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Abstract—The paper analyses the issues behind strategies
optimization of an existing automated warehouse for the
steelmaking industry. Genetic Algorithms are employed to this
purpose by deriving a custom chromosome structure as well
as ad-hoc crossover and mutation operators. A comparison
between three different solutions able to deal with multi-
objective optimization are presented: the first approach is based
on a common linear weighting function that combines different
objectives; in the second, a fuzzy system is used to aggregate
objective functions, while in the last the Strength Pareto
Genetic Algorithm is applied in order to exploit a real multi-
objective optimization. These three approaches are described
and results are presented in order to highlight benefits and
pitfalls of each technique.

Keywords-genetic algorithms, multi-objective optimisation,
logistic, warehouse

I. INTRODUCTION

Automated warehouses [1] are a product of high inte-
gration of modern logistics, warehousing, automation and
computer technologies. Despite their very relevant cost,
major advantages of automated warehouse include high
throughput, efficient use of space, high reliability and im-
provement of safety, as the human intervention is reduced
at minimum. Furthermore, in order to improve customer
service levels, they can be directly linked to the information
system that handles customers orders, also via web through
B2B (businness to businness) platforms.

Warehouses are included in the wider class of logistic
systems. The efficiency of a logistic system is influenced
by many factors; among the most important ones are the
research of the best locations for distribution facilities and
the research of optimized strategy to manage the distribution
network in such a way that the customer demand can
be satisfied at minimum cost and maximum profit [2],
[3]. As a single warehouse is considered, its efficiency is
mainly influenced by allocation and reordering methods,
i.e. by procedures whose aim is, for example, to optimise
space utilisation, items throughput and store and retrieval
operations [4], [5].

This paper is focused on the study of an automated
warehouse for the primary steel making industry, that allows
to store several typologies of tubes with rectangular section

in an automatic way. The first automated warehouse for steel
tube storage was built in Japan at the end of ’90s [6], but
now they spread also allover USA and Europe.

The paper is organized as follows: Sec. II briefly describes
the automated warehouse; Sec. III presents the optimisa-
tion problem and some Key Performance Indicators. A
brief state-of-the-art survey is presented in Sec. IV, while
is Sec. V the structure of the Genetic Algorithm model
employed is illustrated. Three different solutions based on
Genetic Algorithm are described in Sec. VI; In Sec. VII
simulation results are presented and discussed, while some
concluding remarks are given in Sec. VIII.

II. PLANT DESCRIPTION

The plant is composed by a production area, a storage
area and a shipping area, as depicted in Fig. 1.

In the production area the tubes are manufactured and
packaged. Each tube is characterized by a typology, which
in turn is defined by means of tube length (6 or 12 meters),
section shape and sizes (rectangular or squared) and steel
quality: more then 1000 different typologies are currently
produced. Each pack contains tubes of the same typology
and for each typology, pack dimensions are predefined.
Once a pack of tubes is ready at the end of one of the
production lines, it is carried to the storage area by means
of an automated material handling system, composed by
43 automated cranes, called trolleys, which are able to
move through a suspended railway system and that are
equipped with electromagnets that can be lowered and raised
in order to grasp a pack of tubes. The storage area is
about 50 × 90 meters and it is divided in 9 aisles: each
aisle is composed by dynamically allocated mono-typology
compartments, which in turn are composed by a certain
number of stacks of packs, depending on the production
order. Each compartment is identified by the aisle in which
it lies and by its distance, expressed in centimetres, from the
beginning of the aisle itself and it is characterized by a width
(expressed in number of stacks) and by the tube typology it
can contain. Compartments positions and size are assigned
by the management system as soon as production orders are
received by means of an allocation strategy.
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Figure 1: Map of the plant

Tube packs remain in the warehouse until they are ac-
quired by customers through an information system directly
linked to the automated warehouse management system.
Finally, for the delivery, the tubes pack are carried to the
dispatching area, where they are loaded on trucks that will
deliver them to customers.

Current storage strategies as well as constraints they
must satisfy - such as minimum distance between adjacent
compartments, maximum stacks height, minimum number
of stacks in a compartment, etc. - are described in deeper
details in [7].

III. PROBLEM STATEMENT

In the analysed warehouse, despite of the high level of
automation, the algorithms that currently rule allocation
and reordering strategies of tubes packs are merely based
on heuristics and simple rules, so probably leaving room
for large performance improvements. The limit of both
strategies is due to the fact that a complete search on all
available empty spaces or compartments is not performed.
For example, as the compartment allocation procedure is
concerned, empty spaces are examined in order, beginning
from the first empty space of the first aisle on. When an
empty space in which the new compartment fits and that
satisfies predefined characteristics and rules is found, the
search is stopped, sometimes ignoring other possible and
maybe better storage sites. Thus, from a strict point of view,

both allocation and reordering strategies are not optimized,
i.e. are not guided by objective functions.

