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Abstract

Hydrostatic transmissions, also called hydrostatic gears,
have been widely used in mobile working machines and
off-road vehicles such as construction and agricultural ma-
chines. This kind of transmission offers important ad-
vantages like continuously variable transmission with high
power density, maximum tractive force at low speeds and
reversing without changing gear. The automatic electronic
control of hydrostatic transmissions, which depend on a
number of measurable values, has become more common
in industrial practice. To ensure the reliability and safety
at least a two-channel redundant system for the measuring
channels is required.
In this paper, a general model-based approach using a
Takagi-Sugeno (T-S) fuzzy observer for analytical redun-
dancy of the oil pressure measuring process in hydrostatic
transmissions is developed. It has been shown by experi-
mental results that this approach can be used to estimate
the pressure values under varying load conditions and dif-
ferent driving situations.

1. Introduction

Off-road vehicles, special construction and agricultural

machinery are characterized by their mobility in different

terrains and maximum performance under arbitrary load

conditions. To enable the mobility of off-road vehicles the

drive train of those machinery requires a continuously vari-

ation of the transmission ratio without interruption of trac-

tive forces, high tractive forces at low speed and fast re-

versing operation. Drive trains with automatic controlled

hydrostatic transmissions fulfil these demands, which are

used more and more for mobile applications. Its usage al-

lows a compact vehicle design, based on the possibility of a

flexible arrangement of the transmission components.

The control system of hydrostatic transmissions depends on

a number of measurable values such as the speeds of en-

gine and hydrostatic motor, displacement of the hydrostatic

pump and motor, different oil pressures in the closed cir-

cuit, and the position of the drive pedal. In modern mo-

bile working machines, it is standard practice that the en-

tire control of hydrostatic components, including safety-

relevant functions such as traction force control or hydro-

static braking, is carried out by programmable electronic

control units (ECUs) to an increasing extent. To ensure the

system integrity of these safety-relevant functions, at least a

two-channel redundant system for the measuring channels

is required [1].

The main disadvantages of full redundant systems in stan-

dard applications are increasing costs and complexity with-

out an increase of functionality of the working machine and

finally for the customer. Mathemetical models of hydro-

static transmissions reduce the need for measuring devices.

In its simplest form this implies the use of a mathematical

model running in real-time with the plant and driven by the

same input signal as the plant. An extension of this is the

observer-based approach involving feedback of the differ-

ences between the actual measured and calculated outputs

[9].

Due to the nonlinear dynamics of the pressure evolution and

the dependence on variable diesel engine speed a linear ob-

server will not be able to reconstruct the oil pressure mea-

suring process. A model-based approach using a Takagi-

Sugeno (T-S) fuzzy observer for analytical redundancy is

developed on the basis of this fact. It is shown by simula-

tion studies and experimental results that this approach can

be used to estimate the pressure values under varying load

conditions.

A number of investigations on modeling hydrostatic trans-

missions with a variable displacement pump and a fixed dis-

placement motor have been made: Firstly, in the early 80’s

Rydberg [10] presented a nonlinear simulation model con-
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sidering leakage flow losses. Research projects in the 90’s

such as [5], [11], used time-variable linear models for adap-

tive control concepts. Wochnik [16] developed a nonlinear

state space model including nonlinear dynamics of the dis-

placement unit of the pump and the main hydraulic circuit.

In order to investigate the steady state and dynamic char-

acteristics, Huhtala [3] developed a nonlinear model with

steady state loss models of both displacement machines, a
variable displacement pump and motor. He uses command

generators to determine the desired set values of the trans-

mission input speed and the vehicle speed.

The concept of T-S fuzzy observer design in combination

with state feedback controller by using Linear Matrix In-

equalities (LMI) approach is considered for example in [7],

[17], [13] and [4]. But, up to now just a few applications

use this novel design approach in the context of analytical

redundancy and fault tolerant control of nonlinear plants,

refer to [6] and [8].

