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Abstract—This paper presents an on-line estimation for the stator 
resistances of the induction motor in the direct torque controlled 
drive, using artificial neural networks. The variation of stator 
resistance due to changes in temperature or frequency degrades 
the performance of such control strategy. In order to solve this 
issue, a backpropagation algorithm is used for training of the 
neural network. The error between the desired state variable of 
an induction motor and the actual state variable of a neural 
model is back propagated to adjust the weights of the neural 
model, so that the actual state variable tracks the desired value. 
Simulation results show the good performance of these resistance 
estimator and torque response of the drive. 

Neural network; estimator; DTC; Induction motor 

I. INTRODUCTION 
High performance torque controlled induction machine 

drives can be achieved when the proper control scheme utilizes 
accurate estimated flux. The stator resistance changes due to 
the temperature variations and stator frequency variation that 
deteriorate the drive performance by introducing errors in the 
estimated magnitude and position of the stator flux vector. This 
in turn affects the estimation of the electromagnetic torque and 
degrades the performance of the DTC system. At low speed, 
this effect is important and if the value of the stator resistance 
which is used in controller is less than its actual value, the 
developed flux and torque will he decreased. Using greater 
value of the stator resistance in controller than its real value 
leads to instability [1]. 

Several methods have been reported to minimize the 
consequences of parameter sensitivity in direct torque control 
drives. The stator resistance tuning has been proposed using 
hybrid flux estimation [2][3]. The hybrid flux estimation 
utilizes a combined model which has smooth transition from 
the stator voltage to the rotor voltage based flux estimations 
from low speeds to high speeds, and vice versa. In [4],[5], the 
stator resistance is calculated by means of dc components of 
the voltage and current measurements. Online identification 
has been developed using model reference adaptation [6]. 

It is also possible to synthesize the tuning of stator 
resistance using intelligent control technique. For instance, [7] 
proposed Fuzzy estimator which employs stator current phasor 

error to adjust the stator resistance. It has been shown that, 
among the other variables of the machine, the stator current is 
highly affected by the resistance changes. 

In this paper, the effect of stator resistance variation is 
discussed and the stator resistance is estimated using an on-line 
neural network estimator. The performance of the control drive 
is examined by extensive simulation studies.  

II. DTC PRINCIPLE 
Takahachi, Depenbrock [3]-[8] proposed a high 

performance scalar control method which is popularly known 
as direct self control (DSC) or direct torque control (DTC). The 
structure of a classical DTC scheme is illustrated in Fig. 1. 
Classical DTC selects one of the six voltage vectors and two 
zero voltage vectors generated by a VSI in order to keep stator 
flux and torque within the limits of two hysteresis bands. The 
right application of this principle allows a decoupled control of 
flux and torque without the need of coordinate transformations, 
PWM pulse generation and current regulators [8]. However, 
the presence of hysteresis controllers leads to a non-constant 
switching frequency operation.  

The basic DTC strategy is that the status of the errors of 
stator flux magnitude | sψ | and electromechanical torque (Tem) 
can be detected and digitalized by two- and three-level 
hysteresis comparators. The optimum switching table (Table 1) 
is then used to calculate the status of three switches  S1, S2, S3, 
that will determine the location of the  voltage space vector sV  

which  depends on the stator  flux’s angle ( sθ ). 
The stator flux, as given in (1), can be approximated by (2) 

over a short time period if the stator resistance is ignored. 

 dtIRV ss

t

ssos )(
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Figure 1.   DTC principle 

During one period of sampling Ts, the voltage vector 
applied to the machine remains constant, and thus we can 
write: 

 sssssss TVTVkk ..)()1( ≈Δ⇒+≈+ ψψψ  (3) 

Because the rotor time constant is larger than the stator one, 
the rotor flux changes slowly compared to the stator flux. Thus 
torque can be controlled by quickly varying the stator flux 
position by means of the stator voltage applied to the motor. 

TABLE I.  SWITCHING STATES 

Δψs ΔTe S1 S2 S3 S4 S5 S6 

1 
1 110 010 011 001 101 100 
0 000 000 000 000 000 000 
-1 101 100 110 010 011 001 

0 
1 010 011 001 101 100 110 
0 000 000 000 000 000 000 
-1 001 101 100 110 010 011 

 
At any instant, the torque is proportional to the stator flux 

magnitude, the rotor flux magnitude, and the sinus of the 
angleδ  (see Fig.2). It is expressed by: 

 )sin()( δrsrse kkT ΨΨ=Ψ×Ψ=  (4) 
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The estimated electromagnetic torque can be expressed as:  

                           )(
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Figure 2.  Stator and rotor flux vectors 

III. NEURAL NETWORK STATOR RESISTANCE ESTIMATOR 
The stator resistance of an induction motor can be 

estimated with the adaptive estimator using neural networks as 
illustrated in Fig. 3.  

