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Abstract—This paper presents a method, based on 
classification techniques, for automatic detection and diagnosis 
of defects of rolling element bearings. We used vibration 
signals recorded by four accelerometers on a mechanical 
device including rolling element bearings: the signals were 
collected both with all faultless bearings and after substituting 
one faultless bearing with an artificially damaged one. We 
considered four defects and, for one of them, three severity 
levels. In all the experiments performed on the vibration 
signals represented in the frequency domain we achieved a 
classification accuracy higher than 99%, thus proving the high 
sensitivity of our method to different types of defects and to 
different degrees of fault severity. We also assessed the degree 
of robustness of our method to noise by analyzing how the 
classification performance varies on variation of the signal-to-
noise ratio and using statistical classifiers and neural networks. 
We achieved very good levels of robustness. 

Keywords-automatic fault diagnosis; robust classification;  
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I. INTRODUCTION 
Machine condition monitoring and fault diagnostics are 

key factors to guarantee a continuous and reliable production 
process in all manufacturing and production industries [1]-
[4]. In particular, condition-based maintenance, which 
consists of real-time monitoring of the state of rotating 
machines and performing appropriate maintenance actions 
when necessary, is the most affective type of maintenance. 

Rotating machines usually operate by means of bearings 
which may be affected by several types of faults, e.g., 
indentation on the roll, indentation on the inner raceway, 
unbalanced cage. These faults may be responsible for 
machine breakdown and performance level reduction. 

Different methods for detection and diagnosis of faults in 
bearings have been developed. Traditional techniques for 
bearing performance analysis include time-domain analysis 
[5,6] and frequency-domain analysis [4] used separately or 
together [7,8]. Time-domain analysis is usually based on 
performance indexes such as RMS (Root Mean Square), 
Crest Factor and Kurtosis, while frequency-domain analysis 
is mainly based on the Fourier Transform technique. Most 
methods found in the literature, however, consider the 
bearing fault diagnosis as a two-class problem because they 
just distinguish between integral and damaged bearings 
independently of the type and/or the severity of the defect. 

This paper aims to achieve the following objectives: 
given a mechanical object containing rolling bearings, i) to 

detect the presence of a defect, ii) to recognize the specific 
kind of defect, iii) to recognize the severity of the defect. To 
this aim, we have dealt with the problem as a classification 
problem, adopting two statistical classifiers, namely the 
Linear Discriminant Classifier (LDC) [9] and the Quadratic 
Discriminant Classifier (QDC) [9], Multi-Layer Perceptron 
(MLP) and Radial Basis Function (RBF) neural networks 
[10]. Actually, we use LDC and QDC to perform both 
feature selection and signal classification, whereas MLPs and 
RBFs only perform classification of signals represented by 
means of the features selected by LDC or QDC. 

Finally, in order to improve classification performance, 
we have resorted to the concept of classifier ensemble 
[11,12]. Four different approaches exist to building a 
classifier ensemble [11,12], depending on the level at which 
the fusion occurs, namely: data level (different datasets are 
used), feature level (different feature sets are used), classifier 
level (different base classifiers are used), combinational level 
(different combiners are used). In this paper we have adopted 
the first three levels. 

II. EXPERIMENTAL DATASET 
In the experiments we used vibration signals coming 

from a mechanical device including more than ten rolling 
element bearings monitored, in the time domain, by means of 
four accelerometers: the signals were collected both with all 
faultless bearings and after substituting one faultless bearing 
with a damaged one. 

The bearings were artificially damaged and experimental 
data were collected before and after each damage. Four types 
of damages were considered so that the data can be classified 
into five classes: 

- C1: faultless bearing, 
- C2: indentation on the inner raceway, 
- C3: indentation on the roll, 
- C4: sandblasting of the inner raceway, 
- C5: unbalanced cage. 
The fault of class C2 consists of a 450 μm indentation on 

the inner raceway, whereas bearings of class C3 can be 
divided into three subclasses depending on the severity of the 
damage, namely: 

- C3.1: 450 μm indentation on the roll (light), 
- C3.2: 1.1 mm indentation on the roll (medium), 
- C3.3: 1.29 mm indentation on the roll (high). 
We used the PRTools software in the Matlab 

environment[13]. 
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III. EXPERIMENTS AND RESULTS 
The data were recorded by the four accelerometers for 

time intervals of ten minutes. We considered a data set 
consisting of one-second signals distributed as shown in 
Table I. 

