2009 Ninth International Conference on Intelligent Systems Design and Applications

OCEAN Project
A prototype of AIWBES based on fuzzy ontology

Francesco Colleoni, Silvia Calegari, Davide Ciucci, Matteo Dominoni
Dipartimento di Informatica, Sistemistica € Comunicazione — Universita di Milano—Bicocca
Viale Sarca 336/14, 1-20126 Milano (Italy)
wolfra@gmail.com, {calegari, ciucci, dominoni} @disco.unimib.it

Abstract

Ocean Project is aimed to realize an Adaptive and Intel-
ligent Web-Based Educational System (AIWBES) working
with traditional Learning Management Systems (LMS). It
is designed as a collection of open-source libraries (the
Omega Framework), so resulting easily customizable and
adaptable to the current e-learning platforms. In this new
system each course is presented in different ways according
to the student’s learning level, through to a combined use
of ontologies and fuzzy logic.

1.Introduction

Nowadays LMS are the main elements of the web-
based education. They typically offer a variety of tools
to make didactic more effective: a way to upload and
share materials, hold online discussions and chats, give
quizzes and surveys, gather and review assignments, and
record grades. In other words, they are a suite tool to
enhance teaching by taking advantage of the internet
without replacing the need for the teacher.

As a matter of fact, the role of tutors and teachers
remains central: LMS cannot replicate one of the most
important features of human relations, i.e., adaptability.
In fact, a human teacher is able to adapt to the different
needs of students in terms of learning. For example,
teachers traditionally offer tutoring services, such as a
student teacher meeting after class. In order to replicate
this classic teaching behaviour in e-learning, you must
provide the necessary resources, i.e. teacher and tutors
to interact with students. In the real world, especially in
cases with many participants, the problem is that a teacher
does not have enough time to dedicate to each student:
tutoring is an extremely expensive activity. A traditional
LMS does not offer individual attention; the approach is

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.208

944

said to be “one size fits all”, since generally an LMS does
not offer functionality for personalization of the learning
process [1].

A particular kind of e-learning system called AIWBES
[2] has be used to overcome such limitations. Examples
of AIWBES are “ActiveMath” [3], which uses OMDoc
(Open Mathematical Documents) for knowledge represen-
tation, “ELM-ART” [4] and “KnowledgeTree” [5], which
uses concept maps for knowledge representation.

These tools allow automatic personalization of learning
paths of students combining technologies such as “intelli-
gent tutoring” and “adaptive hypermedia” [6].

Therefore, the approach of these systems is no longer
“one size fits all”, but is aimed to personalization, like a
teacher who teaches directly to each student, one on one,
surpassing traditional LMS limitations.

Even if the AIWBES approach has been demonstrated to
be superior to LMS because students learn faster and better
[1], it is not as used as LMS. This is because the AIWBES
architectures are usually quite complex, designed for a very
specific didactical purpose, and furthermore these systems
are not compatible with standard formats like SCORM
or IMS and therefore they do not promote educational
material reuse.

We propose to overcome these defects coupling adaptive
activities of the AIWBES to traditional LMS. This is the
Ocean Project: a combined use of ontologies, fuzzy logic
and a collection of libraries (called Omega Framework),
together with traditional LMS, thus allowing the reuse
of existing educational systems; being compatible with
SCORM, IMS or other e-learning standards; in short re-
ducing the architecture complexity of adaptive systems. Up
until now, the theoretical model has been defined and the
architecture developed. In the present work, both the data
model and the architecture are described. Furthermore, an
example of reasoning based on fuzzy inference rules is
given.

IEEE
computer
® psouety

2. The Ocean Data Model

The first part of the Ocean Project is the Ocean Data
Model which has been built on fuzzy ontologies, giving
a formal representation map of concepts and granting
standardization for portability from an e-learning system
to another.

Let us note that in [7] an ontology is already used
as a support for an e-learning system, but only for local
indexing, without any learning adaptivity to students.

However, a standard ontology was not enough for the
needs of the projects because even if an ontology allows a
formal representation of concepts and relations, it does not
allow to express the strength of relations among concepts,
which is one of the needs of the Ocean Project. Thus,
fuzzy ontologies [8], [9], i.e., ontologies combined with
fuzzy logic, have been considered. As an example, take
the course “programming”. A fuzzy ontology allows to
say that “C language” is a “programming language” with
an high strength of the relation. Figure 1 shows this
example, where the learning material (“example.doc” and
“exercise.pdf”) is directly linked to a topic (“IF-ELSE”).

