 30%, 40%, and 50% of
noisy values, respectively. Features 4, 6, 8, 10, and 12
are correlated with the second feature and have 10%,
20%, 30%, 40%, and 50% of noisy values, respectively.
The values for features 13,14,. . . , and 20 are derived
from uniform probability distributions.

• 1000 1000: This dataset consists of 1,000 instances and
1,000 features, and it was obtained by means of the data
generator proposed in [25]. The first feature perfectly
describes five clusters, whereas the remaining features
make them overlapped.
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A summary of the employed datasets is presented in
Table I. In the performed experiments, feature selection by
SSF/ACA was performed by running k-medoids/modes for
a variable number of clusters (kmin, kmin + 1, . . . , kmax −
1, kmax). For each value of k, 20 different partitions were
generated, for that k-medoids/modes may get stuck at subop-
timal solutions [22]. Thus, 20(kmax − kmin + 1) partitions
are obtained for each filter. Among them, the best one is
chosen by SSF/ACA (as discussed in Sections II-B and
II-C) for feature selection purposes. We set the minimum
k value to 2 (kmin = 2) and kmax was set according to the
criteria for selecting features from each cluster (as discussed
in Section II-C). More specifically, kmax for selecting one
feature per cluster is M -1 (kmax = M -1), and for selecting
two features per cluster it is M/2 (kmax = M/2). From
a practical viewpoint, one can consider that these values
somehow determine the size of the search space to be
assessed, as well as the computational effort to find the
corresponding solution. Therefore, domain knowledge, when
available, can be incorporated into this approach in order to
set those parameters in scenarios that present computational
resources limitations.

As observed in Section II-A, the performance of MMP
is highly dependent upon a parameter, kNN , chosen by
the user and that controls the cardinality of the subset of
selected features. The authors [16] claim that it may be
useful to control the representation of the data at different
levels of details, performing some kind of exploratory data
analysis. Despite the good results reported in [16], a number
of experiments reported here illustrate that the choice of the
kNN value may be hard to be accomplished in practice. To
make this point more clear, we run MMP by varying kNN
into the range of all its possible values — [1,M -1] — for
each dataset. For the filter named ACA , addressed in Section
II-B, the user has to choose the number of selected features
(r). Aimed at performing interesting comparisons with SSF,
we show the obtained results for both one (r = 1) and
two (r = 2) selected features from each cluster. Continuous
features were discretized using the algorithm PKID [19]
before running ACA and SSF when the interdependence
redundancy measure and the symmetrical uncertainty are
used.

The acronyms SSF-λ, SSF-ρ, SSF-R, SSF-S, MMP, ACA
and All refer to the SSF method using the maximal infor-
mation compression index (Eq. (1)), SSF using the corre-
lation coefficient (Eq. (2)), SSF using the interdependence
redundancy measure (Eq. (3)), SSF using the symmetrical
uncertainty (Eq. (8)), Mitra et al.’s algorithm [16] (for
which B, A, and W stand for the best, average, and worse
results, respectively), Attribute Clustering Algorithm [17],
and finally the results found by using all features of the
dataset, respectively. A third parameter can also be found
for both SSF and ACA, making reference to the number of
selected features from each cluster. For instance, SSF-ρ-1

stand for SSF using the correlation coefficient and selecting
one feature from each cluster.

The quality of the feature subsets found by the studied
filters is assessed by means of the quality of the data
partitions obtained by k-means, which was chosen due to
its widespread use in practice [26]. Since k-means has
the limitation of getting stuck at suboptimal solutions, we
run it 50 (fifty) times for each dataset obtained from a
feature selection algorithm. Then, the data partition that
provides the most compact clusters (according to the average
quadratic errors, computed from distances between instances
and cluster centroids) is chosen. The quality of such parti-
tions is evaluated by computing the well known Adjusted
Rand Index (ARI) [27] and Jaccard Coefficient (JC) [28],
which are external indices of partitional adequacy. In order
to provide some reassurance about the validity and non-
randomness of the obtained results, we present the results
of statistical tests by following the approach proposed in
[29]. In brief, this approach is aimed at comparing multiple
algorithms on multiple datasets, and it is based on the use
of the well-known Friedman test with a corresponding post-
hoc test. The Friedman test is a non-parametric statistic test
equivalent to the repeated-measures ANOVA. If the null
hypothesis, which states that the algorithms under study have
similar performances, is rejected, then we proceed with the
Nemenyi post-hoc test for pair-wise comparisons between
algorithms.

