
Transferring the Progress Control Policy for a Class of Discrete Event Systems

Hiroyuki Goto
Department of Management and Information Systems Science

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan
e-mail: hgoto@kjs.nagaokaut.ac.jp

Takakazu Tsubokawa
Faculty of Management and Information Systems Engineering

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan

e-mail: s073368@ics.nagaokaut.ac.jp

Abstract—This research develops an intelligent method of
transferring progress control policies for a class of repetitive
discrete event systems, whose approach is based on Dioid
algebra. The commonly used policies include a method that
requires precedence constraints regarding processing order
relations, and a method where relative processing start and
completion times of all facilities need specified. However, in the
conventional methods, these frameworks for handling the state
equation differ significantly and not been unified yet. Hence,
this research proposes a method of transferring the transition
matrices, and accomplishes a method of transferring the
progress control policy per job.

Keywords-Dioid algebra; adjacency matrix; state-space
representation; directed asyclic graph; progress control;

I. INTRODUCTION
This research focuses on scheduling problems for a class

of discrete event systems, and develops a method for
progress control of jobs. The primary formulation is based
on Dioid algebra [1], [2], a class of discrete mathematics. In
the target systems, the installed facilities are repetitively
used, the number of maximum jobs that can be processed
simultaneously is one or a finite value, and no concurrency
constraints are imposed in the facilities. The behavior of
these systems can be described by simple linear equations in
Dioid algebra. Specifically, using max-plus algebra [2], [3],
on which the max and ‘+’ operations are defined as addition
and multiplication, the earliest times of event propagation
can be represented by a form similar to the state space
representation in modern control theory.

In the well-known simple state equation, we assume that
all jobs use all the installed facilities, where occupation
times in each facility are constant, independent of the job
number. These assumptions are somewhat restrictive, with
the result that several extensions are needed for application
to practical systems. For instance, we sometimes have to
address systems with in which, (i) the occupation times in
facilities and (ii) the facilities used, differ for each job. With
respect to issue (i), [4] and [5] extend the conventional state
equation to ‘event-varying’ system types, using the analogy
of time-varying systems in modern control theory. Regard-
ing issue (ii), [6] and [7] adopt the concept of a ‘heap
model’, assimilating an appearance of a Gantt chart express-
ing a job’s schedule.

In executing a single job, the following two methods are
commonly used for progress control.

• (A) Precedence constraints and occupation times in
the respective facilities are specified, and the proc-
essing start and completion times are variable as
long as the precedence constraints are adhered to.

• (B) From commencement to completion of a job, all
processing start and completion times for using fa-
cilities are specified in terms of relative time.

Hereafter, these are referred to as policies (A) and (B),
respectively. In policy (A), processing is supposed to start
as soon as all required materials are supplied and the
relative facility is ready. This policy is suitable for systems
where ‘bulk processing’ is desirable. In contrast, policy (B)
is suitable if we wish to finish the job after a certain
predetermined time has lapsed.

The difference between these two policies appears in the
transition matrices of the state equation. In [4], [5] and [8],
policy (A) is adopted to handle systems of event-varying
types in which the occupation times in facilities differ by
job. However, it is assumed that all jobs use all installed
facilities, which means that policy (B) cannot be imple-
mented. By contrast, [6] and [7] address issue (ii) and policy
(B), but they can not create schedules based on earliest time.
For application to a wider class of practical systems, it is
desirable to consider both issues (i) and (ii), and to transfer
or mix policies (A) and (B).

This research therefore, proposes a method for calculat-
ing the transition matrices for both policies by using
common parameter vectors and matrices.

