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Abstract— The identification problem considered in this work,
consists in compute an Interpreted Petri Net (IPN) model, in
proportion as new output signals of the system are observed. The
identification problem becomes complex when the complete state
of the system cannot be fully measured. The state information
that is not observed is inferred during the identification process
allowing the computed model represents the observed system
behavior. As the system evolves new information is revealed and
the wrong dependencies are eliminated in order to update the
computed model. Given this problem, in this paper are presented
the needed algorithms to identify a class of Petri Nets (PN) known
as state machines.
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[. INTRODUCTION

Analogous to identification of continuous dynamic systems,
identification of Discrete Event Systems (DES) consist in find
out the mathematical model that describes the system behavior.
In this work, the model is in general, an abstract machine that
represents the evolution of internal states, inputs, and outputs
of a DES.

This paper deals with the identification process from a
passive point of view. This approach is best adapted to on-line
operation; where the system is identified from the observation
of its output signals. A succession of models is built as the
system evolves in such way that the current model represents
the observed system behavior; so, every new computed model
acquires more details than the previous one, approaching to the
actual model of the system; this strategy is called asymptotic
identification [7][8].

Previous works on the matter have been published in the
computer science community; the problem was first stated as
the determination of a Finite Automata (FA) that accepts a
given regular language. In [2] a FA is computed from positive
samples (accepted words) of the language; it is shown that
this problem is NP complete. There exists several works that
presents polynomial identification algorithms to identify sub-
classes of regular languages: in [1] the identification algorithm
determines a FA using positive samples (accepted words) of
a zero-reversible language. Finally a work dealing with Petri
nets [4] presents an algorithm that builds a deterministic I-
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reversible automata (in PN terms); it also uses positive samples
of the system language.

The identification approach, can be used in many different
areas like in manufacturing systems, system communications,
etc., when the model cannot be computed because there
not exists enough information about the involved variables.
Also the identification approach can be used in an adaptive
control scheme, because the model is adapted to new observed
conditions.

This article is organized as follows. After preparing the
basic definitions and notations in section [2], we introduce the
asymptotic identification problem and the asymptotic identifi-
cation approach in section [3]. In section [4] is presented the
identification algorithm for the class of Petri nets known as
State Machines. Finally, the concluding remarks and discus-
sion of future work follow in section [5].

II. BACKGROUND

This section Introduces the definition of Interpreted PN
(IPN) and related concepts on DES modeling used in this
work. Fine PN surveys can be found in [3] and [6].

This work uses Interpreted Petri Nets (IPN) [5], an extension
to the PN that can represent DES input and output signals.

Definition 1: An Interpreted Petri Net is the 5-tuple @) =
(N,X,®, A\, ) where N is a PN with initial marking M,
¥ ={01,02,...,0,} is a finite set of elements o; called input
symbols, ® = {¢;, Py, ...,4,} is a finite set of elements ¢,
called output symbols, A : T — X U{e} is a labeling transition
function, where ¢ is the null symbol and ¢ : R(N, M) —
{®U{e}}7 is an output function; where R(N, M) is the set of
reachable markings and ¢ is the number of sensors associated
to places in Q.

In an IPN, if a transition ¢; is enabled and the input signal
A(tj) = a; # € is present then ¢; must fire else if A(t;) = ¢
then ¢; can be fired.

Definition 2: A place p; € P is said to be measurable if it
has a sensor signal assigned, and non measurable otherwise.
Non measurable places are depicted as dark circles.

This paper focuses on the case where & = Z7% (the
nonnegative integer numbers), and ¢ : R(N, My) — {Z+}!
is a linear function that can be represented by a ¢ X n matrix
¢ = [p;;], where the i-th row vector ¢; of ¢ is the transpose
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of the elemental vector e; (e;[i # j] =0, e;[j] = 1), if p; is
the ¢-th measurable place (¢; = ejT), according to the order
given by the place labeling.

The state equation of an IPN is completed as:

M1 = My + Cuy,
Yk = M,

(M

where y, = @M}, is a ¢ x 1 vector called output symbol.
Notice that an output symbol is the marking vector of the
measurable places in the marking M.

