
The Bi-objective Problem of Distribution of Oil Products by Pipeline
Networks Approached by a Particle Swarm Optimization Algorithm

Thatiana C. N. de Souza
UFRN, Brazil

thatinsouza@gmail.com

Elizabeth F. G. Goldbarg
UFRN, Brazil

beth@dimap.ufrn.br

Marco C. Goldbarg
UFRN, Brazil

gold@dimap.ufrn.br

Abstract

The distribution of petroleum products through
pipeline networks is an important problem that arises
in production planning of refineries. It consists in
determining what will be done in each production
stage given a time horizon, concerning the distribution
of products from source nodes to demand nodes,
passing through intermediate nodes. Constraints
concerning storage limits, delivering time, sources
availability, among others, have to be satisfied. This
problem can be viewed as a bi-objective problem that
aims at minimizing time and the successive
transmission of different products in the same pipe. In
this paper, a discrete Particle Swarm Optimization
algorithm is applied to this problem. The results
obtained with the proposed approach are compared
with the results obtained by two Genetic Algorithms
proposed previously for the problem.

1. Introduction

Usually, the main purpose of production planning is
to coordinate operations such that profitability is
maximized or costs are minimized. The production in
refineries is a dynamic process and often new scenarios
can impact the programming of production activities. A
number of factors have to be considered in the
production planning of refineries such as changes in the
demand of products, product specifications, delivery
dates, quality and quantity of raw materials, availability
and performance of the processing units, among others.
Integrated strategies to improve planning in order to
program the production activities need to be
considered. In this context, a distribution network is
composed of oil refineries, terminals and parks for
storage that are interconnected by polyducts. A
polyduct is a pipeline that transports different types of
oil products. If the polyduct is long enough then
different types of products can occupy different parts of
it during transportation. In order to address the problem

under a discrete optimization approach, some
researchers consider that products are transported
through the polyducts in units of volume called
packages or batches.

The consecutive transmission of two different
products may cause contamination of both fluids. In
some cases, the contaminated fluids have to return to
the refinery to be reprocessed. It increases the
production costs and causes delay in the delivery. The
consecutive transmission of two different products is
called fragmentation.

The problem consists in scheduling the sending of
packages from source nodes to terminals satisfying
constraints related to production, demand, time and
storage capacity. Some researchers consider the
problem with the following two objectives: to minimize
the time needed to for transporting the set of packages
through the network and to minimize fragmentation.
This approach is also adopted in this paper that
introduces a Particle Swarm Optimization algorithm for
the investigated problem.

Particle Swarm Optimization (PSO) is a technique
that has shown good results in industrial applications.
PSO algorithms were first introduced in the context of
continuous optimization problems and research in this
area has significantly grown in the last few years with a
number of successful applications concerning single
and multi-objective optimization problems [2], [7].
Motivated by the success of PSO algorithms,
researchers that deal with combinatorial optimization
problems have investigated ways to adapt the original
proposal to the discrete case. Although, a number of
applications of PSO to discrete problems do exist, these
algorithms are not as effective as they are when applied
to continuous problems, once they are easily trapped
into local optima. To overcome the efficiency
problems, the researchers have been focused on new
PSO versions and hybridization with other techniques.
The algorithm presented in this paper is based on a
PSO version for discrete problems presented also for a
biobjective optimization problem [6]. The results

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.185

767

obtained with the proposed approach are compared
with the results obtained by two Genetic Algorithms
proposed previously for the problem.

The paper is organized as follows. The model of the
distribution network is addressed in Section 2. The
proposed algorithm is described in Section 3. A
computational experiment is reported in Section 4.
Finally, some concluding remarks are presented in
Section 5.