II. PRELIMINARIES
Denoting the real field by R , we define a field

∪= RD { }∞− . For D∈yx, , we define the following
operators: x),(max yxy =⊕ , yxyx +=⊗ and ⋅=⊗ xx y
y . Unit elements for operators ⊕ and ⊗ are denoted by ε

)(−∞= and)0(=e , respectively. If rq ≤ , max(=⊕ = l
r

ql x
),,, 1 rqq xxx L+ . For matrices, if nm×∈DYX , and ∈Z

pn×D ,)][,]([max][ijijij YXYX =⊕ , il
n
lij][(][1 XZX =⊕=⊗

)][ljZ+ . We denote the unit matrices for operators ⊕ and
⊗ by ε and e , respectively. ε is a matrix in which all
elements are ε , and e a matrix in which the diagonal
elements are e and off-diagonal elements are ε . Operator
⊗ is higher precedence than ⊕ , and ⊗ is abbreviated
when no confusion is likely to arise. The Kleene star
operator [9] is defined in nn×∈DX , as follows: =*X

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.18

755

L⊕⊕⊕=⊕∞
=

2
0 XXeX l

l . If matrix X is a representa-
tion matrix of a weighted DAG (Directed Acyclic Graph),
there is an instance of s that satisfies εX ≠−1s , εX =s 1(

)ns ≤≤ , and the operator can be calculated by adding a
finite set of powers of X : ⊕= eX * 1−⊕⊕ sXX L .
Moreover, in a field { }∞±∪= RD , the following opera-
tors are defined. If D∈yx, ,),(min yxyx =∧ . If nm ≤ ,

),,,min(1 rqql
r

ql xxxx L+= =∧ . For matrices nm×∈DX , ∈Z
ln×D ,)][][(][1 ljil

n
lij ZXZX +−∧= = , =ij][X { ji][X− if

ε≠ji][X , ε if ε=ji][X }.

A. State equation for systems with precedence constraints
We briefly review the method of [4] that adopts policy

(A), and implement several extensions. Let the number of
installed facilities be n . Assume that each job uses all
installed facilities exactly once, and the precedence con-
straints are represented by a DAG. For the k th job, we
denote the occupation times in the facilities by nk D∈)(d ,
and the list of preceding facilities of facility i)1(ni ≤≤ by

)(kiP . Moreover, we introduce the following two parameter
matrices:)]([diag kk dP = ,

=ijk][F { e : if)(kj iP∈ , ε : if)(kj iP∉ }, (1)

where kF is referred to as the adjacency matrix. Denoting
the earliest processing completion times by)(kEx and the
minimum value for the processing completion times for job
k by nk D∈)(u , iE k)]([x can be represented as:

.)]([)]1([)]([

)]([)]1([)]([
)]([)]([

)(

iiiEk

iijE
kj

iiE

kkk

kkk
kk

uxxF

uxx
dx

⊕−⊕=

⊕−⊕=

−

⊕
∈ iP

 (2)

The first term of the right-hand side gives the maximum
value for the processing completion times in the preceding
facilities, the second term indicates no concurrency with
respect to the previous job, whilst the third term expresses
the minimum time at which processing can start. Now
transfer ik)]([d in the left-hand side of (2) to the right-hand
side, and express it as kP . Since this relationship is true for
all i)1(ni ≤≤ , it can be summarized as:

)]()1([)()(kkkk kEkkE uxPxFPx ⊕−⊕= . (3)

By substituting the entire right-hand side of (3) for the first
term, and repeating this, we obtain:

)]()1([)(kkk kE uxAx ⊕−= , (4)

where kkkk PFPA *)(= . Recall here that there is an instance
s)1(ns ≤≤ that satisfies εFP =s

kk)(if kk FP is a
representation matrix of the DAG. It should be noted that
[4] uses the input matrix 0B and input variables)(ku for
stating the earliest processing start times, which is applica-
ble only in cases where the input locations are fixed and
independent of the job number. This research, on the other

0 1 2 3

1
2
3
4
5

Time

Facility

0 1 2 3

1
2
3
4
5

Time

Facility
Figure 1. Ganntt chart of a schedule, given by a heap of pieces.

hand, aims to handle more general cases in which the set of
facilities used differs per job. Hence, we use)(ku only,
without the input matrix.

B. State equation based on a heap model
If the list of facilities used differs per job and the proc-

essing start times for each facility are supplied as relative
values, the state equation based on the heap model can be
utilized. Here, we briefly review the method in [6] that
adopts policy (B), and make several extensions.