This paper is organized as follows: Firstly, in Section 2

a nonlinear state-space model of hydrostatic transmissions

with a variable displacement pump and a variable displace-

ment motor based on [12] is shortly presented. The nonlin-

ear state-space system is transformed into a Takagi-Sugeno

fuzzy system whereby the nonlinear terms are transferred

into weighting functions using the sector nonlinearity ap-

proach [15]. After this, in Section 3, a reduced-order T-S

observer design using LMI-based conditions is considered

in detail. Finally, it has been shown by experimental results

that, first, the proposed T-S model description of the plant

is capable to represent the effective nonlinearities and, sec-

ond, the designed T-S observer can be used for analytical

redundancy under varying load conditions.

2. Modeling of Hydrostatic Transmissions

2.1. Description and nonlinear physical
model

Figure 1 shows the configuration of a typical hydrostatic

transmission. The combustion engine is connected to a hy-

draulic displacement pump (axial piston type), which is op-

erated in a closed oil circuit with a hydraulic displacement

motor. The motor is connected to a mechanical gear, which

drives the axle of the vehicle.

The pressure level between the pump and the motor varies

for each individual hose (pipe), depending on the operat-

ing range such as acceleration, near-constant speed or de-

celeration and parameters of the vehicle. The output speed

of the hydrostatic transmission in Figure 1 is controlled by

an electronic control unit (ECU) as follows: The current

drive pedal position and selection of driving direction is

converted by the ECU into electrical signals for controlling

the electrohydraulic displacement elements. The displace-

ment elements can be adjusted independently. Due to the

displacement variation the desired transmission gear ratio

can be adjusted, the volume flow and the load pressure in

the closed oil circuit change and so do speed and torque of

the hydromotor.

The hydrostatic transmission dynamics can be represented

by a nonlinear fourth order state-space model [12] :

ẋ1 = − 1
TuP

x1 +
kP
TuP

u1

ẋ2 = − 1
TuM

x2 +
kM
TuM

u2

ẋ3 =
10
CH

(
ṼmaxP x1 ωP − ṼmaxM x2 x4 − kleak x3

)

ẋ4 =
i2gi

2
aηgηmhṼmaxP 10−4x2 x3 − d̃vci

2
ax4 −MLw igia

Jv
(1)

with the state vector

x = [x1 , x2 , x3 , x4 ]T := [ α̃P , α̃M ,Δp , ωM ]T (2)

and the input vector

u = [u1 , u2 ]T := [uP , uM ]T (3)

The symbols are explained in Table 1.

Table 1. Vehicle driveline parameters
Symbol Description Value Unit
x1 hydropump angle ∈ {−1, 1} -

x2 hydromotor angle ∈ {0, 1} -

x3 pressure difference - [N/m2]

x4 hydromotor speed - [rad/s]

u1 control signal hydropump ∈ {−1, 1} -

u2 control signal hydromotor ∈ {0, 1} -

TuP time constant hydropump 0.13 [s]

TuM time constant hydromotor 0.22 [s]

kP static gain of pump displacement 241.67 -

kM static gain of motor displacement 283.33 -

kleak leakage coefficient 0.14 [mm3/sbar]

CH hydraulic capacitance 1840.8 [mm5/N]

ṼmaxP max. displacement volume hydrop. 145 [cm3]

ṼmaxM max. displacement volume hydrom. 170 [cm3]

ωP hydropump speed - [rad/s]

Jv moment of inertia vehicle 16512 [Nms2]

ig transmission ratio -6.12 -

ia axle ratio -23.3 -

ηg gearbox efficiency 0.98 -

ηmh hydromechanical efficiency 0.697 -

d̃vc viscous damping coefficient 0.33 [N m s]

MLw external load torque on wheel - [Nm]
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Figure 1. Electro-hydraulic hydrostatic transmission in off-road vehicles

2.2. Model in T-S Fuzzy System Form

The accurate transformation of nonlinear differential

equation systems into a T-S fuzzy system in standard form

ẋ =
Nr∑
i=1

hi(z)Ai x +
Nr∑
i=1

hi(z)Bi u (4)

y =
Nr∑
i=1

hi(z)Ci x (5)

with z ∈ R
l is given if the nonlinearities can be replaced by

sector nonlinearities. However this transformation is not bi-

jective. This means that different T-S fuzzy systems can be

accurately derived from a given nonlinear differential equa-

tion system. This degree of freedom will be used to meet an

essential requirement for the observer synthesis. Yoneyama

et al. [17] showed that the separation principle holds if all

variables in z can be measured. Otherwise a separate ob-
server design based on LMI-methods is not realizable using

the following design approach. Based on this requirement a

T-S fuzzy system for reconstructing the pressure difference

(⇒ x3 �= zj for j = 1, . . . , l) is carried out in two steps.
First step: Because of linear inputs u in (1) the nonlineari-
ties can be expressed by