2. Model of the Distribution Network

This paper adopts the model presented by De la
Cruz et al. [3], where a simplified version of an actual
network is presented. The network is composed of
nodes that are divided in three categories: sources
(refineries), terminals (clients) and intermediary nodes
that represent storage tanks. An example is shown in
Fig. 1, where refineries are represented by nodes N1
and N2, N3 and N4 represent intermediary nodes and the
points of destination or terminals are represented by
nodes N5, N6 and N7. The network has 9 polyducts that
are represented by 10 arrows. The directions of the
arrows show the flow direction. Arrows D5 and D8
refer to the same polyduct that allows flow in two
directions.

Different products are delivered in this network. The
model considers that the number of storage tanks at
each node corresponds to the number of products that
intermediary or terminal nodes are allowed to receive.
For example, if four different types of products can be
received by a node, then there are four different tanks,
one for each product, at this node. Some simplifications
of a real network are adopted in this paper. It is
assumed that all polyducts have the same diameter and
characteristics. The same flow rate is considered for all
products that occupy the same volume in the polyducts.

The products are delivered as discrete packages. A
package represents a minimum volume that is
transported during a unit time. The number of packages
is utilized to refer to the tanks capacity and the demand.
Numbers in links joining two nodes give the normalized
distance in terms of units of time needed by a given
packet to cover the whole pipe. Table 1 shows the units
of time that the package takes to cross each connection
shown in Fig. 1. For instance, the connection D7 in the
polyduct linking nodes N3 and N6 means that one
packet spends two periods of unit time to go from node
N3 to node N6, or that the polyduct may contain two
packets.

Given a planning horizon, divided in time units, a
solution for this problem consists in defining which
product is being sent by each source or intermediary

node at each instant. Under the point of view of the
connections, a solution can be represented by the
product being sent at each time instant in each
polyduct. The following constraints have to be
satisfied. A minimal transmission of products is
required in order to avoid paralyzing the production in
the source nodes or exceed the storage tanks capacity.
The demands of each terminal node have to be satisfied
(and not exceeded). Bidirectional connections are not
allowed to send flow in two different directions at the
same time.

Figure 1. Example of a distribution network

Table 1. Units of time necessary for one
package to traverse each connection

Connection D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Distance 1 3 3 2 3 4 2 3 3 2

The model is subjected to the following constraints:
1. The minimum production at each source node must
be met. A minimum number of packages have to be
sent to prevent the stoppage of production at the source
nodes.
2. The demand of each destination node must be met.
3. There should be no collisions of packages in
bidirectional connections.
4. The maximal capacity of each tank cannot be
violated.
5. The packages must be delivered at the destination
nodes at due times.

Let us consider the network of Fig. 1 and the
transmission of four different products {1,2,3,4}. Node
N1 is the source of products 1 and 2, and node N2 is the
source of products 3 and 4. The remaining nodes can
receive the four products. Table 2 shows one solution
for the problem presented in Fig. 1 with a planning
horizon of 10 time units. A 0 in line i and column j
indicates that no product is being sent in connection Di
at time j.

768

Table 2. One solution for network of fig. 1
Polyduct Time

1 2 3 4 5 6 7 8 9 10
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10

1
0
0
3
2
3
3
0
2
3

0
1
0
0
3
3
1
0
2
3

2
2
3
4
0
4
1
0
4
4

1
1
3
0
0
4
1
0
3
0

2
1
3
3
2
2
3
0
3
2

0
1
0
4
0
2
3
0
4
1

2
2
4
0
3
1
1
0
0
1

1
2
4
3
0
2
1
0
3
2

2
1
3
3
0
1
2
0
3
4

2
1
3
0
0
2
2
3
0
3

Evolutionary algorithms were proposed for this
problem by De la Cruz et al [3], [4] and Westphal [10].
De la Cruz et al. [3] consider four objectives to be
optimized: two for time and two for fragmentation.
They apply a multiobjective genetic algorithm to a
network with 12 nodes and 21 connections, one of them
is bidirectional. De la Cruz et al. [4] develop a
multiobjective genetic algorithm, a Mathematical
Programming algorithm and a hybrid algorithm where
the solutions of the latter algorithm are used in the
genetic algorithm. They apply their algorithms to one
network with 7 nodes and 7 connections, one of them
bidirectional. Westphal [10] presents a multiobjective
genetic algorithm with elitism and niches.