N)
Computer Science

—
Programming

prog. language

iSa(I.O)

C
language

a

=

5 99\ Example.doc

L >

o N
Exercise.pdf
difficulty (0.6)
U 7)

Figure 1. Example of fuzzy ontology.

2.1. Data Model and User Profiling

The Ocean Data Model is defined as the logical struc-
ture

DMy =< resources, relations, tags,
usersmodels, user >

With these elements it is possible to describe users who
access to a system based on the Ocean Data Model: it is
possible to “tag” elements of the fuzzy ontology for fast
searches and, obviously, it is possible to express relations
that exist among them. In detail:

o resources. The Ocean Data Model uses fuzzy ontolo-
gies for the logical organization of educational con-

945

tent. This means that the data model gives the struc-
ture for educational content with the general structure
resources =< course,topic,topic_instance >. A
course can be made up of various topics and a topic
is made up of its instances. For example, in Figure
1, course = Programming, topic= {Prog. language, C
language, IF-ELSE}, topic_instance={Example.doc,
Exercise.pdf}. Note that it is possible to establish rela-
tions among every kind of resource, so it is possible
to link topics of different courses between them or
with other courses or topic instances. There is another
resource, i.e. “lessons”, but in DM a lesson is not a
simple resource, nor is it a logical part of something
(like a topic and a course), but it is something that
describes a way to navigate knowledge. A lesson is
made up of rules that tells the adaptive system how
to vary the learning path of a student according to
his/her learning skills (see Section 4).

e relations. It is an oriented arc that connects two
objects of the database. Each relation is fuzzy, so
that a weight (or fuzziness) defines the strength of
association from O to 1. In the Ocean Project some
relations have been introduced as “default” relations.
However, it is possible to add as many relations as
needed. The “default” relations are: “is a”, “is kind
of”, “is part of”, “has”, “has part”, “equals to”.

e tags. It is a label that can be used to link all the
DM objects but relations.

e usermodels. This element is necessary in order to
describe various aspects of a user. A usermodel
has been modelled as a collection of proper-
ties, so the Ocean Data Model describes ‘“user
model properties”, UMp. In detail, UMp =<
name, value, type, history, listyqgs >. A name is
the property’s name (e.g.,“age”), a wvalue is the
instance of the property (e.g.,“24”), a type is the
nature of the property (e.g.,““integer”), a history is
a log of the evolution of every property in time
(e.g.,“24,23,22”) and a listyqgs is the collection of
all the tags.

o user. This field is used to identify a user. In detail,
information is reported on his/her “name”, the list
of usermodels and a list of all user relations, e.g.
understood relation (see Figure 2).

The whole model has been described in RDFS [10], so that
the data model can be easily updated by just modifying the
RDFS statements that describes it, eventually introducing
new constraints or objects. For lack of space, we avoid to
include details about RDFS implementation.

2.1.1. User Profiling. In an adaptive system it is necessary
to create different models for different people, not only
because it is necessary to profile all of them, but because

it could be required to track the learning models for each
student (or “reasoning models”). The adaptive system has
to correctly adapt itself: different reasoning models could
require different student models [11] [12].

In literature two possible reasoning models are utilized:
one based on Bayesian nets and the other based on the use
of fuzzy control rules. The goal for both reasoning models
is the same; however they could differ in the way they treat
the user, so they could require different data or not update
them in the same way. In Figure 2 a very simple example
of a user profiling is reported. In particular, it is related to
the understanding of a user about two topics. The initial

C
language

part of (1.0)

language

Figure 2. Sample with a user.

values of each student can be defined according to some
previous knowledge or by a default value (this last is the
choice adopted in Section 4).

3. Omega Framework: the architecture

The second part of the Ocean Project is about the design
of a software that could be used to create an AIWBES
[11] i.e., the architecture for a framework named Omega
Framework. Instead of creating a whole new system,
the Omega Framework was designed and intended to be
installed “by side” of an existing LMS; thus solving the
greatest issues of common AIWBES and allowing:

« reuse of educational content;

o reduction of software architecture’s complexity and
integration with different e-learning platforms;

o compatibility with e-learning standards like SCORM
or IMS.

The Omega Framework is a collection of functions de-
signed to be able to be expanded in the future. In particular,
there are two main kinds of plugins (or “extensions”):
“interaction” plugins and “reasoning” plugins.

These plugins are needed for catching users’ actions
(teachers, students and e-learning platform administrators),
both in input and output directions. This means that the

946

framework is invisible to the end user and that through its
interaction extensions, every user action is forwarded to
the framework’s core so that a decision can be made and
outputted back to users. Moreover, a reasoning plugin must
be able to understand the profile of users (according to the
extension profile format, or other extensions format), so
the mix of “user action - user profile - knowledge base”
can be used to infer an output for a particular user.