TABLE I. SIGNALS PER CLASS 

Class C1 C2 
C3 

C4 C5 
C3.1 C3.2 C3.3 

Number of 
signals (sec) 2890 1770 1770 1250 1770 1520 1770

 
We worked in the frequency domain by transforming the 

signals by the Fast Fourier Transform (FFT). Unlike the 
classical approach, which identifies specific characteristic 
frequencies associated with given defects, we tried to 
automatically find out the frequencies able to discriminate 
among the different defects taken into consideration. 

Based on heuristic considerations, for each 
accelerometer, we considered the frequency interval 
[1-300] Hz (the interval does not contain the continuous 
component), sampled every 1 Hz. Within this interval, we 
took into account six frequency ranges: [1-50] Hz, 
[51-100] Hz, [101-150] Hz, [151-200] Hz, [201-250] Hz, 
[251-300] Hz. As there are four accelerometers, up to 
300 ×4=1200 frequency samples (obtained by concatenating 
the four groups of 300 frequency samples relative to the four 
accelerometers) could be used to represent each signal 
(Fig. 1). In other words, each signal can be represented in 

nℜ  with 1200n ≤ . The frequency samples will be referred 
to as features in the following. 

 

 
Figure 1. Organization of the features. 

In the experiments the data were balanced using a 
random technique so that each class contains the same 
number of samples as the least numerous one. Then the 
training set was built using the hold-out method [11], i.e., by 
randomly choosing 70 % of the total data, while the 
remaining data were used as test set. 

A. First experiment 
The aim of this experiment is to classify the signals into 

five classes C1, C2, C3.1, C4, C5, i.e., to recognize the 
different types of faults, but considering only the lowest level 
of fault severity for class C3. 

The choice as how to represent the signals takes into 
account the memory necessary for signal representation and 
the time needed for classifier training. Both of them should 
be kept reasonably low. Besides we desire to rank the 
accelerometers according to their contribution to 

classification accuracy so as to identify the most significant 
accelerometer(s). 

We therefore consider the four accelerometers separately 
from each other, and, for each of them, we look for the 
frequencies that are able to provide the best accuracy when 
used to represent the signals to be classified. Indeed, features 
are not all equally relevant [11]. In this way, we can decrease 
the space dimension and the training time. 

This step is performed using the forward feature selection 
(FFS), based on the featself function of PRTools. We chose 
to use FFS because it is a reasonable compromise between 
exhaustive search and random search. Further, we adopted 
LDC and QDC to perform both feature selection and 
classification of the signals represented through the selected 
features. This choice stems from the fact that LDC and QDC 
are fast trainable classifiers with only one parameter r (called 
regularization parameter). We fix r to 0 for both LDC and 
QDC classifiers in all the experiments. 

We use 4 LDCs and 4 QDCs: each LDC/QDC works on 
the frequency range [1-300 Hz] of a particular accelerometer. 

We experimentally verified that the classification 
accuracy of a typical classifier (see Fig. 2) increases with the 
number of features up to a point in which the accuracy 
remains almost constant and eventually decreases reaching a 
value that is equal to 1/n, with n being the number of classes 
(we recall that we work with balanced classes). Please note 
that in Fig. 2 the numbers on the x-axis refer to the number 
of features used for classification and not to the ordered 
features in the interval [1-300] Hz). 

 

 
Figure 2. Typical curve of classification accuracy (y-axis) versus number of 

features (x-axis) for a five-class problem. 

To solve this classification problem we perform the 
following steps. 

1) First, fixed a maximum number of features equal to 10 
so as to keep the computational complexity at an acceptable 
level, we repeat the FFS for a reasonable number t of times 
(t=30 in our case based on heuristic considerations) using 
both the LDC and QDC classifiers for each accelerometer. In 
each trial the H-method is applied to generate the training 
set. 

2) We identify the stable features (SFs), i.e., the features 
that are the same and selected in the same order, in all the 
trials, by the FFS. Actually, the features selected by the FFS 
may vary from one trial to another. In order to guarantee a 
higher level of generalization, we are, therefore, interested in 
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identifying the features that are significant for all the training 
sets.  

3) Once identified the SFs, we use them to compute the 
classification accuracy expressed in the form 
(mean ± standard deviation) for each accelerometer over 30 
more trials. We then compare the four accelerometers 
(Table II) and identify the best one(s). 

From Table II, considering the accuracies, we identify, as 
the most promising accelerometers, the second and the third 
accelerometers using LDC. 

TABLE II. ACCURACY OF FIRST EXPERIMENT 

Accelero
meter 

LDC QDC 
Number 
of SFs 

Accuracy 
Mean±Std.Dev. 

Number 
of SFs 

Accuracy 
Mean±Std.Dev.

