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Abstract 

The distribution of petroleum products through 
pipeline networks is an important problem that arises 
in production planning of refineries. It consists in 
determining what will be done in each production 
stage given a time horizon, concerning the distribution 
of products from source nodes to demand nodes, 
passing through intermediate nodes. Constraints 
concerning storage limits, delivering time, sources 
availability, among others, have to be satisfied. This 
problem can be viewed as a bi-objective problem that 
aims at minimizing time and the successive 
transmission of different products in the same pipe. In 
this paper, a discrete Particle Swarm Optimization 
algorithm is applied to this problem. The results 
obtained with the proposed approach are compared 
with the results obtained by two Genetic Algorithms 
proposed previously for the problem. 

1. Introduction 

Usually, the main purpose of production planning is 
to coordinate operations such that profitability is 
maximized or costs are minimized. The production in 
refineries is a dynamic process and often new scenarios 
can impact the programming of production activities. A 
number of factors have to be considered in the 
production planning of refineries such as changes in the 
demand of products, product specifications, delivery 
dates, quality and quantity of raw materials, availability 
and performance of the processing units, among others. 
Integrated strategies to improve planning in order to 
program the production activities need to be 
considered. In this context, a distribution network is 
composed of oil refineries, terminals and parks for 
storage that are interconnected by polyducts. A 
polyduct is a pipeline that transports different types of 
oil products. If the polyduct is long enough then 
different types of products can occupy different parts of 
it during transportation. In order to address the problem 

under a discrete optimization approach, some 
researchers consider that products are transported 
through the polyducts in units of volume called 
packages or batches.  

The consecutive transmission of two different 
products may cause contamination of both fluids. In 
some cases, the contaminated fluids have to return to 
the refinery to be reprocessed. It increases the 
production costs and causes delay in the delivery. The 
consecutive transmission of two different products is 
called fragmentation.  

The problem consists in scheduling the sending of 
packages from source nodes to terminals satisfying 
constraints related to production, demand, time and 
storage capacity. Some researchers consider the 
problem with the following two objectives: to minimize 
the time needed to for transporting the set of packages 
through the network and to minimize fragmentation. 
This approach is also adopted in this paper that 
introduces a Particle Swarm Optimization algorithm for 
the investigated problem.  

Particle Swarm Optimization (PSO) is a technique 
that has shown good results in industrial applications. 
PSO algorithms were first introduced in the context of 
continuous optimization problems and research in this 
area has significantly grown in the last few years with a 
number of successful applications concerning single 
and multi-objective optimization problems [2], [7].
Motivated by the success of PSO algorithms, 
researchers that deal with combinatorial optimization 
problems have investigated ways to adapt the original 
proposal to the discrete case. Although, a number of 
applications of PSO to discrete problems do exist, these 
algorithms are not as effective as they are when applied 
to continuous problems, once they are easily trapped 
into local optima. To overcome the efficiency 
problems, the researchers have been focused on new 
PSO versions and hybridization with other techniques. 
The algorithm presented in this paper is based on a
PSO version for discrete problems presented also for a 
biobjective optimization problem [6]. The results 

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.185

767



obtained with the proposed approach are compared 
with the results obtained by two Genetic Algorithms 
proposed previously for the problem. 

The paper is organized as follows. The model of the 
distribution network is addressed in Section 2. The 
proposed algorithm is described in Section 3. A 
computational experiment is reported in Section 4. 
Finally, some concluding remarks are presented in 
Section 5. 

2. Model of the Distribution Network 

This paper adopts the model presented by De la 
Cruz et al. [3], where a simplified version of an actual 
network is presented. The network is composed of 
nodes that are divided in three categories: sources 
(refineries), terminals (clients) and intermediary nodes 
that represent storage tanks. An example is shown in 
Fig. 1, where refineries are represented by nodes N1
and N2, N3 and N4 represent intermediary nodes and the 
points of destination or terminals are represented by 
nodes N5, N6 and N7. The network has 9 polyducts that 
are represented by 10 arrows. The directions of the 
arrows show the flow direction. Arrows D5 and D8 
refer to the same polyduct that allows flow in two 
directions.  