Unfortunately the employment of such procedures can
sometimes lead the warehouse to a false saturation status:
as a matter of fact, it can happen that, although existing
compartments are almost empty, there is not enough room
for the allocation of new compartments for tube typologies
not currently present, thus forcing to perform a manual stor-
age operation in another non-automated warehouse, which
is slower, less efficient and less safe.

Let us define some Key Performance Indicators (KPIs)
that will be used both to derive objective functions for new
strategies and to compare them with the performances of the
current procedures [8].

Total Stored Material. It identifies how many items are
stored in the warehouse. It can be measured as weight or
items number, depending on the typology of merceology. The
equation for the Total Stored Weight is

TSW =
NC∑
k=1

Ni(k)∑
j=1

wkj (1)

where NC is the number of allocated compartments, Ni(k)
is the number of items of the kth compartment and wkj is
the weight of a single item. This KPI should be maximised.

Empty Space. It is the sum, expressed in centimetres, of
the amount of empty space presents in the aisles.

ES =
NS∑
k=1

lk (2)

where NS is the number of empty spaces that are in the
warehouse and lk is the individual length. This indicator
should be maximised also.

Fragmentation. It measures how much the empty spaces are
broken in small slots rather then big ones. A value near to 1
means that in the warehouse there are a lot of small empty
spaces, if it is near to 0 or less vice versa. The equation for
the computation of the fragmentation is

F(t) = 1− NS(0)
NS(t)

(3)

where NS(0) is the total number of empty spaces present
when no compartment is allocated (e.g. the analysed ware-
house is divided in 9 aisles, each one divided in 3 section,
thus NS(0) = 27), while NS(t) is the number of empty
spaces counted at the time of the measurement. By minimiz-
ing this indicator, bigger and less fragmented empty space
are obtained.

Throughput. It measures the amount of items in input in a
given time lapse:

TIN = NIIN/∆t (4)
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where NIIN is the number of items inserted in the warehouse
in the time lapse of ∆t. This KPI needs to be maximised in
order to boost warehouse performance.

The objective would be to optimise all these conflict-
ing KPIs in one shot only, respecting all constraints. Let
us define X as the representation of position and stacks
configuration that a compartment can assume within the
warehouse: consequently each KPI becomes a function of
X . Let’s define ~Z as the vector of KPIs to maximise (note
that F has a minus sign because it needs to be minimised)

~Z = {TSW(X), ES(X),−F(X), TIN(X)} (5)

max
X∈D

~Z (6)

where D is the domain of X representing the set of con-
straints on the position of the compartment to allocate. Find-
ing the solution to this optimization problem is very difficult
or even not possible by means of traditional optimization
techniques. In fact the warehouse model is too complex to
be represented in mathematical terms in an effective manner
[9]. The layout, the type of material handling system, the
shapes and properties of packages, storage and order picking
polices, etc. introduce several constraint that are difficult to
be translated into equations.

IV. STATE OF THE ART

The issue of warehouse optimization is quite common
in literature. The analysed issues and approaches differ a
lot, depending on the peculiar nature of each warehouse.
A comprehensive review of decision support model and
solution algorithms based on ”traditional” operational re-
search is given in [10]. Warehouse operations are divided
in three main groups: receiving and shipping, storage and
order picking. For each operation a list of solutions found
in literature is given.

One of the biggest issue with such solutions is that
they require a large amount of computational time whilst
decisions need to be made frequently and responsively and,
moreover, typical warehouse optimization problems often
have a multi-objective nature. This encourages the use of
heuristics [10] that, if not carefully tuned, can lead to a
non-optimal exploitation of the warehouse, as it is observed
in the analysed plant.

In the last years research attention has focused on Evo-
lutionary Algorithms (EAs) [11], [12], [13], which, in fact,
provide different advantages: they can explore complex so-
lution spaces, some EAs paradigms support multi-objective
optimization [14], they are rather fast, multiple stop condi-
tions can be set, etc.

In [15] a method based on EAs and a simulation model
for the optimization of a manufacturing system is presented.
Furthermore, the multi-criteria optimization issue is dealt in
[5] where a method based on Pareto-optimal GA is analysed
and applied to warehouse optimization.

Moreover [16], [17], [18] demonstrate how EAs have
been successfully applied to a wide range of optimization
problems, especially to those where objective functions are
not well-behaved (not-differentiable, discontinuous or that
don’t have an analytical formulation) [9].

