
A Business Intelligence Process to support
Information Retrieval in an Ontology-Based

Environment
Filippo Sciarrone, Paolo Starace

Business Intelligence Division
Open Informatica srl

Via dei Castelli Romani, 12/A Pomezia, Italy
Email: {f.sciarrone,p.starace}@openinformatica.org

Tommaso Federici
Tuscia University

Viterbo, Italy
Email: tfederici@unitus.it

Abstract—In this paper we present a Business Intelligence pro-
cess to dynamically develop multidimensional OLAP schemas to
support Information Retrieval in an ontology-based environment.
The particular aspect of our work consists in the integration of
Information Retrieval techniques, such as the semantic indexing
of non-structured documents with some dynamic management
techniques of unbalanced hierarchies stored in a Data Warehouse.
We show how to develop an ETL process to automatically
build OLAP dimensions, inheriting the hierarchic structure of
ontologies, with the goal of using the semantically indexed data
to carry out multidimensional OLAP analysis. We experimented
our system in a company environment with encouraging results.

Index Terms—olap; business intelligence; etl;

I. INTRODUCTION

Nowadays, the competitiveness of a company - in a dynamic
market that constantly produces data - also depends on how
fast the company manages to take decisions regarding its
business mission. Suffice it to think about the Internet and its e-
commerce web sites, or about a telephone company’s user data
that daily builds up. In such contexts, Business Intelligence
(BI) offers a set of tools and systems that can play a key role
in the strategic planning processes (e.g. [1], [2], [3], [4]). Be-
sides, today’s market also requires that data processing be also
for semantics, hence for an automatic elaboration of concepts
linked by ontologies, so as to achieve an extra competitive
advantage in the business [5]. Moreover, in BI applications,
Information Retrieval (IR) is a critical function because most
BI applications today rely on traditional keyword searching
for their primary retrieval mechanism [6].

In this article we present a BI-based process to support
IR in managing and reusing data from an ontology-based
datawarehouse, extending a preliminary version of the work
presented in [7]. The main features of our proposal concern the
development of a process to dynamically extract concepts from
a semantically indexed database. In its entirety, the system
actually helps semantic search for curricula from a government
database of experts, through a concept-based search. Our
approach allows us to design and build dimensions over
ontologies. The basic idea is to use standard BI techniques

to implement a new methodology, aimed at reusing predefined
ontologies in a concept-based dictionary to develop multidi-
mensional OLAP (On-Line-Analytical-Processing) schemas.
Dimensions are obtained from the structure of the ontologies
in a dynamical way, namely, by defining only the root level of
the very ontology and allowing the system to build the cube
dimension automatically. The ontology tree is extracted from
a RDBMS, the dimension is generated and it is once again
memorized into a RDBMS. Should the ontologies change, the
management engine will answer by modifying the structures
existing before the previous execution. Other studies carried
out in this field focused on different aspects of this problem.
Some aim at extracting schemas without involving the human
being. In this context, sometimes ontologies are used to
describe the application domain [8], [9], to generate mediators
[10] and to semantically describe data sources [11] to support
and automate the definition of Extract-Transform-Load (ETL)
processes. Besides, some frameworks have been defined for
the same purpose [12], [13]. Another interesting project is
the one illustrated in [8], aimed at the definition of ETL
processes by means of a description in natural language. In
all such cases, the use of ontologies occurs at a lower level in
the application architecture with respect to our.

The paper breaks down as follows: Section II presents
a detailed description of the Dynamic dimension definition
process, ranging from the working hypotheses, to the treatment
of Bridge Tables and the automatic generation of OLAP
dimensions. Section III explains the processes lying behind
the integration of the indexed data, pointing out the most
significant SQL code parts. Section IV gives an example of
star schema through which our proposal was tested. Finally,
Section V deals with the conclusions and sets the work to be
done in future.

II. DYNAMIC DIMENSIONS DEFINITION

In this section we present the characteristics of the dy-
namic dimensions definition, from their extraction from the
dictionary to the modeling into dimensional structures. This
subprocess is the first part of the entire process that include

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.145

896

also indexed data integration into fact tables. The second part
of the process is shown in Section III.

Subsection II-A shows the reference context and the op-
erative restrictions. Subsection II-B illustrates the technique
used to manage unbalanced hierarchies and subsection II-C
explains the automatic dimension generation process. Finally,
subsection II-D shows some problems related to the navigation
on ontologies.

A. Working Hypotheses

To preliminary indexing the information system content we
adopt a semantic indexing engine.The indexing process that it
implements is a two-step process of non structured documents,
divided in the three layers illustrated in Figure 1. During the
first step, from the Unstructured Docs layer to the Terms Set
layer, the engine, based on the API of the Open Source search
engine Lucene, indexed each document, thus obtaining a set
of index-terms. In the second step, from the terms set layer
to the ontologies layer, these terms were contextualized and
associated with the concepts of predefined ontologies.