Different products are delivered in this network. The 
model considers that the number of storage tanks at 
each node corresponds to the number of products that 
intermediary or terminal nodes are allowed to receive. 
For example, if four different types of products can be 
received by a node, then there are four different tanks, 
one for each product, at this node. Some simplifications 
of a real network are adopted in this paper. It is 
assumed that all polyducts have the same diameter and 
characteristics. The same flow rate is considered for all 
products that occupy the same volume in the polyducts. 

The products are delivered as discrete packages. A 
package represents a minimum volume that is 
transported during a unit time. The number of packages 
is utilized to refer to the tanks capacity and the demand. 
Numbers in links joining two nodes give the normalized 
distance in terms of units of time needed by a given 
packet to cover the whole pipe. Table 1 shows the units 
of time that the package takes to cross each connection 
shown in Fig. 1. For instance, the connection D7 in the 
polyduct linking nodes N3 and N6 means that one 
packet spends two periods of unit time to go from node 
N3 to node N6, or that the polyduct may contain two 
packets.  

Given a planning horizon, divided in time units, a 
solution for this problem consists in defining which 
product is being sent by each source or intermediary 

node at each instant. Under the point of view of the 
connections, a solution can be represented by the 
product being sent at each time instant in each 
polyduct. The following constraints have to be 
satisfied. A minimal transmission of products is 
required in order to avoid paralyzing the production in 
the source nodes or exceed the storage tanks capacity. 
The demands of each terminal node have to be satisfied 
(and not exceeded). Bidirectional connections are not 
allowed to send flow in two different directions at the 
same time. 

Figure 1. Example of a distribution network 

Table 1. Units of time necessary for one 
package to traverse each connection 

Connection D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Distance 1 3 3 2 3 4 2 3 3 2

The model is subjected to the following constraints: 
1. The minimum production at each source node must 
be met. A minimum number of packages have to be
sent to prevent the stoppage of production at the source 
nodes. 
2. The demand of each destination node must be met. 
3. There should be no collisions of packages in 
bidirectional connections. 
4. The maximal capacity of each tank cannot be 
violated. 
5. The packages must be delivered at the destination 
nodes at due times. 

Let us consider the network of Fig. 1 and the 
transmission of four different products {1,2,3,4}. Node 
N1 is the source of products 1 and 2, and node N2 is the 
source of products 3 and 4. The remaining nodes can 
receive the four products. Table 2 shows one solution 
for the problem presented in Fig. 1 with a planning 
horizon of 10 time units. A 0 in line i and column j
indicates that no product is being sent in connection Di
at time j.
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Table 2. One solution for network of fig. 1 
Polyduct Time

1 2 3 4 5 6 7 8 9 10
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10

1
0
0
3
2
3
3
0
2
3

0
1
0
0
3
3
1
0
2
3

2
2
3
4
0
4
1
0
4
4

1
1
3
0
0
4
1
0
3
0

2
1
3
3
2
2
3
0
3
2

0
1
0
4
0
2
3
0
4
1

2
2
4
0
3
1
1
0
0
1

1
2
4
3
0
2
1
0
3
2

2
1
3
3
0
1
2
0
3
4

2
1
3
0
0
2
2
3
0
3

Evolutionary algorithms were proposed for this 
problem by De la Cruz et al [3], [4] and Westphal [10]. 
De la Cruz et al. [3] consider four objectives to be 
optimized: two for time and two for fragmentation. 
They apply a multiobjective genetic algorithm to a 
network with 12 nodes and 21 connections, one of them 
is bidirectional. De la Cruz et al. [4] develop a 
multiobjective genetic algorithm, a Mathematical 
Programming algorithm and a hybrid algorithm where 
the solutions of the latter algorithm are used in the 
genetic algorithm. They apply their algorithms to one 
network with 7 nodes and 7 connections, one of them 
bidirectional. Westphal [10] presents a multiobjective 
genetic algorithm with elitism and niches.    

The results of the multiobjective genetic algorithms 
proposed by De la Cruz et al. [3] and Westphal [10] are 
compared with the results of the approach proposed in 
this paper. The algorithm of De la Cruz et al. [3] by us 
and the other genetic algorithm was kindly made 
available by its author. 