The incidence matrix C' of an IPN @ can be decomposed as

pC
o { gl
and no measurable places of ) respectively, and v is a
linear function defined in a similar way than ¢ function
but considering the non measurable places instead of the
measurable places.

Definition 3: *t; denotes the set of all places p; such that
I(pi,tj) # 0 and 3 denotes the set of all places p; such that
O(ps,t;) # 0. *p; denotes the set of all transitions ¢; such
that O(p;,t;) # 0 and p? denotes the set of all transitions ¢;
such that I(p;,t;) # 0.

Definition 4: A firing sequence of an IPN () is a sequence
o = titj..ty such that My —5 My L5 M, 55 . The
set of all firing sequences is called the firing language of @,
£(Q) = {0’|O’ = titj...tk and M() L ]Vfl L Mw f—k>

, where ¢C' and ~C represents the measurable

Definition 5: Let () be an IPN. Two transition ¢; and ¢; of
@ form a dependency [t;,t;] iff Ip, such that p;, € ¢t and
pr €° t;. If pi is a non measurable place, then [t;,t;] will
be called a non measurable dependency (NDep), otherwise
will be called a measurable dependency (MDep). We use the
notation py = [t;, ;] referring to the fact that the place py
form a dependency between ¢; and t;. The set of all possible
dependencies is denoted as Dep(Q) = Dep™(Q)U Dep™(Q),
where Dep™(Q) is the set of all MDep and Dep™(Q) is the
set of all NDep in Q.

Definition 6: Let Q be an IPN, a Dependency sequence
DSeq(tz, ty) = [ta,ta)[ta,ts] - - - [te, tal[ta, ty] is a transition
sequence 0 = tytqty - - - tctqty from 2, to i, that is accepted
by Q.

[TI. IDENTIFICATION OF IPN MODELS

The model @ of a DES S; is unknown in principle; the
hypothesis of @ known is held just for proving the convergence
of the proposed identification technique. In the remaining of
this paper will be referred to a system S as its representation
Q@ in IPN terms, and will be called system model or just
system.

A. Problem definition

Problem 7: Let Sy be a DES that can be modeled by an
IPN @Q; and M = {Q0,01,...} be the non empty set of all
IPN. Then the asymptotic identification problem is defined
as follows:
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1) Select a functional f : {Q} x M — R indicating the
similitude between  and Q); € M. A lower value of
f(Q,Q;) indicates that () and @); are more similar.

2) Find out a model sequence Qo, @1, ..., @k, Where Q; €
M such as f(Q,Q;) < f(Q,Qi-1).

Through this paper the following functional will be consid-

ered.

Definition 8: Let Sy be a DES that can be modeled by
an IPN @, {¢Cq} be the set of columns of matrix ¢C' of
Q and {¢Cq, } be the set of columns of matrix ¢C' of the
identified model Q;. Let Dep(Q) and Dep(Q;) be the set of
dependencies of the system () and the identified model Q;.
The error equation of the system and the identified model is
defined as:

(@, Qi) = {pCq} — {¢Cq, } + [Dep*(Q) — Dep*(Qi)
2
The error equation 2 determines the number of system
transitions and non measurable dependencies that are missed
in the model.

B. Asymptotic identification approach

In this work, the systems considered to be identified are
those that can be described by a live, bounded and cyclic
IPN, and also it is considered that the systems are event
detectable (a property stating that every occurrence of an
event can be detected from the output signals of the system)
instead of completely measurable (in which each place has a
sensor signal assigned), because those systems represent more
realistic cases.

Identification process

The identification process consists in compute the incidence
matrix C' of an unknown system @ as it evolves. This identi-
fication process can be decomposed in two main procedures:

1) Computation of the measurable part of the model Q;:
This procedure consists in compute the pC' submatrix. Every
time a new transition is detected, in the C' matrix are computed
the measurable places related with such transition.

