
Novel IPCA-Based Classifiers and Their Application to Spam Filtering

Alessandro Rozza
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano
Milan, Italy

rozza@dico.unimi.it

Gabriele Lombardi, Elena Casiraghi
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano
Milan, Italy

{lombardi, casiragh}@dsi.unimi.it

Abstract—This paper proposes a novel two-class classifier,
called IPCAC, based on the Isotropic Principal Component
Analysis technique; it allows to deal with training data drawn
from Mixture of Gaussian distributions, by projecting the
data on the Fisher subspace that separates the two classes.
The obtained results demonstrate that IPCAC is a promising
technique; furthermore, to cope with training datasets being
dynamically supplied, and to work with non-linearly separable
classes, two improvements of this classifier are defined: a model
merging algorithm, and a kernel version of IPCAC.
The effectiveness of the proposed methods is shown by their

application to the spam classification problem, and by the
comparison of the achieved results with those obtained by
Support Vector Machines SVM, and K-Nearest Neighbors KNN.

Keywords-Classification; Model-Merging; Kernel Methods;
Isotropic PCA

I. INTRODUCTION
In the machine-learning field, the Principal Component

Analysis (PCA) is a feature preprocessing step that is often
applied both to increase the feature discriminative power,
and to decrease the feature space dimensionality.
Nevertheless, PCA is based on the assumption that the

input features (points) are drawn from a multivariate Gaus-
sian distribution. To deal with data drawn from Mixtures
of Gaussians (MoGs), the Isotropic Principal Component
Analysis (IPCA), described in [1], projects the features on
the Fisher subspace (FS) [2] defined by them. Although
in [1] the authors did not report any experimental result, the
paper is interesting since it provides new theoretical results
that allow to efficiently estimate FS.
Exploiting these results, in our work we propose a two-

class classification algorithm, called IPCA-based classifier
(IPCAC, see Section II). As demonstrated by our experi-
ments, the proposed classification algorithm is promising,
but it suffers of some limitations: it cannot adaptively
manage training sets of high cardinality being dynamically
supplied, and it cannot deal with non-linearly separable
classes. To overcome these limitations, we have defined
two different improvements of IPCAC: the Model-Merging
IPCAC (MM-IPCAC) and the Kernel IPCAC (K-IPCAC).
MM-IPCAC (see Section III) allows to merge IPCAC

models, thus dealing with training sets of high cardinality

being dynamically supplied, and obtaining for IPCAC ad-
vantages similar to those described in [3], [4] for PCA.
K-IPCAC (see Section IV) is a kernel version of IPCAC

that allows to overcome the linear separability constraint.
Note that, although the three algorithms are two-class

classifiers, they can be generalized to the multi-class case.
To test our methods, we applied them to the TREC email

corpus [5] and to the SpamAssassin email corpus [6], with
the aim of recognizing “unsolicited bulk” [7] messages
(spam) and legitimate messages (ham). The comparison of
the achieved results with those obtained by applying well-
known classification algorithms, such as Support Vector
Machines (SVM, [8]) and K-Nearest Neighbors (KNN, [9]),
proves the efficacy of the proposed algorithms.

II. IPCA-BASED CLASSIFIER

Consider a set of clustered points P = {Pc}C
c=1 drawn

from �D, where each cluster Pc = {pci}Nc
i=1 contains Nc

points (feature vectors). In [2] it is proved that it is possible
to find a (C − 1)-dimensional linear subspace FSP , called
the Fisher subspace defined by the given point set P , that
minimizes the following discriminant function:

J(S) =
intra variance(P proj on S)

total variance

=
Ec

[
Ei

[‖projS(pci − μc)‖2
]]