Suppose the number of facilities is n , and the list of
facilities used by job k is)(kR . If the job uses facility i
1()ni ≤≤ , we express this as)(ki R∈ , and as)(ki R∉

otherwise. Set the time 0tt = as the base time, and denote
the relative processing start and completion times by

nk D∈)(a and nk D∈)(b , respectively. Then, the following
properties hold; if)(ki R∉ , then ε== ii kk)]([)]([ba , if i

)(kR∈ , then ε≠ik)]([a , ε≠ik)]([b , ≥− ii kk)]([)]([ab
0 . Normally, the base time is set as iki kt)]([)(0 a∧∈

=
R

. For
example, if the schedule for job k is given in Fig. 1,

=)(ka Tee]21[ε , Tk]3212[)(ε=b . Next, consider
matrix nn

k
×∈DM which has the following properties:

⎪
⎩

⎪
⎨

⎧
∉=
∈∈−

=
otherwise.:

),(andif:
),(and)(if:)]([)]([

][
ε

kjjie
kjkikk ji

ijk R
RRab

M (5)

This matrix can also be expressed as:

)()(kkk abeM ⊗⊕= . (6)

Denoting the absolute values of the earliest processing
completion times of job k by)(kEx ,

{ }

.)]1([)]1([][

)]1([)]([)]([)]1([)]([

1

)(

ikjijk

n

j

ijij
kj

iE

kk

kkkkk

−=−⊗=

−⊕−+−=

⊕

⊕

=

∈

xMxM

xabxx
R

Since this is true for all i)1(ni ≤≤ , if follows that:

)1()(−= kk kE xMx . (7)

Equation (7) represents the earliest processing times for job
k considering no-concurrency of facilities with job)1(−k .

Next, consider imposing precedence constraints on the
processing start time of job k . Assume that processing
cannot begin until nk D∈)(u for various operational or set-

756

u

b
a

d

yF

M

A

Ex

Lx

Mx
Th.1

Th.2

Th.3

u

b
a

d

yF

M

A

Ex

Lx

Mx
Th.1

Th.2

Th.3

Figure 2. Relationships between the relevant variables, vectors and

matrices.

up reasons. For facilities that satisfy)(ki R∉ , or if there is
no constraint on the processing start time, we set

ε=ik)]([u . According to these assumptions, (7) is ex-
tended as:

)]()1([)(kkk k uxMx ⊕−= , (8)

where)(ku is also interpreted as the input variables.

III. PROPOSED METHOD
Although policies (A) and (B) differ significantly from

each other, the only difference in the state equation is in the
transition matrices kM and kA . This means that we can
transfer policies per job by transferring only the transition
matrix. Once a method of calculating both transition
matrices from common parameters has been developed,
such transfer can be accomplished easily. Therefore, this
section investigates methods for calculating the transition
matrices and converting these matrices to one another,
taking the following into consideration:

• Use of facilities: Each job uses all installed facilities,
or the list of facilities used differs per job.

• Scheduling policy: Precedence constraints are im-
posed, or the relative start or completion times are
supplied.

A. Scope of this research
In Fig. 2, we depict the relationships that are clarified by

this research. For simplicity, suffixes for vectors and
matrices)(k , k* are omitted. nk D∈)(y is used to supply
the scheduled output times, also handled as the input
variables. n

L k D∈)(x returns the latest processing ‘start’
times, and n

M k D∈)(x is expected to supply the processing
‘completion’ times as required parameters. Each arrow
depicts that the downstream parameters and variables are
obtained by using those upstream. The thick dashed arrows
represent the relationships that are examined in this research.
For the thin dotted arrows, we assume that both the up-
stream and downstream values are equivalent. ’Th.’ Denotes
a theorem that is examined in a subsequent subsection. For
example, the transition matrix kA is obtained from)(kd
and kF , and kM from)(ka and)(kb .