3. PSO for the Oil Products Distribution 
Problem 

In the classical mono-objective PSO algorithms, 
each particle has a position and a velocity, knows its 
own position and the value associated with it, knows 
the best position it has ever achieved and the value 
associated with it and knows its neighbors, their best 
positions and their values. In many applications the 
neighbors can be replaced by one representative 
neighbor that is chosen in accordance with some 
specified criterion. The particles move composing three 
options of movement [9]: to follow its own way, to go 
back to its best previous position and to go towards its 
best neighbor's position. In this paper a social 
neighborhood approach is adopted. Social 
neighborhoods are based upon "relationships" that can 
be defined at the very beginning of the algorithm. 

Usually, the particle’s position is identified with one 
problem solution. The velocity defines how this 
position is modified.  

Since in this paper, a discrete approach is adopted to 
deal with the oil derivatives distribution problem, a 
discrete PSO algorithm is developed for the problem. 
The proposed algorithm considers search strategies to 
modify the position of the particles. Therefore, each 
search strategy is considered as a movement alternative.
The first option, that is the particle follows its own way, 
is implemented by means of a local search procedure 
[1]. The other two movement options concern a 
trajectory between the current position of a given 
particle and another position that can be the previous 
best position the considered particle has ever achieved 
or the position of the particle’s best neighbor. In these 
cases the search strategy used in this paper is the Path-
relinking [5]. 

In the proposed algorithm, one movement 
alternative is randomly assigned to each particle, 
according to a given probability. The particle moves 
accordingly and the position is modified. The pseudo-
code of the proposed algorithm is given in figure 2. 

/* Define initial probabilities x + y + z = 1 (100%) */
pr1 = x; pr2 = y; pr3 = z
iter = 0
for i =1 to #particles

generate_particle(p[i])
Repeat

timeRepair(); demandRepair() 
capacityRepair(); collisionRepair()
for i = 1 to #particles

update_arc(Local_arc_p[i], p[i])
update_arc(Global_arc, p[i])

for i = 1 to #particles
change_position(p[i],pr1, pr2, pr3)

pr1 = pr1 * 0.95
pr2 = pr2 * 1.01
pr3 = pr3 * 100% - (pr1 + pr2)
iter = iter + 1

Until (iter > #max_iter)
Return(Global_arc)

Figure 2. Pseudo-code of PSO algorithm 

At the beginning, initial probabilities pr1, pr2 and 
pr3 are assigned to each possible movement alternative 
corresponding respectively to the likelihood the particle 
follows its own way, goes toward the best previous 
position and goes toward its best neighbor. The 
probabilities are updated and the algorithm proceeds to 
the following iteration. Initially, a high value is set to 
pr1, and low values are assigned to pr2 and pr3. The 
goal is to allow that individualistic moves occur more 
frequently in the first iterations. During the execution 
this situation is being modified and, at the final 
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iterations, pr3 has the highest value in order to intensify 
the search in good regions of the search space. 

Once a bi-objective problem is being investigated, 
the concepts of “best position ever achieved” and “best 
neighbor’s position” are reviewed. Instead of a single 
solution for each of these concepts the algorithm deals 
with limited archives of non-dominated solutions. A set 
of, at most, 10 solutions is assigned to each particle i,
called Local_arc_p[i]. That archive stores non-
dominated solutions that correspond to positions 
previously achieved by particle i. A set of non-
dominated solutions found by the algorithm is stored in 
Global_arc, a limited archive with, at most, 20
solutions. This archive replaces the concept of the best 
neighbor. At the beginning, the elements of Global_arc
are the non-dominated solutions generated in the initial 
population. The management of archive Global_arc is 
based on the proposal presented by Knowles [8]. New 
non-dominated solutions are always added to the 
archive until it reaches the maximal size. A
bidimensional grid is used to manage this archive. The 
grid has fixed size. If a new non-dominated solution is 
generated and the archive is full, then one solution is 
randomly chosen from the most populous region of the 
grid to be replaced by the new solution. The solutions 
that leave the global archive are stored in another 
archive, Garb_arc, that is not scanned until the end of 
the execution of the algorithm. The output of the 
algorithm is a set of non-dominated solutions among 
the solutions of Global_arc and Garb_arc. 

Each solution, considered as a particle position, is 
encoded in a vector as illustrated in table 3 where a 
solution for a problem with four products, ten 
connections and a planning horizon of 10 units of time 
is sketched. The products are numbered from 1 to 4, a 0 
indicates that no product is being sent by the 
corresponding connection at the corresponding time 
unit. The bidirectional connections are unfolded in two 
connections, each representing one flow direction. In 
this example, it is possible to observe that product 1 is 
being sent in connection D1 at time 1 and by 
connection D2 at time 10, product 2 is being sent by 
connections D5 and D9 at time 1 and in connections 
D1, D6 and D7 at time 10, and so on. 