A(x2, ωP ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
TuP

0 0 0
0 − 1

TuM
0 0

0 1
10ṼmaxP ωP

CH
0 −10kleak

CH

−10ṼmaxM x2
CH

0 0 γx2 − d̃vc
Jv

i2a

⎤
⎥⎥⎥⎥⎥⎥⎦
(6)

with

γ =
1
Jv

i2g i
2
a ηg ηmhṼmaxP 10−4 (7)

The variables ωP and x2 in (6) are bounded. Therefore they
can each be replaced by a linear combination of the sector

functions wj1 und wj2:

zj = fj(zj) = f
j

f̄j − zj
f̄j − f

j︸ ︷︷ ︸
=wj1(zj)

+ f̄j
zj − f

j

f̄j − f
j︸ ︷︷ ︸

=wj2(zj)

(8)

with f
j

:= min[z] and f̄j := max[z] .

As a result, the following system matrix is given

A(z1, z2) =

⎡
⎢⎢⎢⎢⎣

− 1
TuP

0 0 0
0 − 1

TuM
0 0

10ṼmaxP f2(z2)

CH
0 −10kleak

CH

−10ṼmaxM f1(z1)

CH

0 0 γf1(z1) − d̃vc
Jv
i2a

⎤
⎥⎥⎥⎥⎦ .

(9)

Second step: Now the variables in (9) can be extracted

and concentrated into the so-called membership functions

hi(z), i = 1, . . . , Nr. They result from the combination of

l = 2 linear combinations of the sector nonlinearities with
Nr = 2l = 4.

{w11, w12} × {w21, w22}
The membership functions can be calculated from the prod-

uct of the sector functions wjk(zj) for k = 1, 2, see [12]:

h1(z1, z2) = w11(z1) · w21(z2) , . . . ,
h4(z1, z2) = w12(z1) · w22(z2) .
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All time invariant system matrices can be described in a

compact form:

Ai =

⎡
⎢⎢⎢⎢⎣

− 1
TuP

0 0 0
0 − 1

TuM
0 0

10ṼmaxP ∗2
CH

0 −10kleak
CH

−10ṼmaxM ∗1
CH

0 0 γ∗1 − d̃vc
Jv

i2a

⎤
⎥⎥⎥⎥⎦ (10)

where ∗1 ∈ [x2, x̄2] und ∗2 ∈ [ωP , ω̄P ].
By disregarding external loads MLw this leads to the fol-

lowing T-S-fuzzy model for the observer design

ẋ =
4∑
i=1

hi(z1, z2)Ai x + Bu (11)

with z1 := x2, z2 := ωP , the input matrix

B =

⎡
⎢⎢⎢⎣

kP
TuP

0
0 kM

TuM
0 0
0 0

⎤
⎥⎥⎥⎦ (12)

and the output equation

y = C x with C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (13)

Remark: The T-S fuzzy system (11) fulfills the requirement

of measurable variables in z. Therefore the system is suit-
able for an observer based monitoring of the pressure dif-

ference x3.

3. Takagi-Sugeno Fuzzy Observer Design

3.1. Reduced-order observer structure

For a nonlinear dynamic system described by the T-S

fuzzy model (11) a fuzzy observer can be designed to re-

construct the full state vector. In the considered applica-

tion we take the advantages of the fact that just one state,

the pressure difference, have to be estimated. Hence the

order of the observer is reduced by the number of sensed

states respectively outputs. This enables, in the following,

a reduction of the LMI-based design problem and improved

the robustness of the estimated pressure difference against

load variation. The state vector is partitioned into two parts:

xa = [ α̃P , α̃M , ωM ]T , which is directly measurable, and
xb = Δp, which represents the remaining state variable
that has to be estimated. The system matrices of each linear