The results of the multiobjective genetic algorithms
proposed by De la Cruz et al. [3] and Westphal [10] are
compared with the results of the approach proposed in
this paper. The algorithm of De la Cruz et al. [3] by us
and the other genetic algorithm was kindly made
available by its author.

3. PSO for the Oil Products Distribution
Problem

In the classical mono-objective PSO algorithms,
each particle has a position and a velocity, knows its
own position and the value associated with it, knows
the best position it has ever achieved and the value
associated with it and knows its neighbors, their best
positions and their values. In many applications the
neighbors can be replaced by one representative
neighbor that is chosen in accordance with some
specified criterion. The particles move composing three
options of movement [9]: to follow its own way, to go
back to its best previous position and to go towards its
best neighbor's position. In this paper a social
neighborhood approach is adopted. Social
neighborhoods are based upon "relationships" that can
be defined at the very beginning of the algorithm.

Usually, the particle’s position is identified with one
problem solution. The velocity defines how this
position is modified.

Since in this paper, a discrete approach is adopted to
deal with the oil derivatives distribution problem, a
discrete PSO algorithm is developed for the problem.
The proposed algorithm considers search strategies to
modify the position of the particles. Therefore, each
search strategy is considered as a movement alternative.
The first option, that is the particle follows its own way,
is implemented by means of a local search procedure
[1]. The other two movement options concern a
trajectory between the current position of a given
particle and another position that can be the previous
best position the considered particle has ever achieved
or the position of the particle’s best neighbor. In these
cases the search strategy used in this paper is the Path-
relinking [5].

In the proposed algorithm, one movement
alternative is randomly assigned to each particle,
according to a given probability. The particle moves
accordingly and the position is modified. The pseudo-
code of the proposed algorithm is given in figure 2.

/* Define initial probabilities x + y + z = 1 (100%) */
pr1 = x; pr2 = y; pr3 = z
iter = 0
for i =1 to #particles

generate_particle(p[i])
Repeat

timeRepair(); demandRepair()
capacityRepair(); collisionRepair()
for i = 1 to #particles

update_arc(Local_arc_p[i], p[i])
update_arc(Global_arc, p[i])

for i = 1 to #particles
change_position(p[i],pr1, pr2, pr3)

pr1 = pr1 * 0.95
pr2 = pr2 * 1.01
pr3 = pr3 * 100% - (pr1 + pr2)
iter = iter + 1

Until (iter > #max_iter)
Return(Global_arc)

Figure 2. Pseudo-code of PSO algorithm

At the beginning, initial probabilities pr1, pr2 and
pr3 are assigned to each possible movement alternative
corresponding respectively to the likelihood the particle
follows its own way, goes toward the best previous
position and goes toward its best neighbor. The
probabilities are updated and the algorithm proceeds to
the following iteration. Initially, a high value is set to
pr1, and low values are assigned to pr2 and pr3. The
goal is to allow that individualistic moves occur more
frequently in the first iterations. During the execution
this situation is being modified and, at the final

769

iterations, pr3 has the highest value in order to intensify
the search in good regions of the search space.

Once a bi-objective problem is being investigated,
the concepts of “best position ever achieved” and “best
neighbor’s position” are reviewed. Instead of a single
solution for each of these concepts the algorithm deals
with limited archives of non-dominated solutions. A set
of, at most, 10 solutions is assigned to each particle i,
called Local_arc_p[i]. That archive stores non-
dominated solutions that correspond to positions
previously achieved by particle i. A set of non-
dominated solutions found by the algorithm is stored in
Global_arc, a limited archive with, at most, 20
solutions. This archive replaces the concept of the best
neighbor. At the beginning, the elements of Global_arc
are the non-dominated solutions generated in the initial
population. The management of archive Global_arc is
based on the proposal presented by Knowles [8]. New
non-dominated solutions are always added to the
archive until it reaches the maximal size. A
bidimensional grid is used to manage this archive. The
grid has fixed size. If a new non-dominated solution is
generated and the archive is full, then one solution is
randomly chosen from the most populous region of the
grid to be replaced by the new solution. The solutions
that leave the global archive are stored in another
archive, Garb_arc, that is not scanned until the end of
the execution of the algorithm. The output of the
algorithm is a set of non-dominated solutions among
the solutions of Global_arc and Garb_arc.