Fig. 1. The Two-Steps Indexing Process.

In order to correctly run our process, the following assump-
tions were imposed:

• The concepts included in the dictionary were exclusively
linked by hypernymy and hyponymy relations;

• Each ontology was based on a hierarchic structure.

The aforesaid restrictions obviously entailed an experimen-
tation that was to be limited to the context, albeit it could also
go for other real cases.

B. Managing Unbalanced Hierarchies

When representing a hierarchy with a constant depth, one
knows beforehand the type of structure that will be obtained
by implementing the concept tree [14]. The rigid structure of
constant depth hierarchies means that the number of levels is
decided statically, when it is defined. In the case in point, an
ontology is therefore to be considered as the number of non
uniform levels, whose number may change and, above all, is

not known beforehand. In the development of our solution it
was deemed crucial to make sure that the ontological tree be
extracted dynamically, so as to make the use of concepts as
dimensions flexible and easily adaptable.

Representing an arbitrary and irregular hierarchy is an
intrinsically hard task in a relational environment [15]. The
approach required to manage this type of unpredictable hier-
archy is that of including, in the records of the table in which
the hierarchy is memorized, a recursive pointer going back
to the parent concept, recursive on every dimension record
of the concept. Despite such a solution offers a compact and
efficient method to represent an arbitrary hierarchy, this kind of
recursive structure cannot be used efficiently with the standard
SQL language. The GROUP BY function cannot follow a
recursive structure on the dimension. The adopted solution
envisages the inclusion of a bridge table between the concept
dimension and the facts table. In literature, Kimball suggests
this method to manage the dimensions that recursively refer
to records on the same table [15], [16]. The goal of the bridge
table was to help the OLAP engine aggregate data more
quickly (that’s why it is called helper table). A bridge table
contains a record for each detectable path in the ontology tree,
including a zero length path from a concept to itself. That’s
why there are generally many more records in a bridge table
than in the concept dimension. To this aim, we firstly convert
the recursive relational schemas into an unbalanced n-ary tree
and secondly we convert it into a relational structure again (the
second part of this translation process is illustrated in Figure
2).

Fig. 2. The Second Step of the Translation Process.

C. Automatic dimensions generation

To uncouple the user from the manual definition of hier-
archies, the system generate the dimension structure starting
from the tree’s root concept. By doing so, the user may actually

897

not know the logical structure of the hierarchy because the
latter is defined automatically.

Fig. 3. The Overall Process.

Figure 3 shows the entire process performed by the overall
system. In particular we developed a custom ETL module in
order to integrate semantically indexed data with operational
ones. The custom ETL process performs the following oper-
ations:

1) Builds the ontological tree, extracting it from the dictio-
nary;

2) Defines the dimension table;
3) Includes the ontology nodes;
4) Defines the bridge table;
5) Includes a record for each identifiable path on the tree,

along with the distance between the relevant nodes
(including the ’zero length’ path from a concept to
itself).

Step (1) is made by recursively operating on the concept
relations table included in the dictionary. Steps (2) and (3)
are carried out by a function that extracts the tree (to do this
one may choose any algorithm s/he wants, such as the depth-
first or breadth-first visit). Even steps (4) and (5) are carried
out recursively on the tree, making use of a function that is
executed on every node.

D. Hierarchic Navigation

In order to ensure a hierarchic navigation it is necessary
to bring ontology structure back to a tree structure, so this
is a very important aspect that should be considered. The
presence of navigable cycles on the structures is ruled out
- even theoretically - from the typology of relation existing
between the concepts. The relation between the nodes, namely,
the hyponymy one (generally known as part of) ensures the
non navigability of a hyponym concept towards a hypernym
concept (possibly separated by several intermediate levels). We

must therefore consider the management of Directed Acyclic
Graphs (DAG). In theory, it is possible to make any DAG
go back to a tree structure, but the operation could have a
high cost. If such a possibility is taken into consideration,
one must intervene by including restrictive hypotheses. It can
be proved that the complexity of the desired transformation
depends on the depth of the graph, but not on its width;
indeed, it consists in the duplication of the shared hyponym
node into two hypernyms and the entire relevant subtree. As
the graph gets deeper there is an increase in the possibility of
carrying out an exponential number of duplications of subtrees
referring to conflicting nodes. As the width increases, so does
the number of possible conflicts, but the complexity of the
single transformations always depends exponentially on the
depth of the single subtrees, not on their width. By making an
assessment, with reference to the specific intervention context,
of the relation between these two parameters, it is possible to
obtain the actual cost of the transformation, hence assessing
its impact on a computational level. Other approaches to
the problem solution might include an intervention on the
presentation logic used by the OLAP engine. Dynamically
modifying the ontology structures (giving a different weight
to the arcs pointing at the same node, or cutting some of them),
following the user’s behavior while surfing, would solve the
problem, but it would also increase the computational cost
deriving from data aggregation, including the costs due to
the computation of a new tree. Besides, it would introduce
a non negligible approximation, due the modification of the
tree structure.

