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Abstract—Searching for consensus in group decision making
is a process in which experts change their preferences in order
to achieve a minimum agreement before making a decision.
Computing the consensus degree among experts and the group
collective opinion by aggregating experts’ opinions are two
main tasks in a consensus reaching process. In this contribution
we have studied the effects of different aggregation operators
on the consensus processes. In particular, we have analyzed the
obtained outcomes by three different aggregation operators:
arithmetic mean, OWA with the linguistic quantifier “most”
and Dependent OWA. Finally, some preliminary conclusions
about the obtained results and the influence of these aggrega-
tion operations on consensus processes are drawn.
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I. INTRODUCTION

A group decision making (GDM) problem is defined as
a decision making problem where several decision makers
(judges, experts, ...) attempt to achieve a common solution
about a set of alternatives. Usually, this type of problem
has been tackled in the literature by carrying out a selection
process whose result is a set with the best alternative(s) to
solve the problem [1]. However, this solution set might be
rejected by some experts whether they consider that their
opinions have not been taken into account properly. So,
carrying out a consensus reaching process in order to reach
a minimum agreement before applying the selection process
could be advisable.

A consensus reaching process may be seen as an iterative
process composed by several rounds where experts express,
discuss and modify their preferences in order to achieve
a good agreement. Normally, this process is guided by
the figure of a moderator, who helps experts to make
their preferences closer to each other. Several approaches
have been proposed to model consensus reaching processes,
among them, we would like to highlight our proposals to
manage heterogeneous information [2], [3]. In any consensus
reaching process, two important tasks are to compute the
level of agreement and the collective opinion of all experts.
Usually, both tasks are accomplished aggregating the in-
dividual experts’ preferences. Many aggregation operators

may be found in the literature, from simple arithmetic
mean to fuzzy aggregation operators [4]. Note the ordered
weighted averaging (OWA) operators family [5] and its later
extensions which have been successfully applied in many
areas related to decision making.

In this contribution we study the behaviour of a consensus
model according to different aggregation operators: arith-
metic mean, OWA guided by the quantifier linguistic “most”
[6] and Dependent OWA [7]. These operators have been
chosen because we consider that the aggregation technique
is appropriate for consensus processes. So, the arithmetic
mean takes into account all preferences in the same way,
OWA(“most”) considers the preferences of the majority
of the experts (extreme values are penalized) and DOWA
assigns weights to experts’ preferences according to their
distances regarding the central value of all preferences. Our
aim is to study effects of these operators on the development
of the consensus process. Moreover, we propose computing
the consensus degree by using a typical OWA operator with
different “orness” degrees. In this way, we can approach the
consensus process from different points of view (optimistic,
pessimistic or neutral) in the same line as advocated by
Yager in [8], [9]. This preliminary study has allowed us
to establish a prior assumptions on the relationship between
the consensus processes and these aggregation operations.

This work is set out as follows. In Section 2, we sum-
marise the theoretical basic of aggregation operators used in
this study: OWA and DOWA operators. In Section 3, a brief
revision of the consensus model is carried out. In Section
4, we show an example and the main results obtained as
well as some assumptions concerning the consensus process
and aggregation operators. Finally, in Section 5 we draw our
conclusions.

II. OWA AND DOWA AGGREGATION OPERATORS

A. Ordered Weighted Averaging Operator

The ordered weighted averaging operator was proposed
by Yager [8] to aggregate human judgments by using a
weighting vector not associated directly to a particular
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judgment but rather to an ordered position of the set of
judgments.
Definition: An OWA operator of dimension n is a mapping
Rn → R, which has an associated weighting vector W =
[w1, w2, . . . , wn], such that wi ∈ [0, 1] and