2) Inference of the non measurable part of the model Q;:
This procedure consists in infer the yC' submatrix. Every time
a t-semiflow (cycle) is detected, if it is the case, the com-
puted model is updated adding or removing non measurable
dependencies.

Since all places and transitions must be detected from the
output symbols of the DES, the IPN that describes this DES
must exhibit the event detectability property. The characteri-
zation of this property is presented in the following definition.

Definition 9: An IPN @ described by the state equation (1)
is event-detectable iff all ¢oC' columns are not null and different
from each other.

By previous definition is possible to state that any transition
t; (representing an event i of the system) can be detected from
consecutive output symbols ¢(M;) and ¢(M;_1) as:

©Cq(e,ti) = p(M;) — p(M;—1) 3)



If in @ there exists the following sequence of reach-
able markings: M; - M;.--M, - M, -
M, then @ could generates the output word w,
o(M;)p(M;) - - - (M) (M) p(M,); hence each transition
of the m-word w = ¢, ---tpt. generating w, is computed
using equation 3 as: t, = @(M;) — p(M;), ts = (M) —
¢(M,) and t. = o(My) — o(My).

Notice that using equation 3 it is possible to compute all
the columns of ¢C' matrix.

Definition 10: Let @ be an IPN. If w, = ¢(My) - - - p(M;)
is an output sequence generated by @; and o = ¢ty - - - . is the
firing sequence detected when w, is measured (using equation
3), then o is a m-word iff ¢(M;) = @(M;).

Previous definition states how to determine that a cycle in
the system has occurred, notice however that these cycles not
always are t-semiflows of the system (consider the case when
M; # Mj). This fact will lead to make wrong conjectures
about how the non measurable places are connected in the
unknown system model ), however as the system evolves the
new information will allow to update the model. Notice that
the m-words are the t-semiflows of the output matrix ¢C of
Q.

The incidence matrix of the system depicted on figure 1
has two t-semiflows: X1 = tytotstststs and Xy = trigto,
and four m-words wy = t1fo, wo = t3ty, wy = tstg and
wy = trtgtg. Notice that X is the concatenation of the m-
words wi, wo and ws i.e., X7 = wywows, while the m-word
wy is a t-semiflow of @), Xo = wy. Then every t-semiflow of
an IPN @ it says to have an m-word decomposition.

Fig. 1. Petri net with two t-semiflows and four m-words

When an m-word w; is computed, all measurable depen-
dencies related with its transitions are computed, hence the
@C' submatrix of a system model @) is computed correctly
when all transitions of () are fired. However the computation
of the non measurable places (rows of matrix y(') is not as
straight as the computation of the measurable places (rows of
matrix ¢C). Some non measurable places must be inferred
from several evolutions of the system. The non measurable
places are computed according to: 1) preserve the firing order
of the transitions in the current m-word and 2) preserve the
order in which the m-words have been computed.

According to previous evolutions of the system and the new
m-word computed, the non measurable places can be updated
as follows:
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-If there exists an NDep [¢;,t;] = pi and it is needed to
form another NDep [t,t,] using the same non measurable
place pg, then an arc is added from ¢, to p; and another arc
is added from py, to t,,.

-If an NDep [t;,¢;] = pr must be removed and p;, belongs
to another NDep, then the input and the output arcs of pj
related with ¢; and ¢; are removed; only in the case when pj,
belongs to a single NDep, the place p; can be removed.

If p; and p; are two non measurable places to be merged,
then a new non measurable place pj is computed such that
*pr =* pi U® p; and p; = pf Upj. In the incidence matrix
Cq, the rows ¢ and j are added forming the row k, and the
rows ¢ and j are removed from Cy,.

For each NDep [i;,1;] Dk

a vector wuy

[ v v v; v, | is computed; where r
is the number of detected transitions and v; = 1, v; = —1 and
v = 0 Vo # i, .

To compute the incidence matrix C' of @, the columns
©Cg,(+,t;) and w;; vectors are arranged as follows:

(pC(-,tl) @C("t’r‘)
Uuj

“)

Uk

Asymptotic identification approach

Every model in the sequence of models defined in the
asymptotic identification problem 7, is computed when the
current output word observed is a new output word or if it
is an already observed output word, the order in which it is
observed provide new information to built a new model.