Each solution, considered as a particle position, is
encoded in a vector as illustrated in table 3 where a
solution for a problem with four products, ten
connections and a planning horizon of 10 units of time
is sketched. The products are numbered from 1 to 4, a 0
indicates that no product is being sent by the
corresponding connection at the corresponding time
unit. The bidirectional connections are unfolded in two
connections, each representing one flow direction. In
this example, it is possible to observe that product 1 is
being sent in connection D1 at time 1 and by
connection D2 at time 10, product 2 is being sent by
connections D5 and D9 at time 1 and in connections
D1, D6 and D7 at time 10, and so on.

Table 3. Example of vector solutions
Time Moment 1 ... Moment 10

Connection 1 2 3 4 5 6 7 8 9 10 ... 1 2 3 4 5 6 7 8 9 10
Product 1 0 0 3 2 3 3 0 2 3 ... 2 1 3 0 0 2 2 3 0 3

The initial population was generated randomly,
choosing for each moment, a product to be sent in each
connection, within the range of products possible for

each connection [3]. Then, the defragmentation
heuristic by Westphal [10] is used. This heuristic aims
to group successive submissions of the same product
that are in the same connection.

The procedure change_position() receives 4 input
parameters: the particle’s position and the values of
pr1, pr2 and pr3. According to these probability values,
one movement alternative is chosen for the particle.
The corresponding search strategy is, then, applied to
the particle that modifies its position.

In the local search, a solution � is generated from a
starting solution �’ by changing the value of one
position of �. It is done by changing the product being
sent in a given connection and moment. All possible
products are tested for all connections and instants. The
search is interrupted if a solution better than the starting
solution is generated. A solution � is better than �’ if �
is non-dominated regarding the solutions in
Global_arc.

In order to take a particle from one position to
another, the technique of path-relinking is utilized. The
position of the particle is considered as the starting
solution. In the case the particle goes toward its best
neighbor, a solution of Global_arc is randomly chosen,
with uniform probability, as the position of the best
neighbor. In the case the particle goes toward its best
previous position, a local archive of non-dominated
solutions is maintained for each particle. A solution of
this local archive is chosen at random, with uniform
probability, to play the role of the best previous
position of the particle. The local archive stores non-
dominated solutions that were generated during
modifications of the position of the correspondent
particle. Local archives have at most 10 solutions. If a
new non-dominated solution is generated and the local
archive has already reached its maximal size, then a
solution chosen at random in the local archive is
replaced by the new solution. Non-dominated solutions
generated during the operation of path-relinking
regarding the local and the global archive update these
repositories in accordance with the strategies previously
explained. Given the starting, �, and final position, �’,
then the algorithm replaces iteratively, the product
being sent in connection i, i = 1,…, nconnec, in instant
j, j = 1,…, ninst, by the product in connection i in
instant j in solution �’, where nconnec and ninst are the
number of connections and instants.

The algorithm makes use of four repairing functions.
The first one, timeRepair(), verifies if the limits for
arrival time of the packages are being violated. The
packages that violate the limit of maximum arrival time
are removed. The second repairing function,
demandRepair(), verifies for each time instant if the

770

demand of each product has been satisfied. If the
demanded number of packages of a given product has
been exceeded, then the exceeding packages are
removed. The third repairing function,
capacityRepair(), deals with the tanks capacity. The
procedure verifies if the minimum capacity of origin
nodes and the maximum capacity of destination nodes
are being violated. If the minimum capacity of the tanks
is violated, the package is removed from the connection
and added to the tank of the origin. If the maximum in
the destination node is violated the packages that
violate this constraint are removed. The last repairing
function, collisionRepair(), checks the occurrence of
collisions in bidirectional connections. If two packages
sent at time t1 and t2, t1 < t2, collide in the same
connection, then the package sent on time t2 is
removed. If t1 = t2, then one package is selected
randomly, with uniform probability, and removed.