model are accordingly partitioned:[
ẋa
ẋb

]
=

[
Aiaa Aiab

Aiba Aibb

] [
xa
xb

]
+

[
Bia

Bib

]
u (14)

y =
[
E(n−p)×(n−p) 0(n−p)×p

] [
xa
xb

]
(15)

with n = 4 and p = 1 wherein E is the identity matrix

with ones on the main diagonal and zeros elsewhere. Based

on this, the well known reduced-order observer structure [2]

for linear time invariant systems can be written as

ẋc = (Aibb −LiAiab) x̂b
+ (Aiba −LiAiaa)y

+ (Bib −LiBia)u
(16)

x̂b = xc +Li y (17)

Remark: To get around the difficult of derivative of

measurement in reduced-order observer the new state xc is
defined.

Using the idea of Parallel Distributed Compensation (PDC)

scheme [14] for nonlinear systems represented by T-S fuzzy

models, the nonlinear observer dynamics will then be a

weighted sum of the individual linear observers (16)

ẋc =
Nr∑
i=1

hi(z) (Aibb −LiAiab) x̂b

+
Nr∑
i=1

hi(z) (Aiba −LiAiaa)y

+
Nr∑
i=1

hi(z) (Bib −LiBia)u

(18)

x̂b = xc +
Nr∑
i=1

hi(z)Li y (19)

The weighting functions hi(z) with z = [ α̃M , ωP ]T in
(18) and the number of linear models with Nr = 4 are the
same as in the original plant model (11).

3.2. LMI-based observer design

For the following T-S fuzzy observer design, it is as-

sumed that the fuzzy system model is locally observable,

i.e. all (Aibb ,Aiab), i = 1, . . . , Nr pairs are observable. If

the estimation error is defined by

eb = xb − x̂b (20)

the dynamics of the error are given by substracting

ẋb =
Nr∑
i=1

hi(z) [Aibb xb +Aiba xa +Bib u ] (21)
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from (18) with (19) to get

ėb =
Nr∑
i=1

Nr∑
j=1

hi(z)hj(z) [Aibb −LiAjab ]eb (22)

If the error dynamics (22) is stable, the state estimation

will converge asymptotically to the real state. An observer

with converging state estimation can also be referred to as

a stable observer. The stability of the above error dynamics

is verified by the following theorem:

Theorem 1: The fuzzy observer (18), (19) is globally asymp-
totically stable if a common positive definite matrix P > 0
exists such that

AT
ibb
P + PAibb −AT

jab
NT

i −N iAjab + 4αP

+AT
jbb
P + PAjbb −AT

iab
NT

j −N jAiab < 0 ,

AT
ibb
P + PAibb −AT

iab
NT

i −N iAiab + 2αP < 0
(23)

for i, j = 1, ..., Nr whereN i = P Li.

The matrices P andN i can be found by using convex op-

timization techniques if the Linear Matrix Inequalities (23)

have a feasible solution for a given decay rate α ∈ R
+.

The i = 1, . . . , Nr observer gains can then be obtained

as Li = P−1N i. The proof of this theorem follows di-

rectly from the proof of the full T-S observer theorem in

[15]. For this particular application based on the T-S fuzzy

model (11), the driveline parameters (Table 1) and a desired

decay rate α = 2 the following solution is obtained as

P = 2.6282 · 10−2

N1 =
[

0 0 − 9.0124 · 10−5
]
,

N2 =
[

0 0 − 2.1937 · 10−6
]
,

N3 =
[

0 0 − 4.5062 · 10−5
]
,

N4 =
[

0 0 + 5.7926 · 10−6
]
,

L1 =
[

0 0 − 3.4291 · 10−3
]
,

L2 =
[

0 0 − 8.3468 · 10−5
]
,

L3 =
[

0 0 − 1.7145 · 10−3
]
,

L4 =
[

0 0 + 2.2040 · 10−4
]
.