1 1 62.85±0.51% 1 62.26±0.49% 

2 3 98.13±0.22% 2 96.54±0.12% 

3 3 96.88±0.22% 2 94.70±0.61% 

4 3 95.70±0.41% 3 96.55±0.16% 
 
4) Based on design specifications, we consider good, and 

thus acceptable, an accuracy higher than a threshold θ  (θ  = 
99.00 % in the experiments). If at least one accelerometer 
meets this requirement, we consider the best of them. 
Otherwise, like in the case under consideration, we try to 
improve the performance making use of the feature-level 
approach to building classifier ensembles [11,12]. To this 
aim, we consider the SFs for the two best accelerometers (the 
second and third, in our case, using the LDC classifier 
(Table III)). 

TABLE III. SFS FOR ACCELEROMENTERS 2 AND 3 

LDC, Accelerometer 2 296, 295, 277 

LDC, Accelerometer 3 277, 296, 96 
 
Then we identify the stable ranges, i.e., the frequency 

ranges containing the stable features above. In this case, we 
obtain the range [251-300] Hz for the second accelerometer, 
and the ranges [251-300] Hz and [51-100] Hz for the third 
accelerometer. 

Finally, we consider the union of these three ranges and 
perform the FFS on them with LDC and QDC. We repeat the 
feature selection 30 times, and again we collect the SFs 
(Table IV). Please note that in Table IV the ranges 
[1-50] Hz, [51-100] Hz, [101-150] Hz correspond, 
respectively, to the range [251-300] Hz of the second 
accelerometer, and the ranges [51-100] Hz and [251-300] Hz 
of the third accelerometer. Thus the SFs 127 and 146 
correspond, respectively, to the features 277 and 296 of the 
third accelerometer while the SFs 46 and 45 correspond, 
respectively, to the features 296 and 295 of the second 
accelerometer. Using only these SFs, over 30 more trails, we 
compute the classification accuracy (Table V). From Table V 
we can see that the accuracy (99.82 ± 0.06 %) obtained by 
the QDC classifier meets our design specifications. Table VI 
shows a typical confusion matrix using the QDC classifier 
and the selected SFs. 

In this experiment, we managed to reduce the space 
dimension and thus the complexity to an acceptable level 
(signals are represented only in 4ℜ ), drastically decreasing 
the memory and time required for training and classification. 

TABLE IV. LIST OF THE SFS 

QDC, Accelerometers 2,3 127, 146, 46, 45 

TABLE V. ACCURACY 

Accelerometer 
Frequency 
range (Hz) 

LDC QDC 
Num. 
of SFs

Accuracy 
Mean±Std.Dev. 

Num. of 
SFs 

Accuracy 
Mean±Std.Dev. 

2 (251-300) 
3 (251,300) 4 99.46±0.05% 4 99.82±0.06% 

TABLE VI. CONFUSION MATRIX 

 
Estimated labels 

Total
C1 C2 C3.1 C4 C5 

True 
labels 

C1 456 0 0 0 0 456 

C2 0 455 0 1 0 456 

C3.1 0 0 456 0 0 456 

C4 0 1 0 455 0 456 

C5 0 0 0 0 456 456 

Total 456 456 456 456 456 2280 
 
However, considering class C3, we have worked using 

only the lowest level of fault severity, i.e., C3.1. Of course, 
we are interested not only in identifying the defect as soon as 
possible, but also in recognizing higher levels of severity. In 
other words, we want to classify signals of classes C3.2 and 
C3.3 as belonging to the same class C3.1, as they represent 
the same category of defect. On the other hand the choice not 
to include C3.2 and C3.3 in the training test is motivated by 
the fact that we cannot expect to have always all the different 
types of severity of a particular defect at disposal to train a 
classifier. Thus we want to check whether the classifier, 
trained using only the basic defects (i.e., the defects at their 
lowest level of severity), can correctly recognize also the 
derived defects (i.e., the defects at higher levels of severity). 
This is of the utmost importance to make our method a 
practical tool.  

Using the SFs previously found and the QDC classifier 
we tested our classifier on a test set composed not only by 
C1, C2, C3.1, C4 and C5 but also by C3.2 and C3.3. Over 30 
trials, we obtained an accuracy of 99.80±0.02 %. A typical 
confusion matrix for this problem is shown in Table VII. 
From Table VII we can notice that all the elements of class 
C3 were classified correctly. 

