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Abstract

In this paper we introduce a new procedure for compar-
ing and ordering social welfare situations by considering
location, dispersion, consensus and welfare measures gen-
erated by exponential means. These measures satisfy in-
teresting properties and generalize some measures used in
welfare economics.

1. Introduction

In the economic literature there exists a large variety of
economic indices (inequality, poverty, social development,
gross domestic product, happiness, health, welfare, etc.) for
comparing and ranking social situations across populations
(see, for instance, Sen [13], Dagum [6] and Chakravarty and
Muliere [4, 5]).

Along the paper we assume that economic indices have
been normalized into the unit interval.

Given two societies with the same aggregated economic
index, it seems reasonable to rank first that society with a
smaller dispersion. For instance, if a society has two mem-
bers and each one has half chicken, then the mean is the
same that another society of two members where one of
them has one chicken and the other one has no chicken.
Taking into account the dispersion of both societies, it is
clear that the first society should be ranked before the sec-
ond one regarding equality and social welfare. This simple
idea was developed by Sen [12] by multiplying the mean, as
location measure, by 1 minus the Gini coefficient, as con-
sensus measure.

In this paper we follow the seminal idea of Sen, but we
use the cores of exponential means as location measures and
some consensus measures generated by the anti-self-dual
remainders associated with the corresponding exponential
means (see Garcı́a-Lapresta and Marques Pereira [8]). Tak-
ing into account these two ingredients, both satisfying in-
teresting properties, we define a new social welfare order

on societies.
The paper is organized as follows. Section 2 includes

basic notation and properties of aggregation functions. Sec-
tion 3 is devoted to summarize the decomposition of an ag-
gregation function in the core and the associated remainder.
In Section 4 we introduce our proposal for measuring social
welfare by considering location, dispersion, consensus and
welfare measures generated by exponential means. Finally,
Section 5 contains some concluding remarks.

2 Aggregation functions

In this section we present notation and basic definitions
regarding aggregation functions on [0, 1]n, with n ∈ N and
n ≥ 2 throughout the text.

Notation Points in [0, 1]n will be denoted by means
of boldface characters: x = (x1, . . . , xn), 1 = (1, . . . , 1),
0 = (0, . . . , 0). For x ∈ [0, 1], we have x · 1 = (x, . . . , x).
Given x, y ∈ [0, 1]n, by x ≥ y we mean xi ≥ yi for
every i ∈ {1, . . . , n}; by x > y we mean x ≥ y and
x �= y. Moreover, x∗ = min{x1, . . . , xn} and x∗ =
max{x1, . . . , xn}. Given a permutation on {1, . . . , n}, i.e.,
a bijection σ : {1, . . . , n} −→ {1, . . . , n}, with xσ we de-
note (xσ(1), . . . , xσ(n)).

We begin by defining standard properties of real func-
tions on [0, 1]n. On this, see Fodor and Roubens [7], Calvo
et al. [3], Beliakov et al. [2], Garcı́a-Lapresta and Marques
Pereira [8] and Grabisch et al. [9].

Definition 1 Let A : [0, 1]n −→ R be a function.

1. A is idempotent if for every x ∈ [0, 1]:

A(x · 1) = x.

2. A is symmetric if for every permutation σ on
{1, . . . , n} and every x ∈ [0, 1]n:

A(xσ) = A(x).
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3. A is monotonic if for all x, y ∈ [0, 1]n:

x ≥ y ⇒ A(x) ≥ A(y).

4. A is strictly monotonic if for all x, y ∈ [0, 1]n:

x > y ⇒ A(x) > A(y).

5. A is compensative if for every x ∈ [0, 1]n:

x∗ ≤ A(x) ≤ x∗.

6. A is self-dual if for every x ∈ [0, 1]n:

A(1 − x) = 1 − A(x).

7. A is anti-self-dual if for every x ∈ [0, 1]n:

A(1 − x) = A(x).

8. A is invariant for translations if for all t ∈ [−1, 1] and
x ∈ [0, 1]n:

A(x + t · 1) = A(x)

whenever x + t · 1 ∈ [0, 1]n.

9. A is stable for translations if for all t ∈ [−1, 1] and
x ∈ [0, 1]n:

A(x + t · 1) = A(x) + t

whenever x + t · 1 ∈ [0, 1]n.

Let now {A(k)}k∈N be a sequence of functions, where
A(k) : [0, 1]k −→ R.