Table 3. Example of vector solutions 
Time Moment 1 ... Moment 10

Connection 1 2 3 4 5 6 7 8 9 10 ... 1 2 3 4 5 6 7 8 9 10
Product 1 0 0 3 2 3 3 0 2  3 ... 2 1 3 0 0 2 2 3 0  3

The initial population was generated randomly, 
choosing for each moment, a product to be sent in each 
connection, within the range of products possible for 

each connection [3]. Then, the defragmentation 
heuristic by Westphal [10] is used. This heuristic aims 
to group successive submissions of the same product 
that are in the same connection. 

The procedure change_position( ) receives 4 input 
parameters: the particle’s position and the values of
pr1, pr2 and pr3. According to these probability values, 
one movement alternative is chosen for the particle. 
The corresponding search strategy is, then, applied to 
the particle that modifies its position. 

In the local search, a solution � is generated from a 
starting solution �’ by changing the value of one 
position of �. It is done by changing the product being 
sent in a given connection and moment. All possible 
products are tested for all connections and instants. The 
search is interrupted if a solution better than the starting 
solution is generated. A solution � is better than �’ if �
is non-dominated regarding the solutions in 
Global_arc. 

In order to take a particle from one position to 
another, the technique of path-relinking is utilized. The 
position of the particle is considered as the starting 
solution. In the case the particle goes toward its best 
neighbor, a solution of Global_arc is randomly chosen, 
with uniform probability, as the position of the best 
neighbor. In the case the particle goes toward its best 
previous position, a local archive of non-dominated 
solutions is maintained for each particle. A solution of 
this local archive is chosen at random, with uniform 
probability, to play the role of the best previous 
position of the particle. The local archive stores non-
dominated solutions that were generated during 
modifications of the position of the correspondent 
particle. Local archives have at most 10 solutions. If a 
new non-dominated solution is generated and the local 
archive has already reached its maximal size, then a 
solution chosen at random in the local archive is 
replaced by the new solution. Non-dominated solutions 
generated during the operation of path-relinking 
regarding the local and the global archive update these 
repositories in accordance with the strategies previously 
explained. Given the starting, �, and final position, �’, 
then the algorithm replaces iteratively, the product 
being sent in connection i, i = 1,…, nconnec, in instant 
j, j = 1,…, ninst, by the product in connection i in 
instant j in solution �’, where nconnec and ninst are the 
number of connections and instants.  

The algorithm makes use of four repairing functions. 
The first one, timeRepair( ), verifies if the  limits for 
arrival time of the packages are being violated. The 
packages that violate the limit of maximum arrival time 
are removed. The second repairing function, 
demandRepair( ), verifies for each time instant if the 
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demand of each product has been satisfied. If the 
demanded number of packages of a given product has 
been exceeded, then the exceeding packages are 
removed. The third repairing function, 
capacityRepair(), deals with the tanks capacity. The 
procedure verifies if the minimum capacity of origin 
nodes and the maximum capacity of destination nodes 
are being violated. If the minimum capacity of the tanks 
is violated, the package is removed from the connection 
and added to the tank of the origin. If the maximum in 
the destination node is violated the packages that 
violate this constraint are removed. The last repairing 
function, collisionRepair( ), checks the occurrence of 
collisions in bidirectional connections. If two packages 
sent at time t1 and t2, t1 < t2, collide in the same 
connection, then the package sent on time t2 is 
removed. If t1 = t2, then one package is selected 
randomly, with uniform probability, and removed. 

The stopping criterion of the algorithm presented in 
figure 2 is a maximum number of iterations, #max_iter. 

4. Computational Experiments 

The proposed algorithm was implemented in C and 
executed on Pentium IV, 1GB of RAM, under Linux, 
gcc compiler. The algorithm was applied to a set of 6 
instances. The instances were obtained from the work 
of De la Cruz et al. [3]. 