Eci [‖projS(pci − μ)‖2]
where i indexes the points in each cluster, projS(·) is the
linear operator that projects a point on the subspace S, E· [·]
is the expectation operator, μ and μc are respectively the
overall mean and the c-cluster mean. Therefore, the Fisher
subspace is FSP = argminS (J(S)).
In [1] Brubaker and Vempala demonstrate that, given a

multivariate probability distribution with mean μ = 0, and
covariance matrix Σ = σI (where I is the identity matrix
and σ the standard deviation), and given a set of clustered
points P sampled from it, then the subspace spanned by
the μ1-centered cluster means {μc − μ1}C

c=2, approximates
FSP .
In the two-class classification problem, FSP is one-

dimensional and it is represented with a unit vector F

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.21

797

computed as follows:

F =
μA − μB

‖μA − μB‖ (1)

where c ∈ {A,B}, and μA and μB (μA/B ∈ �D) are the
means of the training points belonging to the two classes.
In this case, we classify an unknown test point p by pro-

jecting it on F , through the dot product (projF (p) = F ·p),
and then thresholding projF (p).
In practice, the probability distribution related to several

classification tasks is not mean-centered, and its random
variables are correlated. To solve these problems, we prepro-
cess the data by a linear (whitening) transformation1. Con-
sidering the set of training points P̂ =

⋃C
c=1 Pc = {pi}N

i=1,
the whitening matrix W is estimated as follows:
1) estimate the expectation μ̃ = N−1

∑
i pi, and the

covariance matrix Σ̃ = N−1
∑

i(pi − μ̃)(pi − μ̃)T ;
2) estimate the principal components through the covari-
ance matrix Eigen-decomposition XΛXT = Σ̃;

3) estimate the whitening matrix as W = XΛ−
1
2 XT .

Note that Λ− 1
2 can be computed by substituting the Λ

non-zero diagonal elements λi with the values λ
− 1

2
i .

The whitened training points, calculated through μ̃ and W ,
are employed to compute the class means μA and μB ; F is
then computed by means of Equation (1). Therefore, given
a new point p, it is projected on F as follows:

projF (p) = F ·W (p− μ̃) = wT (p− μ̃) (2)

where w = W T F is the vector used to simultaneously
perform the data whitening and projection.
To classify the new point p, a threshold γ must be

determined, so that if w · (p− μ̃) > γ than p is classified as
belonging to class A, otherwise it is considered as belonging
to class B. To estimate the best threshold value γ, we
maximize the number of correctly classified points, that is:

γ =

〈
argmax

{γ̄}⊆{w·(pi−μ̃)}
Score(γ̄)

〉
(3)

where the function Score(γ̄) computes the number of
correctly classified training points when γ̄ is used as thresh-
old, the argmax operator returns the set of thresholds {γ̄}
leading to the maximum value, and 〈·〉 is the mean operator.
This classifier is very simple, fast to be trained, and very

fast to be applied. Moreover, denoting with D the feature
space dimensionality, the space complexity required to store
an IPCA-based classifier is at most 2D + 1: D real values
for the estimated expectation2 μ̃ (that will be denoted with
μ in the following), D real values for the weight vector w,
and one value for the threshold γ.

1We call “white data” a set of points extracted from a multivariate
probability distribution with μ = 0, and Σ = I.
2Note that considering the equivalent thresholding function w · p >

γ + w · μ̃ � β, the space required to store μ̃ can be avoided.

The main IPCAC drawback is its linearity, in fact it can
distinguish only between linearly separable classes.

III. IPCAC MODEL MERGING
One of the benefits of using IPCAC, is the simplicity of

combining several classifiers into a single one having three
main advantages: it is more accurate than a single IPCAC;
it is simply upgradeable with dynamically supplied training
data; it is able to cope with large training sets, since each
classifier can be trained on a subset of the data.
To perform the IPCAC model merging, the follow-

ing informations must be stored for each classifier:
{F ,W , w, γ,μ,μA,μB , NA, NB}, where NA and NB are
the numbers of training feature vectors used in each class.
We call {Mm}M

m=1 the classification models to be merged,
and we call {Fm,Wm,wm, · · · } their parts. Moreover, we
consider the following quantities:

Nm = NAm + NBm, N =
∑
m

Nm

NA =
∑
m

NAm, NB =
∑
m

NBm

At first the new (merged) mean vector μ, and the (merged)
whitening matrix W , must be estimated for the whitening
operation. More precisely, to merge the whitening matrices
Wm, the corresponding covariance matrices must be cal-
culated. To this aim, we employ the Eigen-decomposition
Wm = XmΛ̂mXT

m, and we compute Σm = XmΛ̂−2
m XT

m.
The merged mean vector μ, and the merged covariance
matrix Σ, are then estimated by means of the following
generalizations of the results reported in [4]:

μ = N−1
M∑

m=1

μmNm

Σ = N−1
M∑

m=1

ΣmNm

+N−2
M∑

m=1

M∑
l=m+1

NmNl(μm − μl)(μm − μl)T

To compute the merged whitening matrix W starting from
Σ, we use the Eigen-decomposition Σ = XΛXT , and we
compute W = XΛ−

1
2 XT .

To estimate μA and μB it must be remembered that the
means μAm and μBm (m ∈ {1, . . . ,M}) are determined on
the whitened training points; therefore the merge operation
requires the inversion of the whitening process. Being the
whitening matrices Wm possibly singular, we use their
pseudo-inverses denoted by W †

m, and we merge the cluster
means as follows:

μA = N−1W
∑
m

W †
mμAmNAm

μB = N−1W
∑
m

W †
mμBmNBm

798

where NAm and NBm are the numbers of training data
points used to estimate μAm and μBm.
Given the quantities computed above, the new vector F ,

and the weight vector w, are computed as before:

F =
μA − μB

‖μA − μB‖ ; w = W T F

The last model part to be merged is the thresholding value
γ; to get it, for each classifier m we compute the point γ̂m
on FSP such that its projection on Fm generates exactly
the thresholding value γm. We get:

γm = F T
mWm(γ̂m − μm) ⇒ γmFm = Wm(γ̂m − μm)

⇒ γ̂m = γmW †
mFm + μm

The merged threshold γ is then computed by projecting the
average of the γ̂m on F , that is:

γ̂ = N−1
∑
m

γ̂mNm

γ = F ·W (γ̂ − μ) = wT (γ̂ − μ)

Note that, the obtained classification model maintains the
same space and time complexity of the original ones.

IV. KERNEL IPCAC
To relax the linear separability constraint, imposed by the

IPCAC algorithm, it is possible to exploit the kernel trick as
in the Kernel Principal Component Analysis (KPCA, [10]),
thus obtaining a Kernel Isotropic Principal Component Anal-
ysis Classifier (K-IPCAC).
The main idea is that the classes to be separated are

non-linearly separable in the original space Q = �D,
but it is possible to map the N training points pi ∈ P̂
in a higher dimensional space QΨ where the classes are
linearly separable; this is done through a non-invertible map
Ψ(·), that is Ψ(pi) ∈ QΨ. The generated points are then
used to compute the PCA in QΨ, thus obtaining a set of
N̄ ≤ N relevant principal components {xk}N̄

k=1 ⊂ QΨ;
the subspace spanned by the vectors {xk}N̄

k=1 is the KPCA
subspace where the vectors Ψ(pi) must be finally projected.
In [10] the authors demonstrate that it is possible to

compute a weight matrix A = {αik}N,N̄
i,k=1 that allows to

calculate the projection of a point Ψ(p) on the principal
components {xk}N̄

k=1. To this aim, in [10] the authors at first
assume that the mapped points Ψ(pi) are mean centered in
QΨ; in this case the following steps must be performed:
1) compute the design (Gram) matrix K = {Kik}N

i,k=1

with Kik = Ker(pi,pk), where the points {pi}N
i=1

are training vectors, and Ker(pi,pk) is the kernel
function that allows to compute the dot product of
Ψ(pi) and Ψ(pk);

2) determine the Eigen-decompositionK = ĀΛ̄ĀT , and
remove eventual zero-variance components obtaining

the new decomposition K = ÃΛ̃ÃT , where N̄
components are retained;

3) compute the weight matrix A = ÃΛ̃−
1
2 .