B. Transition matrix for cases with fixed relative times
The transition matrix kM in (6) is a function of the

processing start and completion times of job k ,)(ka and
)(kb , respectively. On the other hand, occupation times

)(kd in facilities are not explicitly included in the represen-
tation. This means we should supply parameters or matrices
other than those for the transition matrix kA . This is not
suitable for practical operations. Accordingly, we develop a
method for deriving the transition matrix kM from)(kb
and)(kd , by which both transition matrices can be calcu-
lated. Now, consider a matrix nn

k
×∈DQ that satisfies the

following:

⎩
⎨
⎧ ∈∈−

=
otherwise.:

)(and)(if:)]([)]([
][

ε
kjkikk ji

ijk

RRab
Q (9)

Noting that 0)]([)]([≥− ji kk ab holds true if)(kj R∈ , the
transition matrix kM in (5) can be rewritten as

kk QeM ⊕= .
Next, consider representing kQ with only)(kb and kP .

This is given by a theorem below.

Theorem 1: nn
k

×∈DQ is computed using the following
relationship:

kk kk PbbQ ⊗⊗=)()(. (10)

Proof. For simplicity, suffixes)(k , k* are omitted. In (10),
the),(ji th element of the right-hand side is transformed
into:

.][][][][][

}][]{[][1

jjijij

ljil
n
lij

dbbdbb

PbbPbb

++=+⊗=

+⊗=⊗⊗ ⊕ = (11)

If)(kj R∈ , ε≠j][b and jj][][bb −= are followed
and indicates: jijji][][][][][abdbb −=++ . Moreover, if

)(ki R∉ , this yields εε =− j][a .
On the other hand, if)(kj R∉ , ε== jj][][bb holds

true and indicates: ε=++ jji][][][dbb . These results
imply that (11) holds true, which proves the proposition.
�
Consequently, the transition matrix kM can be com-

puted from)(kb and kP , in the following manner:

kk kk PbbeM ⊗⊗⊕=)()(.

There are several ways of supplying)(kb . The most
acceptable is dependent on the target system, and several
common methods are evaluated in the next subsection.

C. Schedules in mid-facilities
Various methods can be used to supply the processing

completion times. In policy (A) that requires precedence
constraints, the following two are typically used.

• The earliest times: Supplying the input time for the
uppermost facility, the remaining facilities begin
processing as soon as their inputs are available.

• The latest times: Supplying the output time for the
lowermost facility, the remaining facilities begin

757

processing at the latest time that will not cause the
estimated output time to be delayed.

In addition to these, the following method is particularly
useful for application in practical systems.

• The mid times: Midway between the earliest and
latest times.

Denote the earliest ‘completion’ times, latest ‘start’
times and mid ‘completion’ times of job k by)(kEx ,

)(kLx and)(kMx , respectively. As an example of the mid
time, the definition below would be natural and easy to
handle:

.2/)})]([)](([)]({[)]([iiLiEiM kkkk dxxx ++= (12)

Recalling that the latest time is assigned to the start time, the
processing time must be added to calculate the latest
completion time.

Supply the input and output times with nk D∈)(u and n
k D∈+)(y , respectively. It is known that)(kEx and

)(kL+x are dual and are calculated as follows [4]:

)()(kk kE uAx ⊗= , (13)

)()(kk T
kL ++ = yAx , (14)

If)(ki R∉ , we supply the following values as input and
output variables: ε=ik)]([u , +∞=+ ik)]([y . For the
corresponding earliest completion and latest start times,
these values are returned:

ε=iE k)]([x , +∞=+ iL k)]([x . (15)

Since (14) is defined in
n
D , the elements of)(kL+x

and)(k+y that have +∞ must be inverted before using (12).
This operation can be accomplished by introducing a new
operator. However, it would be better if we can calculate the
latest times by using operators and rules that have been
already defined. Hence, we derive another formula by which

)(kLx is calculated in field nD . This is accomplished by
considering the next theorem.