∑n
i=1 wi = 1,

whose mathematical expression is,

OWA(a1, . . . , an) =
n∑

i=1

wibi (1)

being bi the ith largest element of the arguments set
(a1, . . . , an) ordered in descending order. The OWA oper-
ators family has the flexibility to use and entire range of
weighting vectors to reproduce “or” and “and” operations
(i.e. maximum and minimum) according to experts’ attitudes
concerning aggregation (optimistic or pessimistic). So, a
measurement to evaluate the degree of “orness” [8] has been
defined as:

orness(W ) =
1

n− 1

n∑
i=1

(n− i)wi, (2)

with orness(W ) ∈ [0, 1]. This measurement estimates
how similar is the OWA operator to pure “or” operator.
When W = [1, 0, . . . , 0], the orness(W ) = 1 and the
OWA behavior is similar to “or” operator. In this case the
optimism is maximum. However, with W = [0, 0, . . . , 1], the
orness(W ) = 0 and the OWA behavior is similar to “and”
operator and the pessimism is maximum. This interpretation
of the “orness” will be used by the model to compute the
level of agreement as we will explain in the section 3.1

A very interesting approach about OWA operators arises
when the linguistic quantifiers proposed by Zadeh [10] are
used to compute the weighting vector W [5]. A linguistic
quantifier is defined as a function Q : [0, 1] → [0, 1], such
that Q(0) = 0, Q(1) = 1, and if x > y then Q(x) ≥ Q(y).
An OWA aggregation guided by a linguistic quantifier Q is
defined as [6]:

ΦQ(a1, . . . , an) =
n∑

i=1

wibi (3)

being bi the ith largest element of aj , with,

wi = Q
( i
n

)
−Q

( i− 1
n

)
, i = 1, . . . , n. (4)

This approach has been broadly used in fuzzy group decision
making to aggregate experts’ preferences, particulary to
represent the concept of fuzzy majority [11], [12], [13]. In
this contribution we use an OWA operator guided by the
linguistic quantifier “most” defined as:

Q(x) =

⎧⎨
⎩

0 x ≤ a
x−a
b−a a < x < b

1 x ≥ b
(5)

to compute the collective preference.

B. Dependent OWA Operator

The dependent OWA operator (DOWA) was introduced by
Xu [7] as a new approach to OWA aggregations where the
estimation of weights depends on the aggregated arguments.
This operator was proposed as a possible solution to some of
the drawbacks of typical OWA aggregation, for instance, its
bad behavior to deal with very high or low values. DOWA
computes the weight of the arguments according to its
distance regarding the center of all arguments (i.e. arithmetic
mean). This centralized interpretation has also been adopted
in the centered OWA operator [14], where weights are high
close to arithmetic mean and decrease towards extreme ones.

The weights of the DOWA operator are obtained accord-
ing to the following expressions: Let (a1, . . . , an) be a set
of arguments and ϕ the arithmetic mean of the set. The
weights of the weighting vector W = [w1, w2, . . . , wn] are
computed as:

wj =
s(aj , ϕ)∑n
i=1 s(ai, ϕ)

, j = 1, 2, . . . , n (6)

where s(·) is the similarity between any argument aj and
the average value ϕ,

s(aj , ϕ) = 1 − | aj − ϕ |∑n
i=1 | ai − ϕ | . (7)

Note that at least one preference must to be different
among all experts’ preferences. Finally, DOWA operator is
defined as:

DOWA(a1, . . . , an) =
n∑

i=1

wiai.

Here, the weight of each argument is proportional to its
magnitude into the set of arguments. Therefore, the typical
reordering step of OWA operators is irrelevant for the
DOWA operator.

III. CONSENSUS MODEL DESCRIPTION

A GDM problem is classically defined as a decision situa-
tion where given a set of alternatives X = {x1, x2, . . . , xn}
(n ≥ 2), a group of experts, E = {e1, e2, . . . , em} (m ≥ 2),
try find out the best alternative/s to solve the decision
problem. In this contribution we assume that preferences
are provided by experts by means of reciprocal prefer-
ence relations [15], Pei

= [plk
i ], l, k ∈ {1, . . . , n}, with

plk
i = μPei

(xl, xk) assessed in the unit interval [0, 1] and
plk

i + pkl
i = 1. The preference plk

i is interpreted as the
preference degree of the alternative xl over xk according
to the expert ei.

