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Abstract—This research develops an intelligent method of 
transferring progress control policies for a class of repetitive 
discrete event systems, whose approach is based on Dioid 
algebra. The commonly used policies include a method that 
requires precedence constraints regarding processing order 
relations, and a method where relative processing start and 
completion times of all facilities need specified. However, in the 
conventional methods, these frameworks for handling the state 
equation differ significantly and not been unified yet. Hence, 
this research proposes a method of transferring the transition 
matrices, and accomplishes a method of transferring the 
progress control policy per job. 

Keywords-Dioid algebra; adjacency matrix; state-space 
representation; directed asyclic graph; progress control; 

I.  INTRODUCTION 
This research focuses on scheduling problems for a class 

of discrete event systems, and develops a method for 
progress control of jobs. The primary formulation is based 
on Dioid algebra [1], [2], a class of discrete mathematics. In 
the target systems, the installed facilities are repetitively 
used, the number of maximum jobs that can be processed 
simultaneously is one or a finite value, and no concurrency 
constraints are imposed in the facilities. The behavior of 
these systems can be described by simple linear equations in 
Dioid algebra. Specifically, using max-plus algebra [2], [3], 
on which the max and ‘+’ operations are defined as addition 
and multiplication, the earliest times of event propagation 
can be represented by a form similar to the state space 
representation in modern control theory. 

In the well-known simple state equation, we assume that 
all jobs use all the installed facilities, where occupation 
times in each facility are constant, independent of the job 
number. These assumptions are somewhat restrictive, with 
the result that several extensions are needed for application 
to practical systems. For instance, we sometimes have to 
address systems with in which, (i) the occupation times in 
facilities and (ii) the facilities used, differ for each job. With 
respect to issue (i), [4] and [5] extend the conventional state 
equation to ‘event-varying’ system types, using the analogy 
of time-varying systems in modern control theory. Regard-
ing issue (ii), [6] and [7] adopt the concept of a ‘heap 
model’, assimilating an appearance of a Gantt chart express-
ing a job’s schedule. 

In executing a single job, the following two methods are 
commonly used for progress control. 

• (A) Precedence constraints and occupation times in 
the respective facilities are specified, and the proc-
essing start and completion times are variable as 
long as the precedence constraints are adhered to. 

• (B) From commencement to completion of a job, all 
processing start and completion times for using fa-
cilities are specified in terms of relative time. 

Hereafter, these are referred to as policies (A) and (B), 
respectively. In policy (A), processing is supposed to start 
as soon as all required materials are supplied and the 
relative facility is ready. This policy is suitable for systems 
where ‘bulk processing’ is desirable. In contrast, policy (B) 
is suitable if we wish to finish the job after a certain 
predetermined time has lapsed. 

The difference between these two policies appears in the 
transition matrices of the state equation. In [4], [5] and [8], 
policy (A) is adopted to handle systems of event-varying 
types in which the occupation times in facilities differ by 
job. However, it is assumed that all jobs use all installed 
facilities, which means that policy (B) cannot be imple-
mented. By contrast, [6] and [7] address issue (ii) and policy 
(B), but they can not create schedules based on earliest time. 
For application to a wider class of practical systems, it is 
desirable to consider both issues (i) and (ii), and to transfer 
or mix policies (A) and (B). 

This research therefore, proposes a method for calculat-
ing the transition matrices for both policies by using 
common parameter vectors and matrices.  

II. PRELIMINARIES 
Denoting the real field by R , we define a field 

∪= RD  { }∞− . For D∈yx, , we define the following 
operators: x  ),(max yxy =⊕ , yxyx +=⊗  and ⋅=⊗ xx y  
y . Unit elements for operators ⊕  and ⊗  are denoted by ε  

)( −∞=  and )0(=e , respectively. If rq ≤ , max(=⊕ = l
r

ql x  
),,, 1 rqq xxx L+ . For matrices, if nm×∈DYX ,  and ∈Z  

pn×D , )][,]([max][ ijijij YXYX =⊕ , il
n
lij ][(][ 1 XZX =⊕=⊗  

)][ ljZ+ . We denote the unit matrices for operators ⊕  and 
⊗  by ε  and e , respectively. ε  is a matrix in which all 
elements are ε , and e  a matrix in which the diagonal 
elements are e  and off-diagonal elements are ε . Operator 
⊗  is higher precedence than ⊕ , and ⊗  is abbreviated 
when no confusion is likely to arise. The Kleene star 
operator [9] is defined in nn×∈DX , as follows: =*X  
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L⊕⊕⊕=⊕∞
=