Two independent observers are used to estimate the rotor 
flux vectors of the induction motor. Equation (6) is referred to 
as “voltage model” which is based on measured stator voltages 
and stator currents from the induction motor. Equation (7) is 
referred to as “current model”, which uses the measured stator 
currents and rotor speed. 
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Using the discrete form of equation (7), the new α –axis 
current equation can be discretized and written as: 
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Figure 3.  Rs estimation using Neural Network 

The weights w2, w3, and w4 are considered constant and 
calculated from the motor parameters, motor speed ωr and the 
sampling interval Ts. The weight between the neurons, w1 
contains the stator resistance term, therefore, it is trained so as 
to minimize the energy function E. 

 { }2*2 )()(
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The weight variation for w1 is given by: 
 

 [ ] )1()()()( **
1 −−=Δ kikikikw sss ααα  (10) 

Equation (8) can be represented by a recurrent neural 
network as shown in Fig. 4. 

To accelerate the convergence of the error back propagation 
learning algorithm, the current weight adjustment is 
supplemented with a fraction of the recent weight adjustment, 
as in equation (11). 

 

 
Figure 4.  stator current estimation based on recurrent network  

 )1()()1()( 1111 −Δ+Δ+−= kwkwkwkw αη    (11) 

where η is the training coefficient, α is a user selected 
positive momentum constant. 

The stator resistance can be calculated from (12). 
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IV. SIMULATION RESULTS 
The performance of the proposed ANN stator resistance 

estimator is verified by simulation of the test drive model built 
in Matlab/Simulink ® environnement. The system’s response 
with and without the resistance estimator are compared. The 
induction motor parameters are listed in Table.2. 

The speed loop control is based on PI regulator witch give 
the corresponding torque reference for the drive. While the 
stator flux reference is equal to 0.8 Wb. 

The drive has been tested particulary in low speed region at 
20 rad/s witch is the most critical region for stator resistance 
detuning.  

A step variation (64% drop) of the stator resistance is 
introduced at 0.5 sec. Fig. 5, shows that the system becomes 
unstable when estimated stator resistance is higher than its 
actual value. The reason of the instability of the system is due 
to the opposite effects between the controller and the motor [1]. 
The increased current (Fig 5.b) due to lower actual stator 
resistance value, causes increased stator resistance voltage 
drops in the estimator resulting in lower estimation of the flux 
linkages and electromagnetic torque estimations. This value of 
the stator current leads ti high torque oscillation (Fig 5.d) and 
instability of the speed control loop (Fig 5.c). Also the stator 
flux locus is affected giving much more ripples around the 
desired stator flux (Fig 5.e-f). 

Since the switching action is strongly affected by the torque 
controller, the accurate estimation of the torque is important for 
high performance and proper control in DTC. The accurate of 
stator flux estimation is mandatory in estimating the torque.  

TABLE II.  INDUCTION MOTOR PARAMETERS 

Rated power Prated [KW] 3 
Rtaed Vltage Urated [V] 220 

Rated frequency [Hz] 50 
Pole-pair 2 

Stator resistance Rs [Ω] 2.2 
Rotor resistance Rr [Ω] 2.68 
Stator inductor Ls[mH] 229 
Rotor resistance Lr[mH] 229 

Phase magnelizing inductance 
1m, [mH] 

217 

Rated speed [rpm] 1440 
 

From the wave forms of fig.6, it can be seen that the 
estimated stator resistance tracks the actual resistance very 
closely. The stator current remains constant (Fig 6.b). The 
electromagnetic torque and stator flux module (Fig 6.d-
e)exhibit acceptable ripples due to the effectiveness of the 
control strategy. 
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V. CONCLUSION 
To increase the performance of the DTC system due to 

changes in stator resistance, stator resistance neural network 
adaptive system is considered. This method is based on 
comparing the actual stator flux with the neural network 
adaptive model trained online by a backpropagation algorithm. 

The simulation results are used to study the performances 
of the drive system particularly at low speed. This study reveals 
that, the system becomes stable with a good accuracy of stator 
resistance estimation.   
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Figure 5.  effect of stator resistance variation. (a) stator resistance step variation, (b) stator current module (A), (c) speed (rad/s), (d) electromagnetic torque 

(N.m), (e) stator flux module (Wb), (f) stator flux locus
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Figure 6.  Stator resistance compensation. (a) stator resistance step variation, (b) stator current module (A), (c) speed (rad/s), (d) electromagnetic torque (N.m), 
(e) stator flux module (Wb), (f) stator flux locus 
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