The next algorithm built a t-semiflow from the transition
sequence computed from an observed output word of the
system since when an m-word is computed only its measurable
part is detected.

Algorithm 11: Computing the t-semiflow associated with an
m-word.

Input: The m-word w; = tyts...t,, which is determined
when the output word w, = @(Mo)p(Mi)---p(My) of
@ is observed. Such m-word w; = tits...t,, and columns
@C(+t1), ..., C (-, t,) can be computed using equation 3.

Output: The t-semiflow generating w;.

1. If ¢; does not consume tokens from any measurable place,
then an NDep [t,., t1] will be added to the set Dep*(Q1).- In
this case, the new non measurable place belonging to [t,, t1]
must contain one token in the initial marking.

2. Let ¢; and t; any two consecutive transitions in the
m-word w; = tjts...t,, if there not exists a dependency
[ti,t;] € Dep(Q1) then, an NDep [t;,t;] will be added to
the set Dep“(Q;).

3. Finally, if ¢; occurs before ¢; in the m;-word w; =
tita...t, and [t;,¢;] could not be identified as an NDep then a
MDep [t;,t;] will be added to the set Dep™ (Q;).




This algorithm computes a non measurable place p,, needed
to form the t-semiflow computed sequencing any two consec-
utive transitions ¢;, t; in w (forming an NDep) if they are not
connected by a measurable place py, i.e. if there not exists an
MDep [t;,t;] = pr. With this procedure it is constrained the
firing of the transitions of w to the order in which they were
computed. This algorithm can be used to compute the first
IPN model for a system Q.

However not all the non measurable places computed as
above could exist in @ since in any m-word w; = - - - t;t; - - -
there could exists two consecutive transitions ¢;, t; that belong
to different p-semiflows. In this case ¢; and ¢; are concurrent
transitions, the elimination of a non measurable place p; =
[ti,t;] is made when another m-word wj = ---t;---t;--- is
computed. Also if a non measurable place belongs to more
than one t-semiflow then this place have more than one input
and/or output transition and these places cannot be computed
directly from the output system information. Next section deals
with this problem.

IV. STATE MACHINES IDENTIFICATION

This section is devoted to the solution of the asymptotic
identification problem for the class of State machines PN.

Definition 12: A state machine is a PN such as |*¢| = |t*| =
1, i.e. each transition has only one input and one output place.

Computing a non measurable place having more than one
input and /or output transitions is not straightforward as in
the case of computing a non measurable place belonging to
just one m-word which can be directly computed as stated
algorithm 11.

In the case of state machines, an m-word cannot be verified
if it is an actual t-semiflow of the system because the firing
of a t-semiflow X; does not mark or remove marks to the
places belonging to another t-semiflow X;. Hence, in addition
to compute the non measurable places having more than one
input and/or output transitions it is needed to compute the
actual t-semiflows of the system.

In order to compute the actual t-semiflows of the system is
defined the set W = {W},} composed by all the computed t-
semiflows W, where each W), is a concatenation of selected
m-words. Notice then that each W, is a t-semiflow at least
in the ¢C' matrix since every m-word is a t-semiflow of this
matrix.

The first approach to compute an actual t-semiflow is
sequencing the previous and current m-words. This procedure
is illustrated in the following algorithm.

Algorithm 13: Computing an actual t-semiflow of the sys-
tem

Input: w, = t,,---t, and the t-semiflow W; if w,_
belongs to W;

Output: a t-semiflow W;

If there not exists an NDep [¢;,¢,,] in Dep(Q’) and t,,, has
not an input measurable place, then remove from Dep*(Q’)
the non measurable dependencies [t;,¢;] and [t,, t,,], (Where
t; and t; are the first and the last transitions of ;) and add to
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Dep"(Q’) the following NDeps: [t;, ] = py and [t,, 8] =
Dy, the marked place is then p,. W; = W;w,.