As multi-objective optimization (MOO) is concerned, two
are the major approaches in literature [19], [20]: in the
first one individual objective functions are combined into a
single composite function transforming a MOO in a single-
objective optimization (SOO), while in the second approach
an entire Pareto optimal solution set is determined. Both
these approaches present advantages and some drawbacks.

In the first case the greater advantage lies in the simple
formulation of the fitness function, in opposition to the
second solution, which, instead, requires an extension to the
classic GA model. On the other side, the disadvantage lies
both in the impossibility sometimes to combine all objective
functions into a single function and in the proper selec-
tion of weights or utility functions characterising decision-
makers preferences. Moreover, solutions found by means of
a weighted function strongly depend on how good is the
choice of the weights themselves [9].

By adopting the second solution instead, an entire set of
Pareto-optimal solutions can be obtained with a single run
of the algorithm, so leaving the possibility to the decision-
maker to select the preferred solution. The main drawback
of this solution is that with the increase in the number of
objective functions, the definition of Parto-optimality begins
to lose effectiveness [21].

V. GENETIC ALGORITHM STRUCTURE

In order to adapt the problem to the GA model, an appro-
priate encoding function has been defined. This function is
responsible of translating a solution X , representing position
and stacks configuration of one or more compartments
(see. Sec. III), into a chromosome (Fig. 2) where the first
part encodes stacks configurations, and the second contains
positions assigned to compartments defined in the first part.

Figure 2: Chromosome structure

The initial population is created by a creation function
which randomly generates a certain number of allowed solu-
tions. GA enters in the main loop where selection, mutation,
and crossover operators (which have been redefined too
in order to reflect chromosome encoding) are iteratively
executed until at least one of the following stop conditions
is met: max number of iterations, fitness threshold, stall of
the fitness value for a certain number of iterations.
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At each iteration (called generation), population is divided
into three groups: selected, mutated and recombined pheno-
types. The first ones are chosen among population leaders
(individuals with best fitness) while the others are randomly
separated by means of a roulette-wheel algorithm.

When at least one of the stop conditions is met, GA
returns the chromosome with the best fitness value among
all generations or the Pareto-front (i.e. the set of Pareto-
optimal solutions) depending on the particular GA paradigm
employed.

Fitness functions will be discussed in the next section,
where three different definitions will be illustrated.

VI. PROPOSED SOLUTIONS

Three different solutions dealing with the multi-criteria
warehouse optimization issue presented in Sec. III have been
developed and tested: the approach of the first two is to
aggregate the objective functions into one by means of a
weighting function or a fuzzy system in order to transform a
multi-objective optimization problem into a single-objective
one; the last solution employs the Strength Pareto Genetic
Algorithm paradigm, which extends GA model by allowing
a real multi-objective optimization.

A. Linear weight aggregation (linWGA)

In this solution the fitness function evaluates selected KPIs
for each chromosome in the current population. The values
so obtained are then aggregate by means of the following
function

Fk =
N∑
i

wi KPIi(Xk) with wi ≥ 0,
N∑
i

wi = 1 (7)

where Fk is the fitness value of the kth chromosome, N is
the number of selected KPIs, wi is the weight associated
with the ith KPI and KPIi(Xk) is the value of ith KPI
evaluated for the kth chromosome Xk.

B. Fuzzy aggregation (fuzzyGA)

In this approach a Mamdani fuzzy system [22] was
developed in order to aggregate the values of the different
KPIs.

Appropriate fuzzy sets relating to the various KPIs. have
been defined as a first step towards the design of the fuzzy
system. Membership functions have triangular or trapezoidal
shapes. The parameters of each membership function have
been heuristically chosen by exploiting the expertise of the
technical personnel and afterwards fine-tuned during the test
phase. The fuzzy output variable (chromosome fitness) has
been defined in the same way by using three fuzzy sets
characterized by triangular membership functions.

A set of rules has been defined upon the previously
defined sets with the help of the technical personnel and
a typical centroid method has been employed for defuzzifi-
cation.

The fuzzy aggregation method, with respect to linear
weight aggregation illustrated in the previous paragraph,
gives to decision-makers more degrees of freedom in the
customisation and tuning of the optimization by leaving the
possibility to extend, modify and better control the fitness
value assigned to each chromosome by simply modifying
fuzzy rules or sets parameters.

C. Strength Pareto Genetic Algorithm (SPGA)

Strength Pareto Genetic Algorithm (SPGA) [23], [24]
is an extension of standard GA paradigm that allows to
obtain, from a single run of the algorithm, a set of Pareto-
optimal solutions that represent different trade-offs between
KPIs. A set of non-dominated solutions is externally stored
and updated at each generation with new non-dominated
solutions generated by the GA: this set is used to assign
fitness values to chromosomes in the current population and
its elements participate to selection in order to build the new
mating pool. The diversity problem is not resolved by means
of fitness sharing, but it uses Pareto-dominance in order to
maintain different stable niches by assigning a strength value
to each solution in the set proportionally to the number of
covered individuals in the population.