3.1. The Omega Framework

The Omega Framework is split into two main blocks:
Core and Ocean Database (see Figure 3). The functions

Omega Framework

Statistics

Omega
Framework Core

Interaction

H Plugins > Plugins
I Ocean I
. S/

Figure 3. Structure of Omega Framework.

Reasoning

+

Database

of the “Core” are about:

¢ plugin-to-plugin communication, i.e., message for-
warding from an interaction plugin to a reasoning
plugin and viceversa. This is necessary in order to
understand actions of users and to make the system
respond adequately to the input, thus introducing
variations in the learning paths used by students; note
that plugins of the “full” type do not necessarily
need to communicate with other plugins because
they can implement both interaction and reasoning
functionalities;

o plugin-to-database interaction, necessary for every
kind of plugin: every plugin could be capable of
interacting with the Ocean Database in write or read
mode. In particular, interaction plugins could require
elements of the knowledge base to be shown to users,
while reasoning extensions could require some data
to be processed in order to produce correct output
relative to user input. Note that plugins cannot write
directly onto the Ocean Database, but they can do this
using functions exposed by the core of the framework;

« maintenance tasks, management of installed exten-
sions, Ocean Database maintenance (import, export
and backup), logs and usage statistics management
(export and backup).

The Omega Framework needs to manage its database,
called “Ocean Database”, that is used to hold all the meta-
data associated with the knowledge base built according to
the DMo.
This means that the metadata are created to describe the
logical organization of the educational content managed by
the LMS which the framework is installed into.

Finally the communication scheme of the framework is
introduced. There are two directions of communications:

o from Learning Management System to Omega
Framework. This situation can be described by using
the workflow in Figure 4:

1) a user commits an action;

2) if the user is not a student, interaction can

happen with the Ocean Database or preferences
of the framework (eventually stored in a separate
preferences file): in this case no reasoning plugin
is involved in the process; the communication
is received directly from the core of the frame-
work.
If the user is a student, then the framework
decides what reasoning extension should be used
for him/her, then it forwards the call to the
appropriate plugin;

(3\ (3\
Omega Framework
(3\ (3\
1 | Interaction |2
. Core
plugins
. J J
Learning ™
Management
System
(3\ (3\
Reasoning Ocean
plugins Database
. J . J
. J . J

Figure 4. Communication scheme: LMS-to-
FW.

o from Omega Framework to Learning Manage-
ment System. This situation can be described by
using the workflow in Figure 5:

1) if the user is not a student, the core accepts
his/her action, then outputs a result via an in-
teraction plugin of the framework.

If the user is a student, then the reasoning plugin
invoked in previous steps analyzes the user’s
profile and the knowledge base, then decides
which output should be produced;

the core of which Framework which receives the
output decides what interaction plugin to invoke,

2)

947

then communicates the output back to the user
via the chosen plugin (note that interaction ex-
tensions could require interaction with an LMS,
however this case is not managed by the Omega

Framework).
(3\ (3\
Omega Framework
(3\ (3\
5 | Interaction 4
. Core
plugins
. J . J
Learning ~
Management » 2
System
s A s N
Reasoning Ocean
plugins Database
. J . J
. J . J

Figure 5. Communication scheme: FW-to-
LMS.

4. Reasoning

To show how a system “Ocean-like” could work, a rea-
soning example will be introduced. In the DM a lesson
expresses how to “navigate” the knowledge base and it has
the format (reasoning module identifier) @ (rule| ... |rule).
A rule, relative to an object o, has the structure (RULE
NAME) ={OBJECT IDENTIFIER, CONSTRAINT ON RELA-
TIONS, CONSTRAINT ON FUZZINESS, RULE TYPE} where:

e an OBJECT IDENTIFIER tells which object o in the
knowledge base the rule is “attached” to;

a CONSTRAINT ON A RELATION tells the reasoning
module that is parsing the rule which relations in-
volving o must be considered in the rule application;
a CONSTRAINT ON THE FUZZINESS OF RELATIONS
works like the previous one;

TYPE OF RULE tells reasoning models if the rule is
positioned at the beginning, inside or at the end of a
lesson.

We note that a lesson can be used by many reasoning
models, even if associated to a particular one, but it is
necessary for every reasoning model which wants to read
a lesson to be “compatible” with it. Further, in DM» we
have two default relations: “has understood” and “is the
answer for”. With these relations it is possible to create
educational material expressing the knowledge of a user
about a particular course, a topic or a topic instance. It
is also possible to create tests by linking objects in the
knowledge base via the “is the answer for” relation. Let

us underline that the fuzziness of “is answer for” expresses
the correctness of an answer to a question.