2
0 XXeX l

l . If matrix X  is a representa-
tion matrix of a weighted DAG (Directed Acyclic Graph), 
there is an instance of s  that satisfies εX ≠−1s , εX =s  1(  

)ns ≤≤ , and the operator can be calculated by adding a 
finite set of powers of X : ⊕= eX *  1−⊕⊕ sXX L . 
Moreover, in a field { }∞±∪= RD , the following opera-
tors are defined. If D∈yx, , ),(min yxyx =∧ . If nm ≤ , 

),,,min( 1 rqql
r

ql xxxx L+= =∧ . For matrices nm×∈DX , ∈Z  
ln×D , )][][(][ 1 ljil

n
lij ZXZX +−∧= = , =ij][X { ji][X−  if 

ε≠ji][X , ε   if ε=ji][X }. 

A. State equation for systems with precedence constraints 
We briefly review the method of [4] that adopts policy 

(A), and implement several extensions. Let the number of 
installed facilities be n . Assume that each job uses all 
installed facilities exactly once, and the precedence con-
straints are represented by a DAG. For the k th job, we 
denote the occupation times in the facilities by nk D∈)(d , 
and the list of preceding facilities of facility i  )1( ni ≤≤  by 

)(kiP . Moreover, we introduce the following two parameter 
matrices: )]([diag kk dP = ,  

=ijk ][F { e : if )(kj iP∈ , ε : if )(kj iP∉ }, (1)

where kF  is referred to as the adjacency matrix. Denoting 
the earliest processing completion times by )(kEx  and the 
minimum value for the processing completion times for job 
k  by nk D∈)(u , iE k)]([x  can be represented as: 

.)]([)]1([)]([

)]([)]1([)]([
)]([)]([

)(

iiiEk

iijE
kj

iiE

kkk

kkk
kk

uxxF

uxx
dx

⊕−⊕=

⊕−⊕=

−

⊕
∈ iP

 (2)

The first term of the right-hand side gives the maximum 
value for the processing completion times in the preceding 
facilities, the second term indicates no concurrency with 
respect to the previous job, whilst the third term expresses 
the minimum time at which processing can start. Now 
transfer ik)]([d  in the left-hand side of (2) to the right-hand 
side, and express it as kP . Since this relationship is true for 
all i  )1( ni ≤≤ , it can be summarized as: 

)]()1([)()( kkkk kEkkE uxPxFPx ⊕−⊕= . (3)

By substituting the entire right-hand side of (3) for the first 
term, and repeating this, we obtain: 

)]()1([)( kkk kE uxAx ⊕−= , (4)

where kkkk PFPA *)(= . Recall here that there is an instance 
s  )1( ns ≤≤  that satisfies εFP =s

kk )(  if kk FP  is a 
representation matrix of the DAG. It should be noted that 
[4] uses the input matrix 0B  and input variables )(ku  for 
stating the earliest processing start times, which is applica-
ble only in cases where the input locations are fixed and 
independent of the job number. This research, on the other  
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Figure 1.  Ganntt chart of a schedule, given by a heap of pieces. 

hand, aims to handle more general cases in which the set of 
facilities used differs per job. Hence, we use )(ku  only, 
without the input matrix. 

B. State equation based on a heap model 
If the list of facilities used differs per job and the proc-

essing start times for each facility are supplied as relative 
values, the state equation based on the heap model can be 
utilized. Here, we briefly review the method in [6] that 
adopts policy (B), and make several extensions. 

Suppose the number of facilities is n , and the list of 
facilities used by job k  is )(kR . If the job uses facility i  
1(  )ni ≤≤ , we express this as )(ki R∈ , and as )(ki R∉  

otherwise. Set the time 0tt =  as the base time, and denote 
the relative processing start and completion times by 

nk D∈)(a  and nk D∈)(b , respectively. Then, the following 
properties hold; if )(ki R∉ , then ε== ii kk )]([)]([ ba , if i  

)(kR∈ , then ε≠ik)]([a , ε≠ik)]([b , ≥− ii kk )]([)]([ ab  
0 . Normally, the base time is set as iki kt )]([)(0 a∧∈

=
R

. For 
example, if the schedule for job k  is given in Fig. 1, 

=)(ka  Tee ]21[ε , Tk ]3212[)( ε=b . Next, consider 
matrix nn

k
×∈DM  which has the following properties: 

⎪
⎩

⎪
⎨

⎧
∉=
∈∈−

=
otherwise.:

),(andif:
),(and)(if:)]([)]([

][
ε

kjjie
kjkikk ji

ijk R
RRab

M (5)

This matrix can also be expressed as: 

)()( kkk abeM ⊗⊕= . (6)

Denoting the absolute values of the earliest processing 
completion times of job k  by )(kEx , 

{ }

.)]1([)]1([][

)]1([)]([)]([)]1([)]([

1

)(

ikjijk

n

j

ijij
kj

iE

kk

kkkkk

−=−⊗=

−⊕−+−=

⊕

⊕

=

∈

xMxM

xabxx
R

Since this is true for all i  )1( ni ≤≤ , if follows that: 

)1()( −= kk kE xMx . (7)

Equation (7) represents the earliest processing times for job 
k  considering no-concurrency of facilities with job )1( −k . 

Next, consider imposing precedence constraints on the 
processing start time of job k . Assume that processing 
cannot begin until nk D∈)(u  for various operational or set- 
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Figure 2.  Relationships between the relevant variables, vectors and 

matrices. 

up reasons. For facilities that satisfy )(ki R∉ , or if there is 
no constraint on the processing start time, we set 

ε=ik)]([u . According to these assumptions, (7) is ex-
tended as: 

)]()1([)( kkk k uxMx ⊕−= , (8)

where )(ku  is also interpreted as the input variables. 

III. PROPOSED METHOD 
Although policies (A) and (B) differ significantly from 

each other, the only difference in the state equation is in the 
transition matrices kM  and kA . This means that we can 
transfer policies per job by transferring only the transition 
matrix. Once a method of calculating both transition 
matrices from common parameters has been developed, 
such transfer can be accomplished easily. Therefore, this 
section investigates methods for calculating the transition 
matrices and converting these matrices to one another, 
taking the following into consideration: 

• Use of facilities: Each job uses all installed facilities, 
or the list of facilities used differs per job. 

• Scheduling policy: Precedence constraints are im-
posed, or the relative start or completion times are 
supplied. 

A. Scope of this research 
In Fig. 2, we depict the relationships that are clarified by 

this research. For simplicity, suffixes for vectors and 
matrices )(k , k*  are omitted. nk D∈)(y  is used to supply 
the scheduled output times, also handled as the input 
variables. n

L k D∈)(x  returns the latest processing ‘start’ 
times, and n

M k D∈)(x  is expected to supply the processing 
‘completion’ times as required parameters. Each arrow 
depicts that the downstream parameters and variables are 
obtained by using those upstream. The thick dashed arrows 
represent the relationships that are examined in this research. 
For the thin dotted arrows, we assume that both the up-
stream and downstream values are equivalent. ’Th.’ Denotes 
a theorem that is examined in a subsequent subsection. For 
example, the transition matrix kA  is obtained from )(kd  
and kF , and kM  from )(ka  and )(kb . 

B. Transition matrix for cases with fixed relative times 
The transition matrix kM  in (6) is a function of the 

processing start and completion times of job k , )(ka  and 
)(kb , respectively. On the other hand, occupation times 

)(kd  in facilities are not explicitly included in the represen-
tation. This means we should supply parameters or matrices 
other than those for the transition matrix kA . This is not 
suitable for practical operations. Accordingly, we develop a 
method for deriving the transition matrix kM  from )(kb  
and )(kd , by which both transition matrices can be calcu-
lated. Now, consider a matrix nn

k
×∈DQ  that satisfies the 

following: 

⎩
⎨
⎧ ∈∈−

=
otherwise.:

)(and)(if:)]([)]([
][

ε
kjkikk ji

ijk

RRab
Q  (9)

Noting that 0)]([)]([ ≥− ji kk ab  holds true if )(kj R∈ , the 
transition matrix kM  in (5) can be rewritten as 

kk QeM ⊕= . 
Next, consider representing kQ  with only )(kb  and kP . 

This is given by a theorem below.  

Theorem 1: nn
k

×∈DQ  is computed using the following 
relationship: 

kk kk PbbQ ⊗⊗= )()( . (10)

Proof. For simplicity, suffixes )(k , k*  are omitted. In (10), 
the ),( ji th element of the right-hand side is transformed 
into: 

.][][][][][

}][]{[][ 1

jjijij

ljil
n
lij

dbbdbb

PbbPbb

++=+⊗=

+⊗=⊗⊗ ⊕ =  (11)

If )(kj R∈ , ε≠j][b  and jj ][][ bb −=  are followed 
and indicates: jijji ][][][][][ abdbb −=++ . Moreover, if 

)(ki R∉ , this yields εε =− j][a . 
On the other hand, if )(kj R∉ , ε== jj ][][ bb  holds 

true and indicates: ε=++ jji ][][][ dbb . These results 
imply that (11) holds true, which proves the proposition. 
� 
Consequently, the transition matrix kM  can be com-

puted from )(kb  and kP , in the following manner: 

kk kk PbbeM ⊗⊗⊕= )()( .  