This approach allows to exploit a real multi-objective
optimization and to obtain a set of different trade-offs among
which decision-makers can choose the preferred one, so
leaving to them choice on the best trade-off.

This paradigm has been chosen because of its good per-
formances in multi-objective optimisation [25] and because
it does not change the standard GA model internally, but it
is an external extension that can be simply developed and
added to already existing software without much effort.

VII. RESULTS

Proposed solutions have been tested on the warehouse
simulator developed in a previous work [7]. Inputs are
composed by data extracted directly from the information
system of the analysed plant, which allow a more precise
and realistic simulation, directly verifiable and comparable
against the real system. The results in terms of KPIs have
been then compared with current strategies, which are based
on heuristics and simple rules (as depicted in Sec. III)
and which had been already simulated and verified in [7].
Different runs of simulation as been done for each proposed
solution and results ahve than been averaged. In Tab. I a
summary of average KPIs results is shown: for each selected
KPI the average value over a year of production and its
percentual increment with respect to current strategies are
shown.

The most important KPIs are TSM and TIN, whose
optimization is the real goal on the long period. As il-
lustrated, both of them are largely increased by proposed
algorithms (e.g. SPGA improves TSM by 16.33% and TIN
by 13.4%), demonstrating that a strategy optimization could
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Table I: Average KPIs results for current strategies, fuzzyGA, linWGA and SPGA over a year of production.

KPI Curr FuzzyGA LinWGA SPGA

TSM (tons) 7715 8430(+9.3%) 8914(+15.5%) 8975(+16.33%)
ES (m) 95.4 73(−23.5%) 74(−22.4%) 69.9(−26.7%)
F (%) 89.7% 89%(−0.8%) 90.5%(+0.8%) 89.9%(+0.2%)
Tin(TubeNum/day) 124.05 130(+4.8%) 138.8(+11.9%) 140.7(+13.4%)

allow the storage of more items without modifying the
physical structure of the warehouse. The other two KPIs are,
on the other side, necessary for choosing the best location
for compartments, but only at allocation time: in fact these
indicators worsen (ES) or remain steady (F). The reason is
that ES and F guide the algorithm towards the choice of
an allocation space where the compartment fits in the best
way possible, i.e. without leaving unusable small spaces
between compartments, but rather compacting them. A so
high decrease of ES is then positive, because it means that
the available space has been better exploited.

Of the three proposed solutions, the best one is without
any doubt SPGA. It can increase the average receptivity
of the warehouse of about 1260 tons. On the other side,
fuzzyGA have the lowest performance, even if it is able to
increase the average TSM of about 715 tons. Nevertheless,
this solution aloows a Unexpectedly linWGA performances
are near to those of SPGA, although it is not a real multi-
objective optimisation, its performances vary with the choice
of weights and the algorithm returns only a single solution
(see Sec. VI-C).

5500600065007000750080008500900095001000010500

Gen Feb Mar Apr Mag Giu Lug Ago Set Ott Nov Dic

tons

Total Stored Material CurrentLinWGAFuzzyGASPGA

Figure 3: Comparison of TSM over a year of production

In fig. 3 the TSM trend is compared between current and
proposed strategies over a year of production. The negative
peak is due the stop of the production during the month
of august. As already highlighted, linWGA trend is similar
to SPGA and sometimes linWGA also overcomes it, while
fuzzyGA stands in the middle. From this figure it is clear
how SPGA and linWGA are able to push the saturation
threshold of the warehouse higher, by allowing storing many

more items in the same conditions. The highest score is
obtained by SPGA at the end of September with a TSM of
10240 tons, 3770 tons more than current strategies, equal to
an increase of almost 2000 items stored in the warehouse.

These improvements are due to a better space manage-
ment, confirmed by a decrease of ES, which means that the
available space has been better exploited with a consequent
increase of the throughput TIN, i.e. the number of items
transiting through the warehouse.

VIII. CONCLUSIONS

In this paper three different solutions based on GAs to
the multi-criteria optimisation of storage strategies of a real
warehouse have been presented and their results compared
and analysed. Two solutions make use of aggregation to
transform a multi-objective problem in a single-objective
one, whilst the other employs SPGA, an extension to the
standard GA paradigm that allows it dealing with multiple
goals. All presented solutions provide good results by allow-
ing an increment between 9.3% and 16.33% of the average
receptivity of the warehouse without afflicting any physical
structure.

All methodologies exposed in this paper may be applica-
ble also to warehouses with different layouts, as well as to
other similar topics where space allocation optimisation is
involved.
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