Theorem 2: If we supply the output times as nk D∈)(y , the
latest processing start times for job k are computed using
the following formula:

kL kk Ayx ⊗=)()(, (16)

where)(kLx returns ε=iL k)]([x if)(ki R∉ , and
Rx ∈iL k)]([if)(ki R∈ . With respect to)(ky , set
ε=jk)]([y if)(kj R∉ and there is at least one instance j

that satisfies Ry ∈jk)]([and)(kj R∈ .

Proof. For simplicity, suffixes)(k , k* are omitted. The i th
element of (16) can be expanded as:

[])][]([1 lil
n
li AyAy +=⊗ ⊕ =

 (17)

⎪⎩

⎪
⎨
⎧

+−
≤≤=+

=
⊕ =

otherwise.:)][]([
),1(allfor][][if:

1 lil
n
l

lil nll
Ay

Ay εε

On the other hand, the i th element of (14) is expanded as:

⎩
⎨
⎧

+−
+∞=+−∞+

=

+−=

+=

+

+=+

⊕

∧

otherwise.:)][]([
,allfor][][if:

)][][(][

1

1

lli
n
l

lli

lil
Tn

li
T

l
yA

yA

yAyA
 (18)

First, examine the case where)(ki R∉ . In this case, the
property of the transition matrix A follows ε=li][A for all
l),1(ilnl ≠≤≤ . For the case il = , Rli ∈][A , +∞=l][y
and ε== ll][][yy hold true. Thus,

ε=+=+ + lillil][][][][AyAy is true for all l)1(nl ≤≤ ,
which indicates that:

[]iAy ⊗ and i
T][+yA ,

return ε and +∞ , respectively.
Next, consider the case for)(ki R∈ . Recalling the as-

sumptions, the latest processing start time in facility i is
affected by at least one estimated output time in a down-
stream facility. This indicates that there is at least one
instance l which satisfies: Rli ∈][A , Rl ∈][y and

Rl ∈+][y . This yields:

Ry lillil ∈+=+ +)][]([)][]([AyA . (19)

The set of l which satisfies (19) is interpreted as those that
have an external output, and located downstream of facility
i or facility i itself. With respect to other facilities, they do
not have an external output or are located upstream of
facility i . This implies: ε== + ll][][yy or ε=li][A ,
which yields: ε=+=+ +)][]([)][]([lillil AyAy .

Accordingly, the lower cases of (17) and (18) return the
same finite value. This is equivalent to the latest start time
in facility i .
�
A primary feature of (16) is that the calculation is closed

in the field nD . This would make the relevant computations
simpler.

Next, a method for determining the base time for)(kb is
considered. In (10), the ‘difference’ of two elements of

)(kb plays a more important role than the absolute value.
Thus we can set ek i =)]([u for a facility)(ki R∈ with an
external input, without loss of generality. In a similar way,
we can set ek i =)]([y for a facility)(ki R∈ with an
external output. However, note that the base times for)(ku
and)(ky must be the same if we supply)(kb with)(kMx
in (12).

D. Commonality of required parameters
From the previous discussions, we are now in a position

to calculate the transition matrices for both policies (A) and
(B) once)(kd and kF have been prepared. The former
vector represents the processing times whilst the latter

758

matrix represents the precedence constraints. This is
confirmed by Fig.2.

First, the transition matrix kA for policy (A) is obtained
in a straightforward way by supplying)(kd and kF . Next,
supply the input variables)(ku with a base time 0, and
calculate the earliest processing completion times)(kEx
using (13). Extracting required elements from these, we set
the output variables)(ky . Then, calculate the latest
processing start times)(kLx using (16). After the mid
times)(kMx have been set using (12), we equate those to
the processing completion times)(kb . In the final stage, the
transition matrix kM is obtained using)(kb and)(kd .