The stopping criterion of the algorithm presented in
figure 2 is a maximum number of iterations, #max_iter.

4. Computational Experiments

The proposed algorithm was implemented in C and
executed on Pentium IV, 1GB of RAM, under Linux,
gcc compiler. The algorithm was applied to a set of 6
instances. The instances were obtained from the work
of De la Cruz et al. [3].

The results obtained with the proposed algorithm are
compared with the ones obtained by the genetic
algorithms presented by De la Cruz et al. [3] and
Westphal [10]. The former algorithm was implemented
by the authors and the latter was made available by its
author. For each instance, 20 independent executions of
each algorithm were performed. Two networks are the
bases for the 6 instances. The first network consists of 7
nodes, 8 unidirectional connections and one
bidirectional connection. The second network has 12
nodes, 20 unidirectional connections and one
bidirectional connection. For each of these networks,
different initial conditions are established. The names
of the instances are ind_XX_YY, where XX defines the
number of nodes in the network and YY refers to the
number of units of time in the planning horizon.
Instances ind_07_15 and ind_12_15 are introduced in
the paper by De la Cruz et al. [3].

For all instances, the minimum capacity of tanks and
the minimum time are equal to zero. The number of
products considered in all cases is 4. The initial
conditions of instances ind_07_50, ind_07_150,
ind_12_50 and ind_12_150 are presented in Table 4,
where the identification 1, 2, 3 and 4 are used,
respectively, for each instance. In table 4, M represents

the maximum storage capacity of the tanks
correspondents to the nodes, and D represents the
demanded amount of each product by each node.

Table 4. Initial networks configuration

Node Prod A Prod B Prod C Prod D
M D M D M D M D

1

1
2
3
4
5
6
7

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

400
400
300
300
400
400
400

0
0
0
0
3
3
3

2

1
2
3
4
5
6
7

500
500
300
300
300
500
500

0
0
0
0

10
11
14

500
500
300
300
300
500
500

0
0
0
0

10
12
18

500
500
300
300
300
500
500

0
0
0
0

10
10
20

500
500
300
300
300
500
500

0
0
0
0

10
9

11

3

1
2
3
4
5
6
7
8
9

10
11
12

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

20
19
21
18

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

21
18
22
19

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

21
16
22
20

400
400
400
300
300
300
300
300
400
400
400
400

0
0
0
0
0
0
0
0

20
15
21
22

4

1
2
3
4
5
6
7
8
9

10
11
12

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

21
20
22
15

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

20
18
22
16

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

20
19
21
18

500
500
500
300
300
300
300
300
500
500
500
500

0
0
0
0
0
0
0
0

21
16
20
19

The objectives are the minimization of the total
fragmentation and the minimization of the total time.
The total fragmentation is the sum of the
fragmentations in all network connections.

It is important to note that the algorithm of De la
Cruz et al. [3] uses a multi-objective approach where
one objective is fixed and the other is optimized. It
optimizes the time through an Integer Linear
Programming approach; afterwards, the fragmentation
is optimized through of the genetic algorithm. In the
algorithm Westphal [10] uses the weighting method
which consists in applying a weight to each criterion in
order to aggregate them in a single objective function.
Only one solution for each test case in each
independent run is generated by these algorithms.

771

Table 5 shows the results of the computational
experiment, where #ND_Sol shows the average size of
Global_arc, #D_Sol_C and #D_Sol_W show the
average number of solutions produced by the PSO
algorithm that strictly dominate the solutions generated
by the algorithms presented by De la Cruz et al. [3] and
Westphal [10], respectively.