III. INDEXED DATA INTEGRATION

In this section we illustrate the integration process of
indexed data in a table of facts.

Some specific information is necessary to start the process,
but by introducing some standardizations (for example as
regards the names of dimensions and of facts, or the names
of the columns and their suffixes) it is possible to reduce
such information to a limited number of parameters. In this
way, the definition of facts expresses a basic step to obtain
multidimensional schemas.

The indexed data of a field can be blended with the
operational data by means of simple ”join” operations. It is
sufficient to define the names of the operational tables and
those of the involved columns; all the other parameter names
can be calculated automatically.

An incremental example will be used to illustrate the auto-
matic composition of the join function. The relevant database
fields contain the external keys to the NON-TECHNICAL
keys contained in the reference dimension. The code used to
integrate one single dimension into a table of facts, in order
to obtain a simple measure, is the following:

SELECT std_dimension_dt.std_dimension_id,
op_fact_table.measure

FROM op_fact_table JOIN std_dimension_dt
ON op_fact_table.column =

898

std_dimension_dt.column;

It should be pointed out that:

• The names of the columns are the same ones on the basis
of the examples shown above;

• The dimension column is not the technical key to the
dimension (which is identified with the name dimen-
sion id).

Finally, the measure will be aggregated according to the
contents of the dimension:

SELECT std_dimension_dt.std_dimension_id,
sum(op_fact_table.measure)

FROM op_fact_table JOIN std_dimension_dt
ON op_fact_table.column =

std_dimension_dt.column
GROUP BY std_dimension_dt.std_dimension_id;

By using this schematic approach to integrate a greater
number of dimensions it is possible to generate complex
queries for the definition of facts tables. Queries may be
generated repetitively and incrementally. When an ontological
dimension is included in a scheme, even the data referring to
the search engine index must be aggregated. In order to do so,
the indexed data will be initially joined with the operational
data, and finally included in the dimensions. The resulting
query is:

SELECT *
FROM index JOIN op_fact_table
ON index.op_fact_id = op_fact_table.id;

The obtained result set exceeds the real needs, since the
”join” function goes for the entire index. Such function should
actually exclusively concern the part of relevant data (which
will be memorized beforehand in a table called temp index):

SELECT *
FROM temp_index JOIN op_fact_table ON
temp_index.op_fact_id = op_fact_table.id;

In this case, if a dimension deriving from an ontology
is to be aggregated, we must use the concept id included
in the previous query, including a reference to the ontology
dimension as an external key. Hence, the completed query is
the following:

SELECT ontology_dt.ontology_id,
std_dimension_dt.std_dimension_id,
sum(op_fact_table.measure)

FROM ((temp_index JOIN op_fact_table ON
temp_index.op_fact_id = op_fact_table.id)

JOIN std_dimension_dt
ON op_fact_table.column =

std_dimension_dt.column)
JOIN ontology_dt ON

temp_index.concept = ontology_dt.concept
GROUP BY std_dimension_dt.std_dimension_id,

ontology_dt.ontology_id;

When using bridge tables one should take care in not
counting facts too much. That’s why it is important to include
only one record for the concepts that appear several times
under the same subtree.

IV. STAR SCHEMA EXAMPLE

In this section we illustrate a star schema example that
include an ontological derived dimension. The ontology to
be integrated in the schema provide a description of the
IT expert concept and is shown in Figure 4. Consistently
with the limitations mentioned in the previous paragraphs,
the ontological graph results in an oriented n-ary tree. The
resulting schema is shown in Figure 5.

Fig. 5. The Star-Schema with Bridge Table.

The measure on which the aggregation is to be made is
the number of candidates referring to the single concept. The
resulting table will therefore be a factless fact table because it
does not aggregate a number value but a summative conceptual
value [17]. The dimensions that may be aggregated, both
standard and dynamic ones, are not number-limited, and this
makes the solution adaptable to any type of problem.

The result obtained from the navigation of the schema is
shown in Figure 6. In the image it is possible to notice that
the quality of the ontologies contained in the dictionary is
the basic element for a good performance of the presented
information. Therefore, the names in the attribute field have
deliberately not been refined, so as to highlight this aspect.
The sum of the leaves values does not always correspond to
the value of top node because there may be concepts that refer

899

Fig. 4. The Computer Expert Ontology.