The consensus model used in this contribution consists of
the following phases (see Figure 1):

1) Computing the consensus degree from a neutral,
optimistic or pessimistic point of view. In this phase
the level of agreement among all experts, called cr, is
computed by aggregating their preferences. Firstly, for
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Figure 1. Consensus model

each pair of experts ei, ej (i < j), a similarity matrix,
SMij = [smlk

ij ], is obtained as,

smlk
ij = 1− | plk

i − plk
j | (8)

being smlk
ij the similarity between the experts ei and

ej on the pair of alternatives (xl, xk). Secondly, a
consensus matrix, CM = [cmlk], is calculated by
aggregating at level of pairs all similarity matrices:

cmlk = φ(smlk
12, sm

lk
13, . . . , sm

lk
1m, smlk

23, . . . , sm
lk
2m,

. . . , smlk
(m−1)m), for l, k ∈ {1, . . . , n}

This aggregation operation can be approached from
two points of view, i) “neutral”, where all experts’
preferences have the same importance or weight and
the arithmetic mean could be used as aggregation
operator, or ii) “oriented”, where experts’ preferences
have different weights. In this second case, we could
use a typical OWA operator and apply the optimistic
or pessimistic interpretation proposed by Yager in
[8], [9]. In [9] Yager defines the term “Attitudinal
Character” to refer to “orness” of the weighting vector
and so to represent the attitude of a decision maker
in a decision making problem. In this contribution,
we use this approach to compute the level of agree-
ment among the experts. So, a consensus process
may be considered optimistic when the similarity is
strengthened and pessimistic otherwise. The optimism
or pessimism degree can be controlled taking into
account the weighting vector W and its orness. An
orness(W ) > 0.5 represents an optimistic aggrega-

tion, an orness(W ) < 0.5 represents a pessimistic
aggregation and an orness(W ) = 0.5 is the neutrality.
Many approaches have been suggested for determining
the vectorW , here we have decided to provide directly
the weights vector W according to the optimism or
pessimism degree required.
Finally, the agreement is approached from three dif-
ferent points of view:

• Pairs of alternatives, where cplk measures the
agreement on the pair of alternatives (xl, xk)
(these values are the same that the consensus
matrix values),

cplk = cmlk, ∀l, k = 1, . . . , n ∧ l �= k.

• Alternatives, where cal measures the agreement
on the alternative xl,

cal =

∑n
k=1, l �=k(cplk + cpkl)

2(n− 1)
.

• Preference relation, where cr measures the global
agreement among all experts,

cr =
∑n

l=1 ca
l

n
.

2) Consensus control. In this phase the level of agree-
ment is checked. If cr is greater or equal than a
given consensus threshold γ fixed in advance, then
the consensus reaching process should end. Otherwise,
the consensus process keeps going. The consensus
threshold γ is the desired minimum consensus before
starting the selection process. In addition, the model
uses a parameter called “Maxrounds” in order to
guarantee the end of the consensus process.

3) Advice generation. In the last phase, the model
suggests how to change the experts’ preferences in
order to increase the level of agreement. To do that,
two tasks are carried out:

a) Computing the collective preference and experts’
proximity values. A preference collective Pec =
[plk

c ] is calculated by aggregating all experts’
preference relations {Pe1 , . . . ,Pem} at level of
pairs:

plk
c = ψ(plk

1 , . . . , p
lk
m)

being ψ an aggregation operator. As we said
before, in this contribution we study the behavior
of the consensus model according to different
aggregation operators (arithmetic mean, OWA
with linguistic quantifier “most” and DOWA.)
The results and their interpretation are described
in the next section.
Moreover computing Pec , in this phase the prox-
imity between preferences of the expert ei and
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the collective preference on each pair (xl, xk) is
computed as,

pplk
i = 1− | plk

i − plk
c | .