Having computed A, the generic point Ψ(p) can be
projected on {xk}N̄

k=1 as:

xk ·Ψ(p) =
N∑

i=1

αikΨ(pi) ·Ψ(p)

=
N∑

i=1

αikKer(pi,p) (4)

When the training points Ψ(pi) are not mean centered
in QΨ, the algorithm described above cannot be directly
applied; therefore, as shown in [10], to calculateA the mean
centered matrix K̃ must be employed instead of K. K̃ is
obtained as follows:

K̃ = K − 1NK −K1N + 1NK1N (5)

where 1N = {N−1}N
i,k=1.

Exploiting these theoretical results, we derived a method
to compute the Fisher subspace on training data projected
on the KPCA subspace. To describe our method we start by
considering a training set mean centered in QΨ, and noting
that Equation (4) can be restated in matrix form as:

{xk ·Ψ(p)}N̄
k=1 = AT {Ker(pi,p)}N

i=1 = AT Ker(p)

The first step of our method obtains the isotropic compo-
nents of each training point pi, by using as scaling factor
the inverse square root of the diagonal elements λk of Λ
(where Λ = Λ̃N−1 as shown in [10]), that is:

{λ− 1
2

k xk ·Ψ(p)}N̄
k=1 = Λ−

1
2 AT Ker(p) (6)

Next, we represent the projection of the training points
P̂ ⊂ Q on the principal components {xk}N̄

k=1 ⊂ QΨ with
a matrix PΨ obtained as follows:

PΨ = {λ− 1
2

k xk ·Ψ(pi)}N,N̄
i,k=1

= Λ−
1
2 AT K

= (Λ̃N−1)−
1
2 (ÃΛ̃−

1
2)T (ÃΛ̃ÃT)

= N
1
2 Λ̃−

1
2 Λ̃−

1
2 ÃT ÃΛ̃ÃT

= N
1
2 ÃT (7)

being ÃT Ã = I for the orthogonality of Ã. Finally, the
Fisher subspace is calculated by employing the cluster means
of the points represented by the columns of PΨ.
To relax the hypothesis about mean centering of the

training points in QΨ, we consider the projections of the
centered points {Ψ(pi)−μΨ}N

i=1, and we exploit the result
reported in Equation (5). More precisely, calling μΨ =

799

N−1
∑

i Ψ(pi) the mean of the training points mapped inQΨ, we compute the matrix PΨ as follows:

PΨ =
{

λ
− 1

2
k xk · (Ψ(pi)− μΨ)

}N,N̄

i,k=1
(8)

=

{∑
j

λ
− 1

2
k αik(Ψ(pi)− μΨ) · (Ψ(pj)− μΨ)

}N,N̄

i,k=1

=

{∑
j

λ
− 1

2
k αik (Ψ(pi) ·Ψ(pj))

}N,N̄

i,k=1

−
{∑

j

λ
− 1

2
k αik (Ψ(pi) · μΨ)

}N,N̄

i,k=1

−
{∑

j

λ
− 1

2
k αik (μΨ ·Ψ(pj))

}N,N̄

i,k=1

+

{∑
j

λ
− 1

2
k αik (μΨ · μΨ)

}N,N̄

i,k=1

= Λ−
1
2 AT (K − 1NK −K1N + 1NK1N)

= Λ−
1
2 AT K̃ = N

1
2 Λ̃−

1
2 Λ̃−

1
2 ÃT ÃΛ̃ÃT = N

1
2 ÃT

Note that K̃ = ÃΛ̃ÃT 	= K, and the result reported in
Equation (8) is the same as that reported in Equation (7) .
Assuming that the first NA column vectors PΨ|1..NA

of
PΨ belong to class A, and that the remaining column vectors
PΨ|NA+1..N belong to class B, and noting that these points
are whitened through the KPCA algorithm, it is possible to
use them for a direct Fisher subspace estimation. To this
aim, we must compute the quantities:

μAΨ = 〈Ψ(pi)− μΨ〉NA

i=1

μBΨ = 〈Ψ(pi)− μΨ〉Ni=NA+1

and their difference:

F̄ = 〈Ψ(pi)− μΨ〉NA

i=1 − 〈Ψ(pi)− μΨ〉Ni=NA+1

= PΨ|1..NA

(
N−1

A · · ·︸ ︷︷ ︸
NA times

0 · · ·︸︷︷︸
NB times

)T

−PΨ|NA+1..N

(
0 · · ·︸︷︷︸

NA times

N−1
B · · ·︸ ︷︷ ︸

NB times

)T

= PΨ

(
N−1

A · · ·︸ ︷︷ ︸
NA times

−N−1
B · · ·︸ ︷︷ ︸

NB times

)T

= N
1
2 ÃT N−1

A|B

where we have definedN−1
A|B =

(
N−1

A · · ·︸ ︷︷ ︸
NA times

−N−1
B · · ·︸ ︷︷ ︸

NB times

)T

.

The vector F̄ must be normalized; its norm is:

‖F̄ ‖ =

∥∥∥N 1
2 ÃT N−1

A|B

∥∥∥ = N
1
2
∥∥N−1

A|B
∥∥

= N
1
2

√
NA

(
N−2

A

)
+ NB

(
N−2

B

)
= N(NANB)−

1
2

thus, the Fisher subspace can be computed as follows:

F =
F̄

‖F̄ ‖ = N− 1
2 (NANB)

1
2 ÃT N−1

A|B (9)

In particular, if NA = NB we get:

F =
F̄

‖F̄ ‖ = N− 1
2 ÃT

(
1 · · ·︸︷︷︸

NA times

−1 · · ·︸ ︷︷ ︸
NB times

)T

Given a testing point p, we must compute its projection
on F ; to this aim we use Equation (6) and Equation (9):

projF (p) =
(
Λ−

1
2 AT Ker(p)

)T

(F)

=
(
Ker(p)T ÃΛ̃−

1
2 Λ̃−

1
2 N

1
2

)
(
N− 1

2 (NANB)
1
2 ÃT N−1

A|B
)

= Ker(p)T
(
(NANB)

1
2 ÃΛ̃−1ÃT N−1

A|B
)

︸ ︷︷ ︸
w

= Ker(p)T w

Note that, since the weight vector w can be precomputed at
training time, the classification algorithm is similar to that
obtained by Equation (2), that is w ·Ker(p) > γ, where the
thresholding value γ is estimated using the same algorithm
proposed for IPCAC through Equation (3).
The obtained classifier requires, for each testing point,

only N kernel function evaluations more than the IPCAC
algorithm, thus remaining very simple and efficient.

V. RESULTS
To test the proposed classification methods we applied

them on email classification to recognize spam emails from
legitimate emails. In this section we describe the framework
implemented for our tests, the experimental setting, and the
obtained results.
Our spam filter is a classification system based on email

text semantic analysis. The following tasks are performed to
achieve the message classification:
Sparse vectors construction: each email is processed to be

represented as an high dimensional, and sparse feature
vector. More precisely, the words contained in each
email are extracted and reduced to the same form by
means of standard stemming algorithms [11]; moreover,
the obtained set of words is filtered by removing
unknown terms (i.e. terms that are not listed in a
predefined ‘dictionary’3). The sparse feature vector is
then defined by the frequencies of the remaining words
in the processed email.

Sparse to dense projection: to generate an easily manip-
ulable representation, and to extract semantic infor-
mations, the sparse feature vectors are projected on

3The employed dictionary contains approximately 87000 words and
acronyms extracted from different sources.

800

a lower dimensional space. To this aim, the Term
Frequency-Inverse Document Frequency coefficients
(TF-IDF, [12]), and the Latent Semantic Analysis
technique (LSA, [13]), are applied to the sparse feature
vectors in the training set. These algorithms generate
a sparse to dense projection matrix SD that is used
to compute all the dense feature vectors processed by
the classifiers. We must highlight that sparse to dense
projection matrices computed on different training sets
allow to compute dense feature vectors of different
dimensionality and semantic.

Classification: classification is performed by applying the
chosen classifier to the obtained dense feature vectors.