4.1. Reasoning with fuzzy rules

The aim of a reasoning module is understand which
material is adequate for a student given its level and the
fact that is learning or not. In this particular example, two
new relations and two user models will be introduced. The
relations are: “is exercise with dLevel” and “is explanation
with dLevel”. These relations can be used to express if an
object of the data model is an exercise or an explanation
for something, both with a difficulty level. The two user
models are:

o A “global” model to have a general description of a
student. It consists of the “level” of a student (good,
bad or normal), the difficulty level of lessons that can
be given to the student, the number of answers given
by the student and the number of correct ones.

e A “local” model to have a lesson-specific description
of a student. It contains the same information of the
general one.

Note that the values of properties of the first model are
calculated using the mean of the values of the “lesson
specific models” and the mean of the difficulty levels
reached for every lesson. Finally, the starting value of the
difficulty property is 0.6 in both models.

Thus, the workflow for this reasoning model is:

1) initialize global model;

2) initialize a local model for the lesson being used by
the student;

3) update the local model initialized during the lesson;

4) update the global model combining values of all the
local models;

5) repeat steps from 2 to 4 for every lesson used by a

student.

The update process of the local model is done through the
application of the fuzzy control rules [13] listed below:

o IF “student is bad” AND “student is not learning”
THEN “make lesson easier with Bad factor”;

« IF “student is bad” AND “student is learning” THEN
“make lesson harder with Bad factor”;

o IF “student is normal” AND “student is not learning”
THEN “make lesson easier with Normal factor”;

o IF “student is normal” AND “student is learning”
THEN “make lesson harder with Normal factor”;

o IF “student is good” AND “student is not learning”
THEN “make lesson easier with Good factor”;

e IF “student is good” AND “student is learning”
THEN “make lesson harder with Good factor”;

As readers can see, the idea behind this set of rules is to
make lessons easier if the student is not learning, harder

948

otherwise: in particular difficulty changes are calculated
differently according to the student level, so a good student
will see faster changes, whereas bad students will see
slower changes. The input fuzzy sets defining users are
introduced as shown in Figure 6. When a student belongs

0.8

0.6

05 0.6

04

02

0 01 02 03 04

Bad

x = student’s learning level

y = student’s belongingness to student class

Figure 6. Fuzzy sets.

to more than one class, the one with a maximum fuzzy
degree is chosen, and we denote it by [. To calculate if a
student is learning or not, the last four outputs produced by
the user are considered. If the user produced at least two
out of four “good actions”, then the student is learning,
otherwise not. In particular, the degree of learning w
assumes the following values: w 0.25 when the last
four actions are “reading”, two exercises and two “reading”
will correspond to w = 0.5; four correct exercises lead to
w = 1. This choice has been made because reading can
be seen as a “good” action, but with a lower evidence
than a correct answer. On the contrary, the degree of “not
learning” is w = 1 if the student did not good actions, 0.5
(resp., 0.25)if only one correct exercise (resp., reading)
was done. Note that the value w will be used during the
fuzzification process.

Once the correct rule is found, we have to defuzzify the
result, and this process is based on the fuzzy set difficulty
variation described by the linear function dv(z) = —5.26%
x + 1.05, defined in the interval [0.01;0.2], where x is the
membership degree of student’s level I. Then, the value of
the fuzzy variables “make lesson easier” or “make lesson
harder” is determined according to the following rules:

o “make lesson easier (resp., harder) with Bad factor”
= - (resp., +) 0.5 % w x dv(z);

o “make lesson easier (resp., harder) with Normal fac-
tor” = - (resp., +) 0.75 x w * dv(z);

o “make lesson easier (resp., harder) with Good factor”
= - (resp., +) w * dv(x);

Finally, the difficulty of the new material proposed to the
student is chosen in the interval computed by the above
rules plus or minus 0.25.

We note that all this process of “fuzzification-
defuzzification-decision” is made using the local model
of the student associated with the considered lesson. It
consists of an operational process based on membership
values stored in the fuzzy ontology but it does not relate
to any declarative formal reasoning based on the fuzzy
ontology (such as Pellet of FaCT++).