Table II summarizes the obtained ARI values. The last
column of this table refers to the average rank obtained
from performing the Friedman test1. It is interesting to
observe from Table II that the two best ranked algorithms
(MMP and SSF-ρ-1) provided better or equal results in
more than 80% of the datasets when compared to the use
of all features. Due to space limitations we omit the JC
values, but we shall note that the obtained results are very
consistent with those achieved by the ARI. Independently
of the clustering external criterion used (either ARI or JC),
the statistical procedure just described indicates that are
significant differences only between MMP-B and SSF-λ-1/2
(at α = 10%). Table III presents the number of wins, ties
and losses between all pairs of algorithms considering the
ARI values, e.g., “1/3/6” in the 7th line and 3rd column
indicates that SSF-ρ-1 was better than MMP-B only once,
there were three ties, and it was worse six times. It can be
seen that, despite the good results obtained in the best case
for MMP (MMP-B), ACA and SSF showed better results in
50-60% of the datasets in relation to MMP-A (average case),
which suggests that both methods can be preferred when
the value of the kNN parameter is unkwnown, especially if
computational efficiency is of concern (as discussed in the
sequel).

1We conservatively only considered the best results achieved by MMP
(MMP-B) [16] in the statistical tests.
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Table II
SUMMARY OF THE ADJUSTED RAND INDEX VALUES.

Method 10 250 20 250 12 200 Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 1000 1000 Ranking (Friedman)
All 1.00 0.95 1.00 0.53 0.80 1.00 0.82 0.55 0.97 0.78 5.80

MMP-B 1.00 0.98 1.00 0.82 0.97 1.00 0.90 0.81 0.98 0.93 3.10
MMP-A 0.57 0.53 0.56 0.64 0.78 0.92 0.75 0.69 0.76 0.78 —
MMP-W 0.02 0.02 0.26 0.49 0.53 0.55 0.52 0.48 0.09 0.28 —
SSF-λ-1 0.49 0.11 0.43 0.81 0.50 1.00 0.77 0.54 0.62 0.56 9.75
SSF-λ-2 0.31 0.17 0.45 0.59 0.80 1.00 0.79 0.55 0.65 0.90 8.00
SSF-ρ-1 1.00 1.00 1.00 0.53 0.91 1.00 0.82 0.54 0.75 0.78 5.55
SSF-ρ-2 1.00 1.00 0.52 0.53 0.81 1.00 0.80 0.54 0.66 0.78 6.75
ACA-1 0.49 1.00 1.00 1.00 0.62 0.78 0.80 0.79 0.60 0.78 6.40
ACA-2 1.00 0.99 0.99 1.00 0.54 0.81 0.92 0.54 0.71 1.00 5.70

SSF-R-1 0.24 0.97 1.00 1.00 0.91 0.81 0.93 0.53 0.96 0.76 6.50
SSF-R-2 0.25 0.56 0.52 0.82 0.92 0.78 0.8 0.56 0.97 0.67 7.30
SSF-S-1 0.24 1.00 1.00 1.00 0.91 0.81 0.87 0.53 0.96 0.76 6.30
SSF-S-2 0.25 1.00 0.52 0.82 0.92 0.78 0.79 0.56 0.97 0.67 6.85

Table III
WIN/TIE/LOSS FOR METHODS IN THE 1st COLUMN (IN RELATION TO ADJUSTED RAND INDEX VALUES).