B. Second experiment 
The second experiment aims to assess the robustness of 

the proposed method to noise. To this aim, we repeated the 
previous experiment (training on C1, C2, C3.1, C4 and C5, 
and test on C1, C2, C3.1, C3.2, C3.3, C4 and C5) using the 
optimal configuration previously found (see Table IV). We 
trained the QDC classifier with a training set consisting of 
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signals not affected by noise, then we tested it on signals 
affected by different levels of noise. In particular, we 
generated a signal of white gaussian noise (stochastic 
process with zero mean and unity variance), which was 
multiplied by an increasing positive coefficient, noise level 
(NL), to raise its power. 

TABLE VII. CONFUSION MATRIX 

 
Estimated labels 

Total
C1 C2 C3 C4 C5 

True 
labels 

C1 455 0 0 0 0 456 

C2 0 455 0 1 0 456 

C3 0 0 456 0 0 456 

C4 0 3 0 456 0 456 

C5 0 0 0 0 456 456 

Total 455 458 456 455 456 2280 
 
The noise was added to all the signals of the test set in 

the time domain; we then computed the signal-to-noise ratio, 
SNR, as the ratio between the average power of the signals of 
all classes and the noise power. At this point we studied the 
trend of the percentage of correct classification of the signals 
on the variation of SNR. More formally, the power of the i-th 
signal si is computed as follows: 

∑
=

=
sam

ji

N

j
i

sam
s s

N
P

1

21  

where Nsam represents the total number of samples for each 
signal and 

jis is the j-th temporal sample of the signal si. 
The average power of the signals of all classes is: 

∑
=

=
sig

i

N

i
s

sig
s P

N
P

1

1  

where Nsig is the total number of signals in all the classes. 
We performed 100 trials. The process of noise generation 

has been repeated for each trial and for each sample of the 
signals, each time generating a new process of random noise 
nk, k = 1,..., Nsam. For each trial we affected the test set with 
an increasing level of noise, multiplying each stochastic 
noise process by an increasing positive integer NL. In the 
experiments, we used 10 noise levels NLh with h = 1, …, 10: 

100} 80, 60, 40, 30, 25, 20, 15, 10, 5,{∈hNL . 
In particular we affected the test data with noise balanced 

so as to obtain the same SNR for each accelerometer. Indeed 
the power of the signals of the accelerometers can be 
different and, for this reason, we increased the noise for the 
features of the accelerometer with higher power. The reason 
for that is that we are interested in analyzing the robustness 
of each accelerometer. 

The k-th extracted Gaussian noise gives origin to 10 
different noise signals: 

khkh nNLn = ,     h =1,...,10. 
Consequently, the power of the generic noise signal nk 

becomes: 

∑
=

=
samN

k
kh

sam
h n

N
P

1

21 . 

Therefore, for each noise level NLh, we compute the SNR 
as follows: 

h

s
h P

PSNR 10log10= . 

Table VIII shows the appreciable level of robustness to 
noise of our classification system over 100 trials. We obtain 
very good results up to SNR ≈ 16.52 db (accuracy higher 
than 90.00 %) and acceptable results (accuracy between 
80.00 % and 90.00 %) up to SNR ≈ 9.59 db. 

TABLE VIII. QDC CLASSIFIER. TEST SET WITH NOISE 

NL SNR 
(db) 

Accuracy 
Mean±Std.Dev. NL SNR 

(db) 
Accuracy 

Mean±Std.Dev.
5 40.55 db 99.35 ± 0.22 % 30 9.59 db 86.20 ± 1.01 %

10 28.62 db 97.93 ± 0.15 % 40 4.59 db 77.41 ± 1.25 %

15 21.47 db 96.24 ± 0.47 % 60 -2.75 db 62.44± 1.78 %

20 16.52 db 92.50 ± 0.77 % 80 -7.61 db 51.55 ± 1.49 %

25 12.45 db 89.75 ± 0.74 % 100 -11.35 db 44.28 ± 0.90 %

 
In order to increase the robustness to noise, we adopted 

MLP and RBF neural networks, and compared them with the 
QDC classifier. 

We used MLPs with one hidden layer and all neurons 
characterized by a logarithmic sigmoid transfer function. We 
tried different numbers of hidden neurons (10, 15, 20, 25, 30, 
35, 40, 45, 50). We adopted RBFs with one hidden layer and 
all neurons characterized by a gaussian transfer function. We 
tried different numbers of hidden neurons (10, 15, 20, 25, 30, 
35, 40, 45, 50) and different spread values (0.3, 0.4, 0.5, 0.6, 
0.7, 0.9, 1, 1.1, 1.2, 1.3).  

The inputs to the MLPs and RBFs are the SFs previously 
selected by QDC, i.e., the features 296 and 295 of the second 
accelerometer and the features 277 and 296 of the third 
accelerometer. 