A. Experiments

In order to show the effectiveness of our algorithms, we
have compared their results to those obtained by well-known
methods described in the literature, more precisely SVM and
KNN4.
The tests have been performed on two standard email sets,

that are: 12000 messages randomly extracted from the TREC
2005 corpus [5] (6000 ham, and 6000 spam), and 3600
messages randomly selected from the SpamAssassin corpus
(1800 ham, and 1800 spam) [6]. Each database has been
randomly halved, thus obtaining Dataset1 and Dataset2,
and the following two experiments have been executed:

Experiment 1: in this experiment we tested the IPCAC,
K-IPCAC, SVM, and KNN classifiers by performing 4-
fold cross validation on Dataset1 and we averaged the
evaluation measures.

Experiment 2: this experiment has been performed both to
test the robustness of all the classifiers with respect
to input vectors generated through different sparse
to dense projection matrices, and to compare the
MM-IPCAC classifier with the other techniques. To this
aim the following steps were performed: a sparse to
dense projection matrix ˆSD was calculated using half
of Dataset1; the matrix ˆSD was employed to process
the second part of Dataset1; the obtained set of
dense vectors was randomly split into four overlapped
subsets that were used to train four IPCAC, K-IPCAC,
SVM, and KNN models. Next, the MM-IPCAC technique
was applied to merge the four IPCAC classifiers. All
the trained classifiers were then tested on the feature
vectors obtained by processing Dataset2 with ˆSD.
The performance of the four IPCAC, K-IPCAC, SVM,
and KNN classifiers were averaged to obtain their final
result.

4For each classifier, we determined the best configuration parameters
by executing a tuning phase on a smaller data-set, that was automatically
generated through random message selection and K-folding.

B. Obtained Results
We executed our tests using the following common in-

dexes as comparison parameters [14]:

Accuracy =
100 · (nL→L + nS→S)

nL→L + nL→S + nS→L + nS→S

Recallspam =
100 · nS→S

nS→L + nS→S

Precisionspam =
100 · nS→S

nL→S + nS→S

where nL→L and nS→S are the correctly classified le-
gitimate and spam messages respectively, while nL→S and
nS→L are the misclassified legitimate and spam messages
respectively.

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 95.499 (0.759) 95.922 95.028
IPCAC 96.817 (0.279) 96.250 97.430
SVM 97.116 (0.213) 96.234 98.057

K-IPCAC 97.566 (0.139) 96.535 98.548

Exp2

KNN 95.449 95.113 95.927
IPCAC 95.05 93.901 96.374
SVM 97.001 95.958 98.133

K-IPCAC 96.917 95.447 98.533
MM-IPCAC 98.350 97.387 99.367

Table I
EXPERIMENTAL RESULTS ON THE EMAILS BELONGING TO TREC

CORPUS.

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 96.278 (0.379) 96.773 95.777
IPCAC 97.444 (1.002) 97.608 97.333
SVM 98.444 (0.602) 98.148 98.778

K-IPCAC 98.889 (0.181) 98.569 99.222

Exp2

KNN 91.222 96.932 85.111
IPCAC 90.167 93.280 86.667
SVM 93.611 96.444 90.556

K-IPCAC 93.222 94.209 92.111
MM-IPCAC 98.222 98.329 98.111

Table II
EXPERIMENTAL RESULTS ON THE EMAILS BELONGING TO

SPAMASSASSIN CORPUS.

Results reported in Tables I and II are commented below:
Experiment 1: on both corpuses K-IPCAC outperforms

the other classifiers, thus proving that it is the best
performing classifier when a single training set is
available. Note that the results achieved by IPCAC and
SVM are comparable.

Experiment 2: on both corpuses the results show that our
MM-IPCAC technique is promising, since it outper-
forms all the other algorithms.