10. {A(k)}k∈N is invariant for replications if for all
x ∈ [0, 1]n and any number of replications m ∈ N of
x:

A(mn)(
m︷ ︸︸ ︷

x, . . . , x) = A(n)(x).

Definition 2 A function A : [0, 1]n −→ [0, 1] is called an
n-ary aggregation function if it is monotonic and satisfies
A(0) = 0 and A(1) = 1. For the sake of simplicity, the
n-arity is omitted whenever it is clear from the context. An
aggregation function is said to be strict if it is strictly mono-
tonic.

Self-duality and stability for translations are important
properties of aggregation functions. In turn, anti-self-
duality and invariance for translations are incompatible with
the defining properties of aggregation functions, namely
with the boundary conditions A(0) = 0 and A(1) = 1.
Nevertheless, anti-self-duality and invariance for transla-
tions play an important role in this paper in so far as they
are properties of important functions associated with aggre-
gation functions, as we shall discuss later. The following
are standard facts concerning aggregation functions.

Proposition 1 Let A : [0, 1]n −→ [0, 1] be an aggregation
function.

1. A is idempotent if and only if A is compensative.

2. If A is strict, then A(x) = 0 if and only if x = 0, and
A(x) = 1 if and only if x = 1.

3. If A is stable for translations, then A is idempotent.

3. The self-dual core and the associated re-
mainder

In this section we briefly summarize the decomposition
of an aggregation function in the self-dual core and the asso-
ciated remainder included in Garcı́a-Lapresta and Marques
Pereira [8]. First we introduce the concepts of self-dual core
and anti-self-dual remainder of an aggregation function, es-
tablishing which properties are inherited in each case from
the original aggregation function. Particular emphasis is
given to the properties of stability for translations (self-dual
core) and invariance for translations (anti-self-dual remain-
der).

Definition 3 Let A : [0, 1]n −→ [0, 1] be an aggregation
function. The aggregation function A∗ : [0, 1]n −→ [0, 1]
defined as

A∗(x) = 1 − A(1 − x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A, which means that dualization is an
involution. An aggregation function A is self-dual if and
only if A∗ = A. The properties of idempotency, sym-
metry, strict monotonicity, compensativeness, self-duality,
anti-self-duality, invariance and stability for translations are
all preserved by duality. The same holds for continuity. Ag-
gregation functions are not in general self-dual. However, a
self-dual aggregation function can be associated to any ag-
gregation function in a simple manner. The construction of
the so-called self-dual core of an aggregation function A is
as follows.

Definition 4 Let A : [0, 1]n −→ [0, 1] be an aggregation
function. The function Â : [0, 1]n −→ [0, 1] defined by

Â(x) =
A(x) + A∗(x)

2
=

A(x) − A(1 − x) + 1
2

.

is called the core of the aggregation function A.

Notice that Â is clearly an aggregation function, verify-
ing the boundary conditions Â(0) = 0, Â(1) = 1 and
monotonicity. Moreover, Â is self-dual, since Â(1 − x) =
1 − Â(x) for every x ∈ [0, 1]n. We say that Â is the self-
dual core of the aggregation function A.
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Proposition 2 Let A : [0, 1]n −→ [0, 1] be an aggregation
function.

1. A is self-dual if and only if Â(x) = A(x) for every
x ∈ [0, 1]n.

2. Accordingly, ̂̂A(x) = Â(x) for every x ∈ [0, 1]n.

Proposition 3 The self-dual core Â inherits from the ag-
gregation function A the properties of idempotency (hence,
compensativeness), symmetry, strict monotonicity, continu-
ity, stability for translations and invariance for replications,
whenever A has these properties.

We now introduce the anti-self-dual remainder Ã, which
is simply the difference between the original aggregation
function A and its self-dual core Â.

Definition 5 Let A : [0, 1]n −→ [0, 1] be an aggrega-
tion function. The function Ã : [0, 1]n −→ R defined by
Ã(x) = A(x) − Â(x), that is

Ã(x) =
A(x) − A∗(x)

2
=

A(x) + A(1 − x) − 1
2

,

is called the remainder of the aggregation function A.

Notice that Ã is anti-self-dual. For this reason we say
that Ã is the anti-self-dual remainder of the aggregation
function A. Clearly, Ã is not an aggregation function. In
particular, Ã(0) = Ã(1) = 0 violates the boundary con-
ditions and implies that Ã is either non monotonic or ev-
erywhere null. Moreover, −0.5 ≤ Ã(x) ≤ 0.5 for every
x ∈ [0, 1]n.