Proposition 14: Let (), be the model computed using the
algorithm 13 then it is fulfilled that f(Q, Q) < f(Q, Qn-1).
Proof: The error f is reduced each time when a column
of pC or an NDep of () is computed, and hence if the NDep
computed with the above algorithm belongs to @ the error is
reduced and if it is not the case the error f remains without
change and in both cases the error f(Q, Q) is equal or less
than f(Q7 Qn—1)~ n
Notice that if w,,_1 and/or w,, is an actual t-semiflow of the
system then the computed W; is either a linear combination
of w,_1 and w, in Cg or a linear combination in pCg. In
fact, the computed W; is an actual t-semiflow if w,, is the
last m-word in the concatenation of a t-semiflow X; of Q.
Notice then, that the only non measurable places computed
correctly are the places forming the dependencies between m-
words belonging to an actual t-semiflow of the system, the
other non measurable places are the places that belong to more
than one t-semiflow, initially these non measurable places have
only one input and one output transition, however when the
m-word is computed in different order some non measurable
places must be merged.

There exist also non measurable places that have more than
one input and or output transitions that can be computed
directly from the output. This computation is introduced in
the next proposition.

Proposition 15: Let () be an event detectable, live and
bounded IPN, and let K, = ---t;---t;--- and K,

<tp---te--- be two t-semiflows of @ and let p, and p,
be two non measurable places of ) belonging to both K, and
Ky such as t;,t, € p;, and t;,t, € *py, :

case 1: Let t,, = °®p, be the predecessor transition of
t; and ¢, in K; and K respectively, if p; and p; are the
non measurable places computed such that p; = [t,, ;] and
pj = [tw,tr] then p; and p; are the same place, i.e.[tw, ;] =
[twy tr] = Pz-

case 2: Lett, = p; be the successor transition of £; and ¢, in
K; and K respectively, if p,, and p,, are the non measurable
places computed such that p; = [t;,t,] and p; = [ts,1,] then
pm and p,, are the same place i.e. [t;,t,] = [ts, ts] = py.

Proof: Case 1: In order to constrain the order of the
computed transitions, we compute two non measurable places
p; and p; to form the NDeps [t.,¢;] and [ty t,] of K; and
K; respectively, then ¢,, has two output places p; and p;, by
definition of t-semiflow p; and p; must belong to the same
t-semiflow which is a contradiction since ¢; = p} and ¢, = pj}
belongs to different t-semiflows K; and K; respectively, hence
to compute the place p, of @), p; must be equal to p; i.e.
[tw, ti] = [tw, tr]-

Case 2: In order to constrain the order of the computed
transitions, we compute two non measurable places p,, and
py, to form the sequences [t;,1,] and [tst,] of K; and K;
respectively, then ¢, has two input places p,, and p,, by
definition of t-semiflow °®p,, and °p, must belong to the



same t-semiflow which is a contradiction since t; = °pp,
and t; =* p, belongs to different t-semiflows K; and K
respectively, hence to compute the non measurable place p,
of @, pr, must be equal to p, i.e. [t;,t,] = [ts, to]. [ |

Notice that this proposition can be generalized for more
than two t-semiflows.

Example 16: The m-words of the /PN depicted on figure
2 are wy = t1t2t3t4t7t8 and Wy = t1t2t5t6t7t8. Notice that
the m-words of the system are the same as its t-semiflows.
In this example p, = ps, t,, = to, t; = t3 and ¢, = 5.
The transitions 9 and ¢3 are consecutive transitions in w; and
the transitions to and t¢5 are consecutive transitions in ws. If
we use the algorithm 11 to compute these non measurable
dependencies then, two non measurable places p; and p; are
computed as depicted on figure 3. Notice that in this IPN, the
transitions t3 and t5 belongs to the same t-semiflow which is
a contradiction since t3 belongs to w; and t5 belongs to wo,
hence p; and p; must be the same place, the union of these
places results in the non measurable place ps of the system.
The example for case 2 is similar to the case 1.

Fig. 2.

Petri net with two t-semiflows.

&5

-
.