There are several ways of supplying )(kb . The most 
acceptable is dependent on the target system, and several 
common methods are evaluated in the next subsection. 

C. Schedules in mid-facilities 
Various methods can be used to supply the processing 

completion times. In policy (A) that requires precedence 
constraints, the following two are typically used. 

• The earliest times: Supplying the input time for the 
uppermost facility, the remaining facilities begin 
processing as soon as their inputs are available. 

• The latest times: Supplying the output time for the 
lowermost facility, the remaining facilities begin 
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processing at the latest time that will not cause the 
estimated output time to be delayed. 

In addition to these, the following method is particularly 
useful for application in practical systems. 

• The mid times: Midway between the earliest and 
latest times. 

Denote the earliest ‘completion’ times, latest ‘start’ 
times and mid ‘completion’ times of job k  by )(kEx , 

)(kLx  and )(kMx , respectively. As an example of the mid 
time, the definition below would be natural and easy to 
handle: 

.2/)})]([)](([)]({[)]([ iiLiEiM kkkk dxxx ++=  (12)

Recalling that the latest time is assigned to the start time, the 
processing time must be added to calculate the latest 
completion time. 

Supply the input and output times with nk D∈)(u  and n
k D∈+ )(y , respectively. It is known that )(kEx  and 

)(kL+x  are dual and are calculated as follows [4]: 

)()( kk kE uAx ⊗= , (13)

)()( kk T
kL ++ = yAx , (14)

If )(ki R∉ , we supply the following values as input and 
output variables: ε=ik)]([u , +∞=+ ik)]([ y . For the 
corresponding earliest completion and latest start times, 
these values are returned: 

ε=iE k)]([x , +∞=+ iL k)]([x . (15)

Since (14) is defined in 
n
D , the elements of )(kL+x  

and )(k+y  that have +∞  must be inverted before using (12). 
This operation can be accomplished by introducing a new 
operator. However, it would be better if we can calculate the 
latest times by using operators and rules that have been 
already defined. Hence, we derive another formula by which 

)(kLx  is calculated in field nD . This is accomplished by 
considering the next theorem. 

Theorem 2: If we supply the output times as nk D∈)(y , the 
latest processing start times for job k  are computed using 
the following formula: 

kL kk Ayx ⊗= )()( , (16)

where )(kLx  returns ε=iL k)]([x  if )(ki R∉ , and 
Rx ∈iL k)]([  if )(ki R∈ . With respect to )(ky , set 
ε=jk)]([ y  if )(kj R∉  and there is at least one instance j  

that satisfies Ry ∈jk)]([  and )(kj R∈ . 

Proof. For simplicity, suffixes )(k , k*  are omitted. The i th 
element of (16) can be expanded as: 

[ ] )][]([1 lil
n
li AyAy +=⊗ ⊕ =

 (17)

⎪⎩

⎪
⎨
⎧

+−
≤≤=+

=
⊕ =

otherwise.:)][]([
),1(allfor][][if:

1 lil
n
l

lil nll
Ay

Ay εε
  

On the other hand, the i th element of (14) is expanded as:  

⎩
⎨
⎧

+−
+∞=+−∞+

=

+−=

+=

+

+=+

⊕

∧

otherwise.:)][]([
,allfor][][if:

)][][(][

1

1

lli
n
l

lli

lil
Tn

li
T

l
yA

yA

yAyA
 (18)

First, examine the case where )(ki R∉ . In this case, the 
property of the transition matrix A  follows ε=li][A  for all 
l  ),1( ilnl ≠≤≤ . For the case il = , Rli ∈][A , +∞=l][ y  
and ε== ll ][][ yy  hold true. Thus, 

ε=+=+ + lillil ][][][][ AyAy  is true for all l  )1( nl ≤≤ , 
which indicates that:  

[ ]iAy ⊗  and i
T ][ +yA ,  

return ε  and +∞ , respectively. 
Next, consider the case for )(ki R∈ . Recalling the as-

sumptions, the latest processing start time in facility i  is 
affected by at least one estimated output time in a down-
stream facility. This indicates that there is at least one 
instance l  which satisfies: Rli ∈][A , Rl ∈][ y  and 

Rl ∈+ ][ y . This yields: 

Ry lillil ∈+=+ + )][]([)][]([ AyA . (19)

The set of l  which satisfies (19) is interpreted as those that 
have an external output, and located downstream of facility 
i  or facility i  itself. With respect to other facilities, they do 
not have an external output or are located upstream of 
facility i . This implies: ε== + ll ][][ yy  or ε=li][A , 
which yields: ε=+=+ + )][]([)][]([ lillil AyAy . 