These proximity values are used to identify the
furthest experts’ preferences and to suggest the
opinion changes.

b) Direction changes. Firstly, the preferences to
be modified are chosen. We propose to
change those preferences whose level of agree-
ment is lower than the global consensus,
PREFECHANGE = {(l, k) | cplk <
cr, l, k = 1, ..., n}. Next, the furthest experts
from collective preference on the pairs (xl, xk)
with (l, k) ∈ PREFECHANGE, will be re-
quired to modify their assessments. To do that,
a proximity threshold pplk for that pair is com-
puted by aggregating all experts’ proximity:

pplk = ψ(pplk
1 , . . . , pp

lk
m).

So, each expert ei whose pplk
i < pplk should

modify the preference. It is important to high-
light that in order to maintain the coherence
of the model, the aggregation operator ψ used
to compute the collective preferences and the
proximity thresholds pplk is the same one. Once
experts’ preferences have been identified, the
opinion changes are suggested according to the
following “direction rules” [3]:

DR.1. If (plk
i − plk

c ) < 0, then the expert ei should
increase the assessment associated to the pair
of alternatives (xl, xk).

DR.2. If (plk
i − plk

c ) > 0, then the expert ei should
decrease the assessment associated to the pair
of alternatives (xl, xk).

DR.3. If (plk
i − plk

c ) = 0, then the expert ei should
not modify the assessment associated to the
pair of alternatives (xl, xk).

Note: The model only suggests the direction of the
changes but not the range, but it is easy to see that too
abrupt changes could produce a misbehavior of the model.

IV. EXAMPLE AND RESULTS

To study the effects of these aggregation operators on
consensus processes, we have analyzed the behavior of the
consensus model with different examples and in the majority
of the cases, we have obtained the same conclusions that
we present here. To clarify these assumptions, we show the
outcomes obtained in a particular case and under following
conditions:

i) Four experts participate in the consensus process with
the following reciprocal preference relations:

Pe1 =

⎛
⎜⎝

− 0.8 0.2 0.6
0.2 − 0.6 0.5
0.8 0.4 − 0.7
0.4 0.5 0.3 −

⎞
⎟⎠

Pe2 =

⎛
⎜⎝

− 0.5 0.5 0.2
0.5 − 0.2 0
0.5 0.8 − 0.1
0.8 1 0.9 −

⎞
⎟⎠

Pe3 =

⎛
⎜⎝

− 0 0.4 0.9
1 − 0.8 0.7

0.6 0.2 − 0.6
0.1 0.3 0.4 −

⎞
⎟⎠

Pe4 =

⎛
⎜⎝

− 0.4 0 0.3
0.6 − 0.9 0.8
1 0.1 − 0.4

0.7 0.2 0.6 −

⎞
⎟⎠

ii) The minimum consensus threshold γ required to end
the process is 0.8.

iii) The maximum number of rounds is 10.
iv) For the OWA“most” operator, we use the weighting

vector W = [0, 0.4, 0.5, 0.1] obtained from (4) and with
values a = 0.3 and b = 0.8 in (5).

v) According to the suggestions, the assessments will be
increased or decreased in 0.1 or -0.1 range.

A brief summary of the main results according to each
point of view is shown in the following tables:

a) Neutral consensus. We use the weighting vector Wn =
[1/6, 1/6, 1/6, 1/6, 1/6, 1/6] with orness(Wn) = 0.5,
to compute the consensus degree from the six similarity
matrices, Table I.

Table I
NEUTRAL CONSENSUS.

Round
number

Arith. mean OWA“most” DOWA

First
Consensus
degree

0,625 0,625 0,625

Number of
changes

16 13 16

Second
Consensus
degree

0,69 0,679 0,692

Number of
changes

14 7 10

Third
Consensus
degree

0,744 0,708 0,733

Number of
changes

16 8 10

Fourth
Consensus
degree

0,8 0,792 0,808

Number of
changes

End 7 End

Fifth
Consensus
degree

0,825

Number of
changes

End
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b) Optimistic consensus, with weighting vector Wo =
[0.4, 0.3, 0.1, 0.1, 0.1, 0] and orness(Wo) = 0.74, Ta-
ble II.