Proposition 4 Let A : [0, 1]n −→ [0, 1] be an aggregation
function.

1. A is self-dual if and only if Ã(x) = 0 for every
x ∈ [0, 1]n.

2. Accordingly, ˜̂A(x) = 0 for every x ∈ [0, 1]n.

Proposition 5 The remainder Ã inherits from the aggre-
gation function A the properties of symmetry, continuity and
invariance for replications, whenever A has these proper-
ties.

The remainder Ã is symmetric, whenever the aggrega-
tion function A has that property. The same holds for conti-
nuity. Summarizing, every aggregation function A decom-
poses additively A = Â + Ã in two components: the self-
dual core Â and the anti-self-dual remainder Ã, where only
Â is an aggregation function. The so-called dual decom-
position A = Â + Ã clearly shows some analogy with

other algebraic decompositions, such as that of square ma-
trices and bilinear tensors into their symmetric and skew-
symmetric components. The following result concerns two
more properties of the anti-self-dual remainder based di-
rectly on the definition Ã = A − Â and the corresponding
properties of the self-dual core.

Proposition 6 Let A : [0, 1]n −→ [0, 1] be an aggregation
function.

1. If A is idempotent, then Ã(x · 1) = 0 for every
x ∈ [0, 1].

2. If A is stable for translations, then Ã is invariant for
translations.

These properties of the anti-self-dual remainder are sug-
gestive. The first statement applies to the class of idempo-
tent aggregation functions. In such case, self-dual cores are
idempotent and therefore anti-self-dual remainders are null
on the main diagonal. The second statement applies to the
subclass of stable aggregation functions. In such case, self-
dual cores are stable and therefore anti-self-dual remainders
are invariant for translations. In other words, if the aggre-
gation function A is stable for translations, the value Ã(x)
does not depend on the average value of the x coordinates,
but only on their numerical deviations from that average
value. These properties of the anti-self-dual remainder Ã
suggest that it may give some indication on the dispersion
of the x coordinates.

4. Exponential means

Quasiarithmetic means are aggregation functions that
satisfy interesting properties. They were simultaneously
characterized in 1930 by Kolmogoroff [10] and Nagumo
[11] (see also Fodor and Roubens [7, pp. 112-114]). Ex-
ponential means are quasiarithmetic means that are stable
for translations. Thus, their cores are also stable for trans-
lations, and their anti-self-dual remainders are invariant for
translations, joint with other interesting properties. This is
the reason why we consider these functions for defining ap-
propriate location and dispersion measures in our setting.

Definition 6 Let A : [0, 1]n −→ [0, 1] be an aggrega-
tion function. We say that A is a quasiarithmetic mean if
there exists an order automorphism (bijective and increas-
ing function) ϕ : [0, 1] −→ [0, 1] such that

A(x) = ϕ−1

(
ϕ(x1) + · · · + ϕ(xn)

n

)

where ϕ is said to generate the quasiarithmetic mean A.
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Exponential means are the quasiarithmetic means generated
by the order automorphisms ϕα, α �= 0

ϕα(x) =
eαx − 1
eα − 1

.

The limit case, ϕ0(x) = x, generates the arithmetic
mean.

Exponential means joint with the arithmetic mean are the
only quasiarithmetic means that are stable for translations.

Definition 7 Given α �= 0, the exponential mean Aα is the
aggregation function defined by

Aα(x) =
1
α

ln

n∑
i=1

eαxi

n
.

Proposition 7 For every α �= 0, Aα is idempotent, sym-
metric, strictly monotonic, compensative, stable for trans-
lations and invariant for replications.

Definition 8 Given α �= 0, the location measure associated
with Aα is the self-dual core of Aα

Lα(x) = Âα(x) =
1
2α

ln

n∑
i=1

eαxi

n∑
i=1

e−αxi

.

Proposition 8 For every α �= 0, Lα is idempotent, sym-
metric, strictly monotonic, compensative, stable for trans-
lations, self-dual and invariant for replications.

Definition 9 Given α �= 0, the dispersion measure associ-
ated with Aα is the anti-self-dual remainder of Aα

Dα(x) = Ãα(x) =
1
2α

ln

n∑
i=1

eαxi ·
n∑

i=1

e−αxi

n2
.

Proposition 9 For every α �= 0, Dα(x) = 0 if and only
if x1 = · · · = xn. Moreover, Dα is symmetric, anti-self-
dual, invariant for translations and invariant for replica-
tions.