Method All MMP-B MMP-A SSF-λ-1 SSF-λ-2 SSF-ρ-1 SSF-ρ-2 ACA-1 ACA-2 SSF-R-1 SSF-R-2 SSF-S-1 SSF-S-2
All — 0/3/7 7/1/2 8/1/1 5/3/2 2/6/2 4/4/2 5/2/3 5/1/4 5/1/4 6/1/3 5/1/4 5/1/4

MMP-B 7/3/0 — 10/0/0 9/1/0 9/1/0 6/3/1 7/2/1 7/1/2 5/1/4 7/1/2 9/1/0 7/1/2 8/1/1
MMP-A 2/1/7 0/0/10 — 7/0/3 6/0/4 3/1/6 4/1/5 4/1/5 4/0/6 4/0/6 5/0/5 4/0/6 5/0/5
SSF-λ-1 1/1/8 0/1/9 3/0/7 — 2/1/7 1/2/7 1/2/7 2/1/7 1/1/8 3/0/7 2/0/8 3/0/7 2/0/8
SSF-λ-2 2/3/5 0/1/9 4/0/6 7/1/2 — 3/1/6 3/1/6 4/0/6 3/0/7 4/0/6 3/0/7 4/0/6 3/1/6
SSF-ρ-1 2/6/2 1/3/6 6/1/3 7/2/1 6/1/3 — 4/6/0 5/3/2 5/2/3 5/2/3 6/0/4 4/3/3 5/1/4
SSF-ρ-2 2/4/4 1/2/7 5/1/4 7/2/1 6/1/3 0/6/4 — 4/3/3 3/2/5 5/0/5 4/2/4 4/1/5 4/2/4
ACA-1 3/2/5 2/1/7 5/1/4 7/1/2 6/0/4 2/3/5 3/3/4 — 4/1/5 4/2/4 6/2/2 3/3/4 6/2/2
ACA-2 4/1/5 4/1/5 6/0/4 8/1/1 7/0/3 3/2/5 5/2/3 5/1/4 — 4/2/4 7/0/3 4/2/4 6/0/4

SSF-R-1 4/1/5 2/1/7 6/0/4 7/0/3 6/0/4 3/2/5 5/0/5 4/2/4 4/2/4 — 6/0/4 1/8/1 5/0/5
SSF-R-2 3/1/6 0/1/9 5/0/5 8/0/2 7/0/3 4/0/6 4/2/4 2/2/6 3/0/7 4/0/6 — 4/0/6 1/8/1
SSF-S-1 4/1/5 2/1/7 6/0/4 7/0/3 6/0/4 3/3/4 5/1/4 4/3/3 4/2/4 1/8/1 6/0/4 — 5/1/4
SSF-S-2 4/1/5 1/1/8 5/0/5 8/0/2 6/1/3 4/1/5 4/2/4 2/2/6 4/0/6 5/0/5 1/8/1 4/1/5 —

Table IV
SUMMARY OF THE NUMBER OF SELECTED FEATURES.

Method 10 250 20 250 12 200 Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 1000 1000 Ranking (Friedman)
MMP-B 6 14 11 17 14 4 6 9 8 4 8.5
MMP-W 1 1 2 8 1 1 19 4 1 1 —
SSF-λ-1 2 2 2 3 10 9 4 8 2 2 3.8
SSF-λ-2 4 3 4 6 20 18 8 16 3 4 7.7
SSF-ρ-1 4 5 2 6 4 8 3 5 2 4 4.2
SSF-ρ-2 8 10 4 12 8 16 6 10 3 8 8.3
ACA-1 2 2 2 2 2 2 2 2 2 2 1.6
ACA-2 4 4 4 3 3 3 3 3 4 4 4.4

SSF-R-1 4 7 2 8 7 10 3 6 9 2 5.2
SSF-R-2 8 14 4 12 11 15 6 11 15 3 8.9
SSF-S-1 4 6 2 8 7 10 2 6 9 2 4.8
SSF-S-2 8 11 4 12 11 15 3 11 15 3 8.3