Table II
OPTIMISTIC CONSENSUS.

Round
number

Arith. mean OWA“most” DOWA

First
Consensus
degree

0,767 0,767 0,767

Number of
changes

12 10 12

Second
Consensus
degree

0,803 0,795 0,803

Number of
changes

End 8 End

Third
Consensus
degree

0,81

Number of
changes

End

c) Pessimistic consensus, with weighting vector Wp =
[0, 0.1, 0.1, 0.1, 0.3, 0.4] and orness(Wp) = 0.26, Ta-
ble III.

Table III
PESSIMISTIC CONSENSUS.

Round
number

Arith. mean OWA“most” DOWA

First
Consensus
degree

0,47 0,47 0,47

Number of
changes

16 13 16

Second
Consensus
degree

0,558 0,546 0,558

Number of
changes

10 7 6

Third
Consensus
degree

0,6 0,59 0,593

Number of
changes

16 8 10

Fourth
Consensus
degree

0,68 0,64 0,657

Number of
changes

12 12 6

Fifth
Consensus
degree

0.75 0,705 0.693

Number of
changes

28 8 6

Sixth
Consensus
degree

0.88 0,753 0.732

Number of
changes

End 16 12

Seventh
Consensus
degree

0,82 0.78

Number of
changes

End 8

Eight
Consensus
degree

0.83

Number of
changes

End

Analysing these data we can highlight the following
results:

• Independently of consensus scenarios, in the majority
of the cases, the best agreement evolution is reached
with the arithmetic mean operator and the worst one
with the OWA“most” operator. We could consider
DOWA returns intermediate values between both of
them.

• If we apply an optimistic scenario, the consensus is
achieved soon. Therefore this scenario is the most
suitable when a decision have to be made quickly. It
seems logical that a pessimistic scenario could imply
better consensus degrees, but we have verified this is
not true and moreover the number of changes is too
high.

• Regarding the changes suggested, all operators have
the same behavior. So, the three operators recommend
to change the same experts although with different
number of changes. These differences are due to the
different ways to compute the collective preferences
and proximity thresholds.

• Now we focus on a specific preference, for instance
the pair (x4, x2) of the neutral scenario. We have the
following initial preferences,

p42
1 = 0.5, p42

2 = 1, p42
3 = 0.3, p42

4 = 0.2.

The preferences are very different and therefore the
level of agreement is not high enough, cp42 = 0.56 <
cr = 0.625. This implies that the preferences on that
pair should be changed. The collective value according
to aggregation operators are,

arith.mean, pc42 = 0.5
OWA“most”, pc

42 = 0.4
DOWA, pc42 = 0.46

and all the operators recommend to change the ex-
pert e2. In this case we can see as the influence of
expert e2 = 1 on collective value is bigger with
arithmetic mean than with the OWA“most”, therefore
OWA“most” penalizes a little the extreme values. This
suggests us that this operator may be useful to deal
with possible manipulations of the consensus process
if some experts try to manipulate their preferences
in order to impose their particular opinions, but this
assumption would require a deeper study.

V. CONCLUSIONS

In this contribution we have studied the influence of
some aggregation operators on the consensus process. We
have applied the aggregation operators: arithmetic mean,
OWA“most” and DOWA, on a consensus reaching model
approached from three different points of view, neutral, opti-
mistic and pessimistic. Once the results have been analyzed,
we may say that the behaviour of the aggregation operators
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in each consensus scenario is very similar, although the
consensus is reached more quickly by using the arithmetic
mean. Regarding the consensus scenarios, we can use one or
other according to the necessity of reaching the agreement
quickly. As future works, we propose us to continue this
research line and to apply other aggregation operators on
the consensus model.
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