Accordingly, the lower cases of (17) and (18) return the 
same finite value. This is equivalent to the latest start time 
in facility i . 
� 
A primary feature of (16) is that the calculation is closed 

in the field nD . This would make the relevant computations 
simpler. 

Next, a method for determining the base time for )(kb  is 
considered. In (10), the ‘difference’ of two elements of 

)(kb  plays a more important role than the absolute value. 
Thus we can set ek i =)]([u  for a facility )(ki R∈  with an 
external input, without loss of generality. In a similar way, 
we can set ek i =)]([ y  for a facility )(ki R∈  with an 
external output. However, note that the base times for )(ku  
and )(ky  must be the same if we supply )(kb  with )(kMx  
in (12). 

D. Commonality of required parameters 
From the previous discussions, we are now in a position 

to calculate the transition matrices for both policies (A) and 
(B) once )(kd  and kF  have been prepared. The former 
vector represents the processing times whilst the latter 
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matrix represents the precedence constraints. This is 
confirmed by Fig.2. 

First, the transition matrix kA  for policy (A) is obtained 
in a straightforward way by supplying )(kd  and kF . Next, 
supply the input variables )(ku  with a base time 0, and 
calculate the earliest processing completion times )(kEx  
using (13). Extracting required elements from these, we set 
the output variables )(ky . Then, calculate the latest 
processing start times )(kLx  using (16). After the mid 
times )(kMx  have been set using (12), we equate those to 
the processing completion times )(kb . In the final stage, the 
transition matrix kM  is obtained using )(kb  and )(kd . 

E. Change of policy 
We now develop a method to obtain the transition ma-

trix kA  for policy (A), from parameters )(ka  and )(kb  that 
is suitable for policy (B). Since )(kd  represent the occupa-
tion times in the respective facilities, the next relationship is 
obtained: 

)]([diag)()( kkk abd ⊗= . (20)

The correctness of this formula is confirmed as follows; if 
)(ki R∈ , the right-hand side of (20) is expanded as: 

.)]([)]([)]([])([

)]([diag)]([1

iiii

lil
n
l

kkkk

kk

abab

ab

−=+=

+⊕ =   

On the other hand, if )(ki R∉ , the right-hand side is 
εεεεε =+=+ . Subsequently, )])([diag( kk dP =  is 

calculated. This can also be calculated with )(ka  and )(kb  
as : 

)]([diag)]([diag kkk abP ⊗= .  

Next, consider a procedure to obtain kF . We interpret 
ijk ][F  as the transition time between two facilities, rather 

than having a precedence constraint. The time between two 
arbitrary facilities is identified using the following theorem. 

Theorem 3: If the occupation times nn
k

×∈DP  and process-
ing completion times nk D∈)(b  for job k  are supplied, a 
matrix nn

k
×∈DT  that returns the transition times between 

two arbitrary facilities is given by: 

kk QT = , (21)

where kQ  represents the matrix used in Theorem 1. 
Moreover, if )(ki R∉  or )(kj R∉ , ijk ][T  returns ε . 

Proof. From (9), if )(ki R∈  and )(kj R∈ , it follows that: 

jiijijk kkkk )]([)]([))]([)](([][ baabQ −=−−= .  

The right-hand side indicates the difference between the 
processing start time in facility i  and the processing 
completion time in facility j , which is equivalent to the 

transition time from facility j  to i . Accordingly, if 
)(ki R∈  and )(kj R∈ , ijkijk ][][ QT =  is satisfied. 

Next, if )(ki R∉  or )(kj R∉  because (9) indicates that 
ε=ijk ][Q , ε== ijkijk ][][ QT  follows directly. Thus the 

transition times between two arbitrary facilities can be 
calculated using (21). 
� 
Note that kT  in (21) is not a representation matrix of the 

DAG. This is because order relations are not taken into 
consideration in the heap model. Thus additional informa-
tion regarding order relations must be supplied for trans-
forming kT  into the transition matrix kF  for policy (A). 
Denoting the list of preceding facilities of facility i  

)1( ni ≤≤  by )(kiP , kF  is determined by: 
=ijk ][F { ijk ][T : if )(kj iP∈ , ε : otherwise}. 