Fig. 3. Computation of non measurable places p; and p; using the algorithm
11 for the system depicted on figure 2.

However, in the case when p; is also a non measurable
place, the above proposition could not be useful to compute
the places ps and pg. For this system we can compute four
m—words: wy = t1t27 Wo = t3t4, w3 = t7t8 and Wy = t5t6.
Notice that t5 and ¢35, and ¢ and t¢5 are not shared transitions
in some m-word and hence the Proposition 15 case 1 cannot
be used to compute the non measurable place ps. Also, to
compute the non measurable place pg using Proposition 15
case 2, the transitions ¢4 and t;7, and tg and ¢ty must be a
shared transition in any m-word and it is not the case. The
computation of this kind of places can be made using the next
proposition.

Proposition 17: Let () be an IPN and let K; = t,,---1;,
K; =t;---ts and K,, = t---1,, be two t-semiflows of
Q, if there exists transition sequences o; = K;K;K,, and
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o; = K;K,, in Q (notice that o; and o are also t-semiflows)
then there exists a place p; = ¢ =*t; =*t,, = t;,.

Proof: 1f o; can be generated by () then there exists two
dependencies [t;, tx] = p;, and [t,, t;] = p; hence t7 =* ¢}, =
p; and t9, =* t; = p;. As o, also can be generated by () then
there exists a decision place p; = ¢7 such as ¢; and ¢ are
in conflict, hence *¢t; =* ¢} = p;, as o; states that there is a
dependency between ¢, and t; this implies that p; = p; since
*t; = pi, as p; = [tm,t;] implies that ¢, = p, and hence
ti. =* tj =* tk = t;n = Di- |

Notice that if the place p; of the proposition above is a
non measurable place then it could not be computed since no
transition of ¢;, t;, t;, and t,, is shared. These non measurable
places are computed when some computed non measurable
places are merged. The places that are merged are those
sequencing m-words. Since as mentioned before, the other non
measurable places are those belonging to the same m-word and
hence they are computed correctly.

Let p; and p; be two non measurable places to be merged,
then a new non measurable place p; is computed such that
*pr =* pi U® p; and p}, = p; U p5.

Next algorithm computes a model as the output words of
the system are observed.

Algorithm 18: Asymptotic identification algorithm for state
machine Petri nets.

input: The Dep(Q') set
output: The updated model Q’

1) Compute the transition sequence w,, = t., - -t, from
the last observed output word generated by the system
Q.
2) For any two consecutive transitions ¢; and ¢; in w,, =
3) if [ti,t;] ¢ Dep(Qn)
a) If there exists [t;,tx] = p, € Dep*(Q') and
[tk, t;] = py € Dep¥(Q’) (Proposition 17) then
i) merge p, and p,
ii) update all the actual t-semiflows of @)’ remov-
ing the t-semiflow w; from all t-semiflow W,
in which w; belongs i.e. W, = W, /w;, where
w; is the m-word formed with the transitions
from pj, to *p,.
iii) Form a new actual t-semiflow Wy, = w;.
b) else if there exists an NDep [t;,tx] = p. €
Dep*(Q') then add [t;,t;] = p, to Dep(Q’).
Proposition 15 case 1.

¢) else if there exists an NDep [ty, t;] = p, € Dep"
then add [¢;, ¢;] = p, to Dep™(Q’). Proposition 15
case 2.
d) else add the NDep [t;,t;] = p, where p, is a new
non measurable place to Dep”(Q’)
4) End For
5) If [tn,tm] ¢ Dep(Q') then add [t,,tm] = pn to
Dep"(Q')

6) If n =1, then W7 = w; else if W, = W1 = w,



7) If w, has been already computed and it is the first m;-
word of any W;, then mark ¢; as t; which implies that
wp—1 1s the last t-semiflow (m;-word) of W; which
wn,—1 belongs. Wyy1 = w,. Else if w, has been
already computed and there exists an NDep [t;, t,,] then
Wi = Wiw,. If this case is true then the following
cases are omitted.