E. Change of policy
We now develop a method to obtain the transition ma-

trix kA for policy (A), from parameters)(ka and)(kb that
is suitable for policy (B). Since)(kd represent the occupa-
tion times in the respective facilities, the next relationship is
obtained:

)]([diag)()(kkk abd ⊗= . (20)

The correctness of this formula is confirmed as follows; if
)(ki R∈ , the right-hand side of (20) is expanded as:

.)]([)]([)]([])([

)]([diag)]([1

iiii

lil
n
l

kkkk

kk

abab

ab

−=+=

+⊕ =

On the other hand, if)(ki R∉ , the right-hand side is
εεεεε =+=+ . Subsequently,)])([diag(kk dP = is

calculated. This can also be calculated with)(ka and)(kb
as :

)]([diag)]([diag kkk abP ⊗= .

Next, consider a procedure to obtain kF . We interpret
ijk][F as the transition time between two facilities, rather

than having a precedence constraint. The time between two
arbitrary facilities is identified using the following theorem.

Theorem 3: If the occupation times nn
k

×∈DP and process-
ing completion times nk D∈)(b for job k are supplied, a
matrix nn

k
×∈DT that returns the transition times between

two arbitrary facilities is given by:

kk QT = , (21)

where kQ represents the matrix used in Theorem 1.
Moreover, if)(ki R∉ or)(kj R∉ , ijk][T returns ε .

Proof. From (9), if)(ki R∈ and)(kj R∈ , it follows that:

jiijijk kkkk)]([)]([))]([)](([][baabQ −=−−= .

The right-hand side indicates the difference between the
processing start time in facility i and the processing
completion time in facility j , which is equivalent to the

transition time from facility j to i . Accordingly, if
)(ki R∈ and)(kj R∈ , ijkijk][][QT = is satisfied.

Next, if)(ki R∉ or)(kj R∉ because (9) indicates that
ε=ijk][Q , ε== ijkijk][][QT follows directly. Thus the

transition times between two arbitrary facilities can be
calculated using (21).
�
Note that kT in (21) is not a representation matrix of the

DAG. This is because order relations are not taken into
consideration in the heap model. Thus additional informa-
tion regarding order relations must be supplied for trans-
forming kT into the transition matrix kF for policy (A).
Denoting the list of preceding facilities of facility i

)1(ni ≤≤ by)(kiP , kF is determined by:
=ijk][F { ijk][T : if)(kj iP∈ , ε : otherwise}.

IV. NUMERICAL EXAMPLE
A numerical example of a simple system is presented to

confirm the effectiveness of the proposed methods. Fig. 3
depicts the schedules for two jobs in a system with five
facilities. In the initial stage, assume that jobs 1=k and

2=k are scheduled based on policies (A) and (B),
respectively. The arrows represent precedence constraints.
Bars with thick lines on either the left or right side mean
that the corresponding facilities are attached to an external
input or output, respectively. Since job 2=k is based on
the heap model, the precedence constraints are ignored.

For job 1=k , the adjacency matrix 1F and the occupa-
tion times)1(d are supplied as follows:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

εεε
εεεε
εεεε
εεεεε
εεεεε

ee
e
e1F ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
1
3
2

)1(

ε

d . (22)

For job 2=k , the processing start and completion times
for using all the facilities,)2(a and)2(b , respectively, are
supplied in the following manner:

T]10768[)2(ε=a , T]119710[)2(ε=b . (23)

First, the transition matrix for policy (B) is obtained from
the parameters in (22). The external input is attached to
facility 2, and we supply the input vector)1(u as

Te][)1(εεεε=u . Since there is no job at 0=k , it
follows that εx =)0(. Hence, the transition matrix 1A and
the earliest processing completion times)1(Ex are calcu-
lated by utilizing (1) and (4), as follows:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1246
13

35
2

1

ε
εεε
εεε
εεεε
εεεεε

A ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6
3
5
2

)1(

ε

Ex .

759

Time

(1)

(2)

(3)

(4)

(5)

10
Facility

0 5

1=k

2=k

Figure 3. Initial schedule for two jobs.