Remark 1 If α > 0, then 0 ≤ Dα(x) ≤ 0.5 for every
x ∈ [0, 1]n. If α < 0, then −0.5 ≤ Dα(x) ≤ 0 for every
x ∈ [0, 1]n.

Definition 10 Given α �= 0, the consensus measure associ-
ated with Aα is the function Cα : [0, 1]n −→ [0, 1] defined
by

Cα(x) = 1 − 2 |Dα(x)|.

Proposition 10 For every α �= 0, Cα(x) = 1 if and only if
x1 = · · · = xn. Moreover, Cα is symmetric, anti-self-dual,
invariant for translations and invariant for replications.

The following result presents the limits of the exponen-
tial means and the associated location, dispersion and con-
sensus measures. The proof is by straightforward applica-
tion of l’Hospital’s rule.

Proposition 11 The following statements hold:

1. lim
α→∞Aα(x) = x∗.

2. lim
α→−∞Aα(x) = x∗.

3. lim
α→0

Aα(x) =
x1 + · · · + xn

n
.

4. lim
α→∞Lα(x) = lim

α→−∞Lα(x) =
x∗ + x∗

2
.

5. lim
α→0

Lα(x) =
x1 + · · · + xn

n
.

6. lim
α→∞Dα(x) =

x∗ − x∗
2

.

7. lim
α→−∞Dα(x) = −x∗ − x∗

2
.

8. lim
α→0

Dα(x) = 0.

9. lim
α→∞Cα(x) = lim

α→−∞Cα(x) = 1 − (x∗ − x∗).

10. lim
α→0

Cα(x) = 1.

We now introduce the welfare measure associated with
an aggregation function as the location measure corrected
by the consensus measure (a factor which diminishes as in-
equality increases).

Definition 11 Given α �= 0, the welfare measure associ-
ated with Aα is the function Wα : [0, 1]n −→ [0, 1] de-
fined by

Wα(x) = Lα(x) · Cα(x).

Proposition 12 For every α �= 0, Wα is idempotent, sym-
metric and invariant for replications.

Taking into account the previous measures, it is possible
to compare populations of different size. In the following
definition, we order populations by means of the welfare
measure. So, populations with the same location measure
may be ordered by considering their dispersion. Even more,
a population with a smaller location measure than a sec-
ond one may be ordered before the last one if the consensus
is sufficiently bigger than the second one. This idea is al-
ready in Sen [12] by using the arithmetic mean and 1 minus
the Gini coefficient as location and consensus measures, re-
spectively.
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Definition 12 Given x, y ∈ ∪n∈N[0, 1]n,

x �α y ⇔ Wα(x) ≥ Wα(y).

Obviously, �α is a weak order.

Example 1 Consider 9 populations whose economic in-
dices are included in the first column of Tables 1-5. Notice
that the first six populations share the same average, 1

3 , and
the averages of the other ones are close to this amount. The
last three columns of these Tables show the location, con-
sensus and welfare measures for α = 1

4 , 1
2 , 1, 2, 4. Table 6

includes the rankings produced by the corresponding weak
orders �α. Notice that these rankings have some differ-
ences. This is due to the importance that parameter α gives
to dispersion.