Table 5. Computational results
Instance #ND_Sol #D_Sol_C #D_Sol_W

Ind_07_15
Ind_07_400
Ind_07_500
Ind_12_15
Ind_12_400
Ind_12_500

2
20
21
23
22
22

1
3
3
8
6
6

2
6
8

18
17
13

No solution produced by the other algorithms
strictly dominates any solution generated by the
proposed algorithm. The table 5 shows that the
proposed approach is capable of producing a variety of
solutions for each case, which makes the decision-
maker can choose among them the most convenient. De
la Cruz et al. [4] presents a solution for the Ind_07_15
instance that dominates one solution generated by the
proposed approach and is non-dominated regarding the
other solution.

5. Conclusion

This paper presented an algorithm based on Particle
Swarm Optimization that was applied to the problem of
distributing oil derivatives through a network of
polyducts. The results generated with the application of
the proposed technique were compared to the results of
two genetic algorithms presented previously for the
same problem. Although such algorithms have been
based on concepts of optimization with multiple
objectives, they generate only one solution to each
instance of the problem. The algorithm reported in this
paper generates a set of non-dominated solutions that
gives the decision-maker a better overview of available
solutions.

The proposed algorithm produces several solutions
that strictly dominate the solutions generated by
algorithms used for comparison.

Acknowledgments

This research was partially supported by the
National Agency of Petroleum through the PRH-22
program, and by the CNPq. The authors wish to thank
Henrique Westphal who kindly has sent the code of his
genetic algorithm.

References

[1] E. Aarts, J. K. Lenstra, Local Search in Combinatorial
Optimization. John Wiley & Sons, Chichester, England,
1997.
[2] C.A.C. Coello, G.T. Pulido, M.S. Lechuga, “Handling
multiple objectives with particle swarm optimization”, IEEE
Transactions on Evolutionary Computation 8(3), 2004, pp.
256-279.
[3] J.M. De la Cruz, B. Andrés-Toro, A. Herrán-González, E.
Besada-Portas, and P. Fernández-Blanco, “Multiobjective
optimization of the transport in oil pipeline networks”, IEEE
International Conference on Emerging Technologies and
Factory Automation 1, 2003, pp. 566-573.
[4] J.M. De la Cruz, A. Herrán-González, J. L. Risco-Martín,
and B. Andrés-Toro, “Hybrid heuristic and mathematical
programming in oil pipelines networks: Use of immigrants”,
Journal of Zhejiang University SCIENCE, 6A(1), 2005, pp.
9-19.
[5] F. Glover, M. Laguna, R. Martí, “Fundamentals of scatter
search and path relinking”, Control and Cybernetics 29(3),
2000, pp. 653-684.
[6] E.F.G. Goldbarg, G.R. Souza, M.C. Goldbarg, “Particle
swarm optimization for the bi-objective degree-constrained
minimum spanning tree”, Proceedings of the 2006 Congress
on Evolutionary Computation, 1, 2006, pp. 420-427.
[7] J. Kennedy, R. Eberhart, “Particle swarm optimization”,
IEEE International Conference on Neural Networks 4, 1995,
pp. 1942-1948.
[8] J. D. Knowles, “Local-Search and Hybrid Evolutionary
Algorithms for Pareto Optimization”, PhD Thesis.
Department of Computer Science, University of Reading,
Reading, UK, 2002.
[9] G.C. Onwubolu, and M. Clerc, “Optimal path for
automated drilling operations by a new heuristic approach
using particle swarm optimization”, International Journal of
Production Research 42(3), 2004, pp. 473-491.
[10] H. Westphal, Algoritmo Genético Aplicado a
Otimização Multiobjetivo em Redes de Distribuição de
Petróleos e Derivados, M. Sc. Dissertation, Universidade
Tecnológica Federal do Paraná, 2006.

772