Noting that the external output is attached to facility 5,
the estimated output time)1(y is supplied by extracting
only the fifth element of)1(Ex : =)1(y T]6[εεεε .
With the help of (16),)1(Lx is obtained as:

T
L e]542[)1(ε=x . Only facility 4 has a float time of

two time units. For fixing the relative times, we supply mid
times)1(Mx here. Using (12),)1(Mx is obtained which is
set as the fixed processing completion times)1(b :

)1(]6452[)1(bx ≡= T
M ε . (24)

Using (10), (20) and (23), the transition matrix for policy
(B), 1M)(1Qe ⊕= , can be calculated as:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

1346
1124

235
312

1

ε
ε
ε
ε

εεεε

e
e

e

M . (25)

Next, the transition matrix for policy (A) is obtained
from the parameters in (23). With the help of (20),

T]1212[)2(ε=d is obtained. Then, using Theorem 1,
the transition matrix 2M is calculated as:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

1453
1231

311
342

2

ε
ε

εεεε
ε
ε

e
e

e

M . (26)

In addition, with the help of (21), we calculate the transition
times between two arbitrary facilities represented by 2T :

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−−−
−−−

=

113
423

5314
3112

2

ε
ε

εεεε
ε
ε

e
e

eT .

Furthermore, additional information regarding the prece-
dence constraints is supplied to extract the necessary
elements of 2T , followed by setting all other elements to ε .

Here, assume that the dashed arrows in Fig. 3 represent the
precedence constraints. Accordingly, only four elements of
the adjacency matrix,)2,1(,)2,4(,)1,5(and)4,5(, are
extracted to reflect the precedence constraints:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

εεε
εεεε
εεεεε
εεεεε
εεεε

1

1

2

e
e

F .

This matrix can be interpreted as the adjacency matrix
taking into account the transition times, which can be
confirmed directly from Fig. 3.

As the above shows, by utilizing the proposed methods,
policy (A) can be transferred to policy (B), and the reverse
is also possible. Thus, we now have an intelligent method of
transferring progress control policies for each job.

V. CONCLUSION
This research has focused on scheduling problems for a

class of repetitive discrete event systems, and proposed a
method for transferring two scheduling policies to control
the progress of jobs. With the proposed method, we can
select two policies, (A) and (B) for each job; the former
policy is based on precedence constraints whilst the latter
allows the completion of a job after a predetermined time
has lapsed. We proposed a method for calculating two
transition matrices by supplying a common parameter vector
and matrix.

REFERENCES
[1] S. Lahaye, J. Boimond, and L. Hardouin, “Linear periodic systems

over dioids,” Discrete Event Dynamical Systems: Theory and
Applications, vol. 14, no. 2, pp. 133–152, 2004.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat,
Synchronization and Linearity. New York: John Wiley & Sons, 1992.
[Online]. Available: http://maxplus.org

[3] B. Heidergott, G. J. Olsder, and L. Woude, Max Plus at Work:
Modeling and Analysis of Synchronized Systems. New Jersey:
Princeton University Pr., 2006.

[4] H. Goto, “Dual representation of event-varying max-plus linear
systems,” International Journal of Computational Science, vol. 1, no.
3, pp. 225–242, 2007.

[5] H. Goto, “Dual representation and its online scheduling method for
event-varying DESs with capacity constraints,” International Journal
of Control, vol. 81, no. 4, pp. 651–660, 2008.

[6] S. Gaubert and J. Mairesse, “Modeling and analysis of timed petri
nets using heaps of pieces,” IEEE Transactions on Automatic Control,
vol. 44, no. 4, pp. 683–698, 1999.

[7] J. Mairesse and L. Vuillon, “Asymptotic behavior in a heap model
with two pieces,” Theoretical Computer Science, vol. 270, no. 1–2,
pp. 525–560, 2002.

[8] G. Schullerus and V. Krebs, “Diagnosis of batch processes based on
parameter Estimation of discrete event models,” Proceedings of the
European Control Conference, pp. 1612–1617, 2001.

[9] B. Cottenceau, L. Hardouin, J. Boimond, and J. Ferrier, “Model
reference control for timed event graphs in dioids,” Automatica, vol.
37, no. 9, pp. 1451–1458 , 2001.

760