Table 1. Values for α = 0.25

α = 0.25 Lα(x) Cα(x) Wα(x)
x1 = (1, 0, 0) 0.3341 0.9445 0.3155

x2 = (1
2 , 1

2 , 0) 0.3332 0.9861 0.3286

x3 = (1
3 , 1

3 , 1
3 ) 0.3333 1 0.3333

x4 = (1, 1
3 , 0, 0) 0.3339 0.9583 0.3200

x5 = (2
3 , 2

3 , 0, 0) 0.3333 0.9722 0.3241

x6 = (4
9 , 4

9 , 4
9 , 0) 0.3332 0.9907 0.3301

x7 = (0.87, 0.23, 0.13, 0.1) 0.3328 0.9753 0.3246

x8 = (0.7, 0.15, 0.14, 0.11) 0.2751 0.9848 0.2710

x9 = (0.56, 0.5, 0.15, 0.1) 0.3275 0.9895 0.3240

Table 2. Values for α = 0.5

α = 0.5 Lα(x) Cα(x) Wα(x)
x1 = (1, 0, 0) 0.3364 0.8897 0.2992

x2 = (1
2 , 1

2 , 0) 0.3329 0.9723 0.3237

x3 = (1
3 , 1

3 , 1
3 ) 0.3333 1 0.3333

x4 = (1, 1
3 , 0, 0) 0.3356 0.9170 0.3077

x5 = (2
3 , 2

3 , 0, 0) 0.3333 0.9447 0.3149

x6 = (4
9 , 4

9 , 4
9 , 0) 0.3330 0.9815 0.3268

x7 = (0.87, 0.23, 0.13, 0.1) 0.3339 0.9508 0.3174

x8 = (0.7, 0.15, 0.14, 0.11) 0.2757 0.9698 0.2674

x9 = (0.56, 0.5, 0.15, 0.1) 0.3275 0.9792 0.3207

Table 3. Values for α = 1

α = 1 Lα(x) Cα(x) Wα(x)
x1 = (1, 0, 0) 0.3447 0.7838 0.2702

x2 = (1
2 , 1

2 , 0) 0.3318 0.9448 0.3135

x3 = (1
3 , 1

3 , 1
3 ) 0.3333 1 0.3333

x4 = (1, 1
3 , 0, 0) 0.3421 0.8357 0.2859

x5 = (2
3 , 2

3 , 0, 0) 0.3333 0.8909 0.2970

x6 = (4
9 , 4

9 , 4
9 , 0) 0.3320 0.9630 0.3197

x7 = (0.87, 0.23, 0.13, 0.1) 0.3379 0.9020 0.3048

x8 = (0.7, 0.15, 0.14, 0.11) 0.2778 0.9398 0.2610

x9 = (0.56, 0.5, 0.15, 0.1) 0.3275 0.9585 0.3139

Table 4. Values for α = 2

α = 2 Lα(x) Cα(x) Wα(x)
x1 = (1, 0, 0) 0.3702 0.5995 0.2220

x2 = (1
2 , 1

2 , 0) 0.3276 0.8919 0.2922

x3 = (1
3 , 1

3 , 1
3 ) 0.3333 1 0.3333

x4 = (1, 1
3 , 0, 0) 0.3635 0.6852 0.2491

x5 = (2
3 , 2

3 , 0, 0) 0.3333 0.7925 0.2642

x6 = (4
9 , 4

9 , 4
9 , 0) 0.3281 0.9266 0.3040

x7 = (0.87, 0.23, 0.13, 0.1) 0.3521 0.8081 0.2845

x8 = (0.7, 0.15, 0.14, 0.11) 0.2855 0.8810 0.2515

x9 = (0.56, 0.5, 0.15, 0.1) 0.3276 0.9186 0.3009

5 Concluding remarks

In Economics, there exist a long tradition of aggregate
different economic indicators in order to make pairwise
comparisons among societies or countries. In this issue, we
have considered location, dispersion, consensus and wel-
fare measures associated with exponential means, the only
class of quasiarithmetic means satisfying stability for trans-
lations. It is worth noting that in our proposal each expo-
nential mean generates a location, a dispersion, a consensus
and a welfare measure. Depending on the parameter we use,
those measures have different sensitivity towards inequality
(as in Atkinson [1]).
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Table 5. Values for α = 4

α = 4 Lα(x) Cα(x) Wα(x)
x1 = (1, 0, 0) 0.4167 0.3647 0.1520

x2 = (1
2 , 1

2 , 0) 0.3149 0.7998 0.2518

x3 = (1
3 , 1

3 , 1
3 ) 0.3333 1 0.3333

x4 = (1, 1
3 , 0, 0) 0.4095 0.4617 0.1890

x5 = (2
3 , 2

3 , 0, 0) 0.3333 0.6463 0.2154

x6 = (4
9 , 4

9 , 4
9 , 0) 0.3151 0.8578 0.2703

x7 = (0.87, 0.23, 0.13, 0.1) 0.3893 0.6510 0.2534

x8 = (0.7, 0.15, 0.14, 0.11) 0.3087 0.7749 0.2392

x9 = (0.56, 0.5, 0.15, 0.1) 0.3277 0.8482 0.2780

Table 6. Rankings
�0.25 �0.5 �1 �2 �4

1 x3 x3 x3 x3 x3

2 x6 x6 x6 x6 x9

3 x2 x2 x9 x9 x6

4 x7 x9 x2 x2 x7

5 x5 x7 x7 x7 x2

6 x9 x5 x5 x5 x8

7 x4 x4 x4 x8 x5

8 x1 x1 x1 x4 x4

9 x8 x8 x8 x1 x1
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