Now let us shed light on some particular results obtained
for specific datasets. Considering the 10 250 dataset, only
SSF-ρ, ACA-2, and MMP-B were able to select the two
relevant features. In the 12 200 dataset, ACA and SSF (all
versions, except SSF-λ) were able to identify the correct
clusters of features (given by even and odd “feature labels”).
In this particular dataset, the differences observed for the
ARI values obtained by ACA-2 and SSF-2 versions can
be explained by observing the nature of this dataset. More
precisely, SSF-2 selects, from each cluster, its medoid and
the feature less correlated with the medoid. Thus, it follows
that SSF-2 selects noisy features, which, by the construction
of the dataset, are the less correlated with the medoid. Such
noisy features naturally tend to deteriorate the quality of the

data partitions induced by k-means. For the 20 250 dataset,
all algorithms (except SSF-λ) were able to select the two
relevant features.

Table IV presents the number of selected features by
each feature selection method2. The last column presents the
average rank obtained from the Friedman test1. In summary,
ACA and SSF-λ-1 provided better results than MMP in our
study. Significant differences were observed between SSF-
λ-1 and (SSF-ρ-2, MMP-B, SSF-R-2, and SSF-S-2) and
between ACA-1 and (SSF-λ-2, SSF-ρ-2, MMP-B, SSF-R-2,
and SSF-S-2) at α = 10%.

2Results for MMP-A are not included in Table IV since they do not
represent a specific subset of features but the average result obtained by
varying the value of the kNN parameter in the range [1,M -1].
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Let us now take into account computational efficiency
issues. We are interested in empirically evaluating the mag-
nitude of the constant terms neglected by the asymptotic
time complexity analysis reported in Sections II-A-II-C.
To do so, we implemented all the studied algorithms in
Java, using only the necessary commands. This way, more
uniform efficiency comparisons can be performed. The same
computer (Opteron, 2.0 GHz, 8 Gb RAM), running only
the operational system, was used for all the controlled
experiments. Detailed results are not shown here due to
space limitations. Instead, we focus on providing a summary
of the results of the statistical tests, which suggest (α = 5%)
that: (i) SSF-λ-2, SSF-ρ-2, ACA-2, SSF-R-2, and SSF-
S-2 presented better performance than MMP-B, SSF-ρ-1,
and SSF-S-1; (ii) SSF-λ-2 presented better performance
than SSF-R-1 and ACA-1; (iii) SSF-λ-1 presented better
performance than MMP-B.

IV. CONCLUSIONS

In this work we analyzed three unsupervised feature
selection methods for clustering problems. More specifically,
the filters proposed by Mitra et al. (MMP) [16], Au et al.
(ACA) [17], and Covões et al. (SSF) [18] were empirically
compared. Experiments in ten datasets showed that both
ACA [17] and SSF [18] provide competitive results (es-
pecially if computational efficiency is under consideration)
to those found by MMP [16], which is considered a state
of the art method for feature selection in the statistical
pattern recognition field [2]. ACA and SSF showed similar
performances. However, the user needs to choose the number
of features to be selected when running ACA, whereas SSF
selects it automatically, and thus it can be preferred in certain
applications. In what concerns the different correlation mea-
sures analyzed for SSF, significant differences have not been
observed between the interdependence redundancy measure
and the symmetrical uncertainty, whereas the correlation
coefficient has shown better results than the maximal infor-
mation compression index in most of the employed datasets,
as well as it has shown competitive results with the non-
linear correlation measures. In addition, the SSF variant here
investigated that involves the selection of two features for
each cluster (medoid and feature less correlated with the
medoid) has presented good results for the bioinformatics
datasets.

Although interesting results have been reported in this
comparative study, there are several issues that can be
investigated in the future. For example, provided that SSF in
principle does not necessarily require the use of a particular
clustering algorithm, the investigation of the suitability of
clustering algorithms different from the one used in our
study is an interesting future work. Also, a more compre-
hensive experimental evaluation, comprising more datasets,
is in order.
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rale,” Bulletin de la Société Vaudoise de Sciences Naturelles,
vol. 44, pp. 223–370, 1908.
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