4.2. Example

Consider a new student for the Ocean System. His/her
global model identifies this student with a competence of
0.6 and a sustainable lesson difficulty of 0.6. This classifies
the student as a normal one with degree 1 (see Figure 6).
Suppose that the student is learning, having read two
lecture notes and correctly answered two exercises (w =
0.5). Thus, the system must change the difficulty of the
lesson making it harder and the following computations
are performed:

o the fuzzification of the student’s level, with the
result to be a Normal student with degree 1:
Normal(0.6) 1. Thus, the rule to apply is the
sixth;

« the difficulty variation is dv(1) = 0.01;

« since the fuzzy rule applied is the sixth, the difficulty
must increase by ¢ = 1 * 0.01;

o c is then multiplied by the factor w = 0.5 (because
two reading materials out of four were presented to
the student), so ¢ * 0.5 = 0.005;

o the new difficulty of documents the student can use
in the next steps of the lesson is included in the
interval [0.6 + 0.005 - 0.25;0.6 + 0.005 + 0.25] =
[0.355;0.855].

Finally, the global student’s level is updated computing the
mean of all the correct answers of the lessons. In this case,
the mean of 0.6 (initial value) and 1 (due to the fact that
the student did four good actions out of four), i.e., 0.8.

5. Conclusions

In this paper an overview of the Ocean Project was
given, thus the Ocean Data Model and the Omega Frame-
work were introduced. The framework and the data model
have been designed to be used together in order to create
an intelligent system for e-learning. The framework is
intended to be installed “to support” existing Learning
Management Systems, making the architecture modular
and simple. In particular, the intelligent system uses a data
model based on fuzzy ontologies; and it can profile every
user in several manners according to different reasoning
models (each one corresponding to a “reasoning plugin”).
In this work, an example of a reasoning module based on

949

fuzzy control rules was given, showing a possible way for
the system to adapt to users.

References

[1] S. Kalyuga and J. Sweller, “Rapid dynamic assessment of
expertise to improve the efficiency of adaptive e-learning,”
in ETR&D, vol. 3, 2005, pp. 83-93.
[2] P. Brusilovsky and C. Peylo, “Adaptive and intelligent
web-based educational systems,” International Journal of
Artificial Intelligence in Education, 10S Press, vol. 13, pp.
156-169, 2003.
[3] E. Melis, E. Andrés, J. Biidenbender, A. Frischauf,
G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich,
“Activemath: A generic and adaptive web-based learning
environment,” International Journal of Artificial Intelli-
gence in Education, vol. 12, no. 4, pp. 385-407, 2001.
[4] P. Brusilovsky, E. Schwarz, and G. Weber, “Elm-art: An in-
telligent tutoring system on world wide web,” in Intelligent
Tutoring Systems., vol. LNCS-1086, 1996.
[5] P. Brusilovsky, “A distributed architecture for adaptive
e-learning,” International World Wide Web Conference
archive Proceedings of the 13th international World Wide
Web conference on Alternate track papers and posters, pp.
104-113, 2004.

[6] I. G. Kennedy, S. Fallahkhair, R. Fraser, A. Ismali,

V. Rossano, and A. Trifonova, “A simple web-
based adaptive educational system (swaes),”
http:/feprints.brighton.ac.uk/1041/, Last check: 24th
March 2009.

[7] W. Shih, C. Yang, and S. Tseng, “Ontology-based content
organization and retrieval for SCORM-compliant teaching
materials in data grids,” Future Generation Computer Sys-
tems, 2009, doi:10.1016/j.future.2009.01.005.

[8] S. Calegari and D. Ciucci, “Fuzzy Ontology, Fuzzy De-
scription Logics and Fuzzy-OWL,” in Proceedings of WILF
2007, ser. LNCS, vol. 4578, 2007, pp. 118-126.

[9] S. Calegari and E. Sanchez, “Object-fuzzy concept network:
An enrichment of ontologies in semantic information re-
trieval,” JASIST, vol. 59, no. 13, pp. 2171-2185, 2008.

[10] W3, “http://www.w3.org/rdf,” Web Page, Last check: 24th
March 2009.
[11] P. Brusilovsky, “Adaptive and intelligent technologies for

web-based education,” Knstliche Intelligenz, Special Issue
on Intelligent Systems and Teleteaching, 1999.

N. Kushmerick, K. McKee, and F. Toolan, “Towards zero-
imput personalization: Referred-based page prediction,” in
Adaptive Hypermedia and Adaptive Web-Based Systems:
International Conference, 2000, pp. 133-143.

[12]

[13] X. Wang, D. Ruan, and E. Kerre, Mathematics of Fuzziness-
Basic Issues, ser. Studies in Fuzziness and Soft Computing.

Berlin-Heidelberg: Springer, 2009, vol. 245.