The MLP with 50 hidden neurons provides the best 
performance among all the MLPs, while, among the RBFs, 
the best performance is obtained by the RBF with 45 hidden 
neurons and a spread of 1.2 (Tables IX and X). 

TABLE IX. MLP WITH 50 HIDDEN NEURONS. TEST SET WITH NOISE 

NL SNR 
(db) 

Accuracy 
Mean±Std.Dev. NL SNR 

(db) 
Accuracy 

Mean±Std.Dev. 
5 40.55 db 99.62 ± 0.01 % 30 9.59 db 91.63 ± 0.84 % 

10 28.62 db 99.32 ± 0.21 % 40 4.59 db 84.73 ± 0.65 % 

15 21.47 db 98.48 ± 0.26 % 60 -2.75 db 72.67 ± 0.81 % 

20 16.52 db 96.51 ± 0.47 % 80 -7.61 db 63.75 ± 1.75 % 

25 12.45 db 93.87 ± 0.76 % 100 -11.35 db 56.00 ± 1.24 % 
 
Comparing the results in Tables VIII, IX, and X, we can 

see that the MLP and RBF do increase the robustness to 
noise. In particular, both of them improve both the good 
results (accuracy higher than 90.00 %) up to 9.59 db, and the 
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acceptable results (accuracy higher than 80.00 %) up to 
4.59 db. 

TABLE X. RBF WITH 45 HIDDEN NEURONS AND SPREAD=1.2. TEST SET 
WITH NOISE 

NL SNR 
(db) 

Accuracy 
Mean±Std.Dev. NL SNR 

(db) 
Accuracy 

Mean±Std.Dev.
5 40.55 db 99.63 ± 0.07 % 30 9.59 db 92.11 ± 0.59 %

10 28.62 db 99.43 ± 0.18 % 40 4.59 db 84.16 ± 1.05 %

15 21.47 db 99.05 ± 0.19 % 60 -2.75 db 69.41 ± 1.10 %

20 16.52 db 97.13 ± 0.33 % 80 -7.61 db 55.92 ± 1.63 %

25 12.45 db 94.21 ± 0.76 % 100 -11.35 db 47.00 ± 1.19 %
 

Analyzing the results in greater detail, we can affirm that 
the RBF obtains higher accuracy and lower standard 
deviation for the first levels of noise (5, 10, 15, 20, 25, 30) 
compared to the QDC and the MLP. However, for the 
subsequent levels of noise (40, 60, 80, 100), the performance 
of the RBF starts to decrease and becomes quite similar to 
the one achieved by the QDC classifier. The MLP provides 
better accuracy for all the different levels of noise compared 
to the QDC, not only concerning the average accuracy but 
also the standard deviation, proving to be more stable to the 
noise compared to the QDC classifier. Besides, even though 
the RBF is better than the MLP for the first levels of noise, 
the MLP offers a more graceful performance degradation for 
high levels of noise. 

Thus, for acceptable levels of noise, the best results and, 
consequently, the best robustness are obtained by the RBF, 
while, for higher levels of noise, the MLP results to be the 
best. Figure 3 clarifies the comparison among these three 
classifiers (QDC, MLP and RBF). 

The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text fonts 
are prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire 
proceedings, and not as an independent document. Please do 
not revise any of the current designations. 

IV. CONCLUSIONS 
In this paper we have presented an automatic method, 

based on classification techniques, for diagnosing defects of 
rolling element bearings. 

The proposed method has been applied to experimental 
data, registered by four accelerometers, and related to four 
different defects on rolling bearings and different levels of 
severity for one of them. The method has proved to be highly 
sensitive both to different defects and to different degrees of 
severity for the considered defects. We achieved an accuracy 
on the test set higher than 99.00 %. 

We have also performed a noise analysis to assess the 
robustness of our method to noise. In particular, we have 
classified the noisy signals by means of a classifier trained 
on signals without noise. The appreciable levels of 
robustness to noise achieved could be even increased if, in 

real world situations, we could filter noise out of the 
acquired signals before their classification. Alternatively, or 
in addition, we could train the classifier both with signals 
without noise and with signals with added noise, choosing 
the noise level to be added depending on the specific 
situation of interest. 

 

 
(a) 

 
(b) 

Figure 3. (a) Robustness of QDC (blue), MLP (green), RBF (red) to the 
noise. x-axis: level of noise, y-axis: accuracy. (b) Zoom of (a) for the first 

levels of noise. 

The main novelties of the method are, therefore, 
automatic feature selection and fault classification, multi-
class classification, higher sensitivity with respect to 
traditional vibration analysis techniques, and good 
robustness to noise. 
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