The results obtained with the proposed algorithm are 
compared with the ones obtained by the genetic 
algorithms presented by De la Cruz et al. [3] and 
Westphal [10]. The former algorithm was implemented 
by the authors and the latter was made available by its 
author. For each instance, 20 independent executions of 
each algorithm were performed. Two networks are the 
bases for the 6 instances. The first network consists of 7 
nodes, 8 unidirectional connections and one 
bidirectional connection. The second network has 12 
nodes, 20 unidirectional connections and one 
bidirectional connection. For each of these networks, 
different initial conditions are established. The names 
of the instances are ind_XX_YY, where XX defines the 
number of nodes in the network and YY refers to the 
number of units of time in the planning horizon. 
Instances ind_07_15 and ind_12_15 are introduced in 
the paper by De la Cruz et al. [3]. 

For all instances, the minimum capacity of tanks and 
the minimum time are equal to zero. The number of 
products considered in all cases is 4. The initial 
conditions of instances ind_07_50, ind_07_150, 
ind_12_50 and ind_12_150 are presented in Table 4,
where the identification 1, 2, 3 and 4 are used, 
respectively, for each instance. In table 4, M represents 

the maximum storage capacity of the tanks 
correspondents to the nodes, and D represents the 
demanded amount of each product by each node. 

Table 4. Initial networks configuration 

Node Prod A Prod B Prod C Prod D
M D M D M D M D

1

1
2
3
4
5
6
7

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

2

1
2
3
4
5
6
7

500
500
300
300
300
500
500

0
0
0
0

10
11
14

500
500
300
300
300
500
500

0
0
0
0

10
12
18

500
500
300
300
300
500
500

0
0
0
0

10
10
20

500
500
300
300
300
500
500

0
0
0
0

10
9

11

3

1
2
3
4
5
6
7
8
9

10
11
12

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

20
19
21
18

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

21
18
22
19

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

21
16
22
20

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

20
15
21
22

4

1
2
3
4
5
6
7
8
9

10
11
12

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

21
20
22
15

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

20
18
22
16

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

20
19
21
18

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

21
16
20
19

The objectives are the minimization of the total 
fragmentation and the minimization of the total time. 
The total fragmentation is the sum of the 
fragmentations in all network connections. 

It is important to note that the algorithm of De la 
Cruz et al. [3] uses a multi-objective approach where 
one objective is fixed and the other is optimized. It 
optimizes the time through an Integer Linear 
Programming approach; afterwards, the fragmentation 
is optimized through of the genetic algorithm. In the 
algorithm Westphal [10] uses the weighting method 
which consists in applying a weight to each criterion in 
order to aggregate them in a single objective function. 
Only one solution for each test case in each 
independent run is generated by these algorithms.  
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Table 5 shows the results of the computational 
experiment, where #ND_Sol shows the average size of 
Global_arc, #D_Sol_C and #D_Sol_W show the 
average number of solutions produced by the PSO 
algorithm that strictly dominate the solutions generated 
by the algorithms presented by De la Cruz et al. [3] and 
Westphal [10], respectively.  
  

Table 5. Computational results 
Instance #ND_Sol #D_Sol_C #D_Sol_W

Ind_07_15
Ind_07_400
Ind_07_500
Ind_12_15
Ind_12_400
Ind_12_500

2
20
21
23
22
22

1
3
3
8
6
6

2
6
8

18
17
13

No solution produced by the other algorithms 
strictly dominates any solution generated by the 
proposed algorithm. The table 5 shows that the 
proposed approach is capable of producing a variety of 
solutions for each case, which makes the decision-
maker can choose among them the most convenient. De
la Cruz et al. [4] presents a solution for the Ind_07_15 
instance that dominates one solution generated by the 
proposed approach and is non-dominated regarding the 
other solution. 

5. Conclusion 

This paper presented an algorithm based on Particle 
Swarm Optimization that was applied to the problem of 
distributing oil derivatives through a network of 
polyducts. The results generated with the application of 
the proposed technique were compared to the results of 
two genetic algorithms presented previously for the 
same problem. Although such algorithms have been 
based on concepts of optimization with multiple 
objectives, they generate only one solution to each 
instance of the problem. The algorithm reported in this 
paper generates a set of non-dominated solutions that 
gives the decision-maker a better overview of available 
solutions.  

The proposed algorithm produces several solutions 
that strictly dominate the solutions generated by 
algorithms used for comparison. 
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