IV. NUMERICAL EXAMPLE 
A numerical example of a simple system is presented to 

confirm the effectiveness of the proposed methods. Fig. 3 
depicts the schedules for two jobs in a system with five 
facilities. In the initial stage, assume that jobs 1=k  and 

2=k  are scheduled based on policies (A) and (B), 
respectively. The arrows represent precedence constraints. 
Bars with thick lines on either the left or right side mean 
that the corresponding facilities are attached to an external 
input or output, respectively. Since job 2=k  is based on 
the heap model, the precedence constraints are ignored. 

For job 1=k , the adjacency matrix 1F  and the occupa-
tion times )1(d  are supplied as follows:  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

εεε
εεεε
εεεε
εεεεε
εεεεε

ee
e
e1F , 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
3
2

)1(

ε

d . (22)

For job 2=k , the processing start and completion times 
for using all the facilities, )2(a  and )2(b , respectively, are 
supplied in the following manner: 

T]10768[)2( ε=a , T]119710[)2( ε=b . (23)

First, the transition matrix for policy (B) is obtained from 
the parameters in (22). The external input is attached to 
facility 2, and we supply the input vector )1(u  as 

Te ][)1( εεεε=u . Since there is no job at 0=k , it 
follows that εx =)0( . Hence, the transition matrix 1A  and 
the earliest processing completion times )1(Ex  are calcu-
lated by utilizing (1) and (4), as follows: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1246
13

35
2

1

ε
εεε
εεε
εεεε
εεεεε

A , 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6
3
5
2

)1(

ε

Ex .  
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Figure 3.  Initial schedule for two jobs. 

Noting that the external output is attached to facility 5, 
the estimated output time )1(y  is supplied by extracting 
only the fifth element of )1(Ex : =)1(y  T]6[ εεεε . 
With the help of (16), )1(Lx  is obtained as: 

T
L e ]542[)1( ε=x . Only facility 4 has a float time of 

two time units. For fixing the relative times, we supply mid 
times )1(Mx  here. Using (12), )1(Mx  is obtained which is 
set as the fixed processing completion times )1(b : 

)1(]6452[)1( bx ≡= T
M ε . (24)

Using (10), (20) and (23), the transition matrix for policy 
(B), 1M  )( 1Qe ⊕= , can be calculated as: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

1346
1124

235
312

1

ε
ε
ε
ε

εεεε

e
e

e

M . (25)

Next, the transition matrix for policy (A) is obtained 
from the parameters in (23). With the help of (20), 

T]1212[)2( ε=d  is obtained. Then, using Theorem 1, 
the transition matrix 2M  is calculated as: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

1453
1231

311
342

2

ε
ε

εεεε
ε
ε

e
e

e

M . (26)

In addition, with the help of (21), we calculate the transition 
times between two arbitrary facilities represented by 2T : 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−−−
−−−

=

113
423

5314
3112

2

ε
ε

εεεε
ε
ε

e
e

eT .  

Furthermore, additional information regarding the prece-
dence constraints is supplied to extract the necessary 
elements of 2T , followed by setting all other elements to ε . 

Here, assume that the dashed arrows in Fig. 3 represent the 
precedence constraints. Accordingly, only four elements of 
the adjacency matrix, )2,1( , )2,4( , )1,5(  and )4,5( , are 
extracted to reflect the precedence constraints: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

εεε
εεεε
εεεεε
εεεεε
εεεε

1

1

2

e
e

F .  

This matrix can be interpreted as the adjacency matrix 
taking into account the transition times, which can be 
confirmed directly from Fig. 3. 

As the above shows, by utilizing the proposed methods, 
policy (A) can be transferred to policy (B), and the reverse 
is also possible. Thus, we now have an intelligent method of 
transferring progress control policies for each job. 

V. CONCLUSION 
This research has focused on scheduling problems for a 

class of repetitive discrete event systems, and proposed a 
method for transferring two scheduling policies to control 
the progress of jobs. With the proposed method, we can 
select two policies, (A) and (B) for each job; the former 
policy is based on precedence constraints whilst the latter 
allows the completion of a job after a predetermined time 
has lapsed. We proposed a method for calculating two 
transition matrices by supplying a common parameter vector 
and matrix. 
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