4. Experimental validation

The designed observer is validated by means of a com-

parsion between a measured (x3) and the observed pressure

0 20 40 60 80 100 120
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−400

−200

0

200

400

600

t [s]

p 
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ar
]

measured pressure difference 
estimated pressure difference 

Figure 2. Measured and estimated pressure
difference using the T-S observer (18), (19)

difference (x̂3). The measurement was recorded during a
test run with a standard wheel loader on a test track. The

input signals of the observer law (18), (19) with y = xa =
[ x1 , x2 , x4 ]T are supplied by the measured hydropump
angle x1, hydromotor angle x2 and the hydromotor speed
x4. The pressure difference signals are illustrated in Fig-
ure 2 and correspond to a driving cycle with acceleration

and deceleration periods showed in Figure 4. The measured

pressure difference varies in a full operation range of a for-

ward vehicle motion. The plot of Figure 2 shows that the

observer is able to reconstruct the pressure difference sig-

nal for the purpose of analytical redundancy. As a second

proof of evidence the performance of the T-S fuzzy observer

is compared with a linear observer based on just one linear

state-space model (i = 3) of the T-S fuzzy model. This
submodel has the highest membership value e.g. between

t = 26 . . . 34 s and is therefore the best linearized model
for this time span. The results are illustrated in Figure 3. It

is obvious, that the linear observer is unsuitable due to the

strong nonlinear dynamics of hydrostatic transmissions.

5. Conclusion and Outlook

Amodel-based analytical redundancy concept for the re-

construction of pressure difference signals in hydrostatic

transmissions was presented in this paper. Based on a T-S

fuzzy model description of the nonlinear plant a reduced-

order T-S observer was designed by solving an appropriate

LMI condition. It was shown e.g. in [15] that those de-

signed observers guarantee a global asymptotically stable

error dynamics.
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Figure 3. Measured and estimated pressure
difference using a linear observer

The reduced-order T-S fuzzy observer was experimentally

validated by means of a comparison between the measured

and the reconstructed pressure difference signal. The pre-

sented figures clearly show that the observer is able to re-

construct the pressure difference signal for the purpose of

analytical redundancy. This is the essential step for de-

veloping a model-based fault diagnosis system for mobile

working machines. In a next step we will design further ob-

servers for monitoring the angles of the hydropump and the

hydromotor. Based on this a dedicated observer scheme [9]

for a sensor fault diagnosis and identification system (FDI)

should be designed and tested on a real test vehicle.

References

[1] IEC 61508, Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems. 2001.

[2] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feed-
back Control of Dynamic Systems. Addision-Wesley Pub-
lishing Company, second edition, 1991.

[3] K. Huhtala. Modelling of Hydrostatic Transmissions -
Steady State, Linear and Nonlinear Models. PhD thesis,

Tampere, Finland, 1996.

[4] P. Korba, R. Babuska, H. B. Verbruggen, and P. M. Frank.

Fuzzy Gain Scheduling: Controller and Observer Design

based on LyapunovMethod and Convex Optimization. IEEE
Transaction on Fuzzy Systems, 11(3):285–298, 2003.

[5] J. Lennevi, K. E. Rydberg, and J. O. Palmberg. Microproces-

sor control of hydrostatic transmissions adapting to driving

conditions. In 11th Aachener Fluidtechnisches Kolloqium,
Aachen, Germany, 1994.

[6] C. J. Lopez-Toribio, R. J. Patton, and S. Daley. Takagi-

Sugeno Fuzzy-Tolerant Control of an Induction Motor. Neu-
ral Computing and Application, 9:19–28, 2000.

0 20 40 60 80 100 120
−2

0

2

4

6

8

10

12

14

t [s]

v 
[k

m
/h

]

measured velocity
simulated velocity

Figure 4. Measured and simulated velocity

[7] X. J. Ma, Z. Q. Sun, and Y. Y. He. Analysis and design of

fuzzy controller and fuzzy observer. IEEE Transactions on
Fuzzy Systems, 6(1):41–50, 1998.

[8] M. Oudghiri, M. Chadli, and A. E. Hajjaji. Control and Sen-

sor Fault-Tolerance of Vehicle Lateral Dynamics. In Pro-
ceedings of the 17th World Congress IFAC, pages 123–128,
2008.

[9] R. J. Patton, P. M. Frank, and R. N. Clark. Fault diagnosis
in dynamics systems theory and application. Prentice-Hall
International, UK, 1989.

[10] K. E. Rydberg. On performance optimization and digi-
tal control of hydrostatic drives for vehicle applications.
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