If t,,, has not an input place or if w,, is not an already
computed m-word

If [t;,tm] & Dep(Q’), where t; is the last transition of
Wi.

a) If w,_ belongs to another W; # W} and w,
is computed by first time then: remove the NDep
[tn, tm]. This implies that there exists an NDep
[tj,tk] = py then to form the dependency between
t; and t,, using the case 1 of proposition 15 we
only need to add an arc from p,, to ¢, and to form
the dependence between t,, and ¢,,, where ¢, is the
first transition of W; (the other t-semiflow which
wy—1 belongs), we only need to add an arc from
t, to .ty. Wy = Wiw,,.

If w,, belongs to another W; # W;, then remove
the arc from ¢; to *¢,,, where ¢,, is the first transition
of W since there exists an NDep p,, = [tk, tm] to
form the dependency between ¢; and ¢,,, using the
Case 2 of proposition 15 we only need to add an
arc from t; to p,. Wi = Wiw,.
If t; is marked as ¢y and w, is computed by first
time, then remove the NDep [t,,, ¢,,] and form the
NDep [tn, tm] = *t;, where t; is the first transition
of W; which w,,_; belongs. Wi 11 = w,.
If there not exists a dependency [t;,t,,] but there
exist a DSeq(t;,tm) B = wp_1w;wy, by propo-
sition 17 is needed to remove the NDeps [¢;,%,]
and [ty,tm] where ¢, and t, are the first and the
last transitions of wj;, add the NDeps [t;,¢,,] and
[ts,ty] such as [tj,tm] = [tz,ty] = pg. W; =
Wi\w;, Wiy1 = w; and mark ¢, as t¢.

e) else if form an actual t-semiflow. Algorithm 13.
else Built another t-semiflow Wi11 = w,,.

8)

9)

b)

d)

Theorem 19: Let () be an event detectable and binary state
machine and @), be the proposed model for Q. If w is
the current m-word then a model Q,, can be built using the
algorithm 18 such that f(Q, Q) < f(Q, Qn-1).

Proof: The proof of this theorem is based on the propo-
sitions used to built the identification algorithm. Let ¢),, and
(-1 be the current and the previous computed models for @,
such that @,,_1 is updated from new information detected from
Q- Notice that f(Q, Qi) = [{¢Cq} —{¢Cq, }|+[Dep"(Q) —
Dep"(Q;)|. Since the measurable part of any computed
model Q; is computed correctly then [{¢Cq} — {¢Cq, }| <
{eCq} —{¢Cq, | }| because in the model @, it is possible
that new columns of ¢(C') are computed and in the worst case
Q.. and @),,_1 have the same measurable information. Hence,
we are focus on the non measurable part of () to demonstrate
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that | Dep"(Q) — Dep*(Qu)| < [Dep*(Q) — Dep™(Qu—1)|
and fulfill that £(Q, Qn) < F(Q, Qu-1)-

The cases that could arise in order to form an NDep [t;, t;]
are illustrated in steps 3 and 9 and, if the non measurable
places computed in steps 3 and 9 are places connected just
with the t-semiflows computed, then these non measurable
places are also non measurable places of @ hence | Dep™(Q)—
Dep“(Q)] < |Dep*(Q) — Dep*(Qn—1)|, if is it not the
case then the computed non measurable dependencies in
@, do not belong to @ and |Dep“(Q) — Dep"(Qy)]
|Dep"(Q) — Dep*(Qrn—1)| then it is fulfilled that f(Q, Q)

f(Q7 Qn71)~

| VANl

V. CONCLUDING REMARKS

This paper addressed the problem of on-line identification
for discrete event systems which are not instrumented com-
pletely and hence it is not possible to measure the entire system
state from the output symbols. The identification approach
used was a passive one. The obtained results implies that
for the state machines PN class, the identified model will
converge asymptotically to the model of the system as new
information is observed, this is not true for other classes of
PN like some classes greater than free choice PN. Current
research deals with the extension of the presented results to
more general classes of Petri nets, in the analysis of the input
signal needed to identify a DES and in the definition of the
identification problem when the input signals can be used
in the identification process, relaxing the event detectability

property.
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