801

It is important to underline that all the classifiers, except
MM-IPCAC, obtain low accuracy when Experiment 2 is
run on the SpamAssassin corpus; this is due to the low
cardinality of the subset of Dataset1 used to train ˆSD,
producing a loss of informations, relevant for the classifica-
tion task. Note that, on the TREC corpus, the best accuracy
over both the experiments is achieved by the MM-IPCAC
algorithm; instead, on the SpamAssassin corpus K-IPCAC
obtains the best results, while MM-IPCAC obtains anyway
a good performance. Moreover, when Experiment 1 is run
on both the corpus, K-IPCAC seams to be the most reliable
classifier since it achieves the smallest standard deviation of
the accuracy parameter.
These experiments confirm the effectiveness of the pro-

posed algorithms.

VI. CONCLUSION AND FUTURE WORK

In this work we defined an IPCA-based classifier
(IPCAC), and we applied it to the spam filtering problem.
Although promising results were obtained, the proposed
classifier cannot manage training datasets being dynamically
supplied, and it is based on the assumption that the classes
are linearly separable. To overcome these weaknesses we
derived two improvements, demonstrating the possibility
to merge linear IPCAC models, through the MM-IPCAC
technique, and defining a kernel version of IPCAC called
K-IPCAC.
The promising results achieved by the proposed classifi-

cation algorithms, and their comparison with those obtained
by well known classification methods, suggest that our
techniques can be successfully applied as a basis for more
complex learning algorithms.
The IPCAC, MM-IPCAC, and K-IPCAC algorithms are

very efficient, and their models are very compact. More
precisely, their space and time computational complexity
is O(D) (IPCAC, MM-IPCAC) and O(DN) (K-IPCAC),
whereD andN are the space dimensionality and the number
of training samples respectively, as reported in Section II and
Section IV.
Future works will aim to generalize our algorithms to the

C-class classification problem. This could be the starting
point to test the effectiveness of our techniques on other
classification issues. Moreover, we plan to develop an ef-
ficient K-IPCAC merging algorithm, that would be simul-
taneously favored by the advantages of both the K-IPCAC
and MM-IPCAC methods.

REFERENCES

[1] S. C. Brubaker and S. Vempala, “Isotropic pca and affine-
invariant clustering,” CoRR, vol. abs/0804.3575, 2008.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifica-
tion. Wiley-Interscience Publication, 2000.

[3] L. Liu, Y. Wang, Q. Wang, and T. Tan, “Fast principal
component analysis using eigenspace merging,” in Image
Processing, 2007. ICIP 2007. IEEE International Conference
on, vol. 6, 16 2007-Oct. 19 2007, pp. VI –457–VI –460.

[4] P. Hall, D. Marshall, and R. Martin, “Merging and splitting
eigenspace models,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, p. 2000, 1998.

[5] G. V. Cormack and T. R. Lynam, “Spam corpus creation for
trec,” in CEAS, 2005.

[6] “Public spamassassin corpus (download page),” 2002-2005,
http://spamassassin.apache.org/publiccorpus/.

[7] I. Androutsopoulos, J. Koutsias, K. V. Cb, and C. D. Spy-
ropoulos, “An experimental comparison of naive bayesian
and keyword-based anti-spam filtering with personal e-mail
messages,” in In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in
information retrieval. ACM Press, 2000, pp. 160–167.

[8] H. Drucker, S. Member, D. Wu, S. Member, and V. N. Vapnik,
“Support vector machines for spam categorization,” IEEE
Transactions on Neural Networks, vol. 10, pp. 1048–1054,
1999.

[9] B. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. IEEE Computer Soc. Press, 1991.

[10] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear com-
ponent analysis as a kernel eigenvalue problem,” Neural
Comput., vol. 10, no. 5, pp. 1299–1319, 1998.

[11] J. B. Lovins, “Development of a stemming algorithm.” Mas-
sachusetts Inst of Tech Cambridge Electronic Systems Lab,
June 1968.

[12] E. Blanzieri and A. Bryl, “A survey of learning-based tech-
niques of email spam filtering.” DIT-06-056, January 2008,
university of Trento.

[13] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction
to latent semantic analysis,” Discourse Processes, pp. 259–
284, 1998.

[14] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras,
and C. D. Spyropoulos, “An evaluation of naive bayesian anti-
spam filtering,” CoRR, 2000.

802