Fig. 6. The Resulting Pivot Table.

only to the parent node that you must add to the value of the
sum.

V. CONCLUSIONS AND FUTURE WORK

In this article we proposed a BI-based process to support
IR in an ontology-based environment, showing the theoretical
implications together with a case study which the overall pro-
cess is based on. Our process allows for the reuse of ontologies
defined in semantic search engines dictionaries as OLAP
dimensions thus providing for a stable solution to integrate
indexed data in a semantic context. To this aim, a two-steps
process was implemented in such a way to let the overall
system independent from the complexity of the ontologies. Our
future work will focus on the resolution of problems related
to the management of many-to-many relations. This aspect

is now left to the user’s capacity of developing consistent
schemas, but it is our intention to introduce a management
system based on weighted trees. As for the application testing,
a first experimentation has been carried out and described: it
was conducted in an industrial context and yielding positive
results on the proposal’s viability.

REFERENCES

[1] B. Liautaud, e-Business Intelligence: Turning Information into Knowl-
edge into Profit. McGraw-Hill, October 2000.

[2] L. T. Moss and S. Atre, Business Intelligence Roadmap: The Complete
Project Lifecycle for Decision-Support Applications. Addison-Wesley
Information Technology Series, March 2003.

[3] H. J. Watson and B. H. Wixom, “The current state of business intelli-
gence,” Computer, vol. 40, no. 9, pp. 96–99, 2007.

[4] R. Wrembel, Datawarehouses and OLAP:Concepts, Architectures and
Solutions. IGI Global, December 2008.

[5] N. Zhong, J. Liu, and Y. Yao, Web Intelligence. Springer Verlag Berlin
Heidelberg, March 2003.

[6] R. C. LaBrie and R. D. S. Louis, “Dynamic hierarchies for business
intelligence information retrieval,” International Journal of Internet and
Enterprise Management, vol. 3, no. 1, pp. 3–23, 2005.

[7] F. Sciarrone and P. Starace, “Ontological warehousing on semantically
indexed data. reusing semantic search engine ontologies to develop mul-
tidimensional schemas,” in KDIR 2009: Proceedings of the International
Conference on Knowledge Discovery and Information Retrieval. To
appear, October 2009.

[8] A. Simitsis, D. Skoutas, and M. Castellanos, “Natural language report-
ing for etl processes,” in DOLAP ’08: Proceeding of the ACM 11th
international workshop on Data warehousing and OLAP. New York,
NY, USA: ACM, 2008, pp. 65–72.

[9] D. Skoutas and A. Simitsis, “Designing etl processes using semantic web
technologies,” in DOLAP ’06: Proceedings of the 9th ACM international
workshop on Data warehousing and OLAP. New York, NY, USA:
ACM, 2006, pp. 67–74.

900

[10] T. Critchlow, M. Ganesh, and R. Musick, “Automatic generation of
warehouse mediators using an ontology engine,” in Proceedings of
the 5th INternational Workshop on Knowledge Represenation Meets
Databases (KRDB ’98): Innovative Application Programming and Query
Interfaces, Seattle, Washington, USA, May 31, 1998, ser. CEUR Work-
shop Proceedings, A. Borgida, V. K. Chaudhri, and M. Staudt, Eds.,
vol. 10, 1998, pp. 8.1–8.8.

[11] S. Toivonen and T. Niemi, “Describing data sources semantically for
facilitating efficient creation of olap cubes,” in Poster Proceedings of
the Third International Semantic Web Conference, 2004.

[12] R. M. Bruckner, T. W. Ling, O. Mangisengi, and A. M. Tjoa, “A
framework for a multidimensional OLAP model using topic maps,” in
WISE (2), 2001, pp. 109–118.

[13] P. Spyns, R. Meersman, and M. Jarrar, “Data modelling versus ontol-
ogy engineering,” SIGMOD Record (ACM Special Interest Group on
Management of Data), vol. 31, no. 4, pp. 12–17, Dec. 2002.

[14] I. Y. Song, I. yeol Song, C. Medsker, E. Ewen, and W. Rowen, “An
analysis of many-to-many relationships between fact and dimension
tables in dimensional modeling,” in Proc. of the Internationall Workshop
on Design and Management of Data Warehouses, vol. 6, 2001, pp. 1–13.

[15] R. Kimball, L. Reeves, W. Thornthwaite, M. Ross, and W. Thornwaite,
The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing,
Developing and Deploying Data Warehouses with CD Rom. New York,
NY, USA: John Wiley & Sons, Inc., 1998.

[16] R. Kimball and M. Ross, The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling (Second Edition). Wiley, April 2002.

[17] R. Kimball and J. Caserta, The Datawarehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming and Delivering Data.
Wiley, September 2004.

901

