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Abstract

GPS sensors are a promising technique for verifying
taximeters, because they do not require dedicated facilities
and are compatible with a wide range of vehicles. The main
drawback of this technology is based on legal issues: nei-
ther the absolute error of a GPS-based measurement nor the
tolerance of the sensor can be known in advance, because
they depend on environmental factors. In this paper we pro-
pose a technique that computes a dynamical tolerance for
each measurement, using the Circular Error Probable at
50% and 95% levels. By combining the interpretation of
a fuzzy set as a nested family of confidence intervals and
a genetic algorithm-based interpolation, we have built an
interval-valued estimation of the tolerance of a GPS-based
verification of a taximeter.

1. Introduction

Taximeters are commonly verified by placing the drive

wheels of the taxi on steel rollers with a known diameter.

The angular speed of the rollers is regularly sampled. The

test lasts a few minutes, and must be supervised by a tech-

nician. There are two variables of interest: the speed of the

vehicle and the length of the trajectory, because a different

fare is applied when the speed of the taxi surpass a given

threshold (changeover speed).

The use of a machine with rollers presents some draw-

backs. First, the rollers have a relatively small radius, and

the cab’s tyres deform differently over the rollers than over

a flat surface: tyres appear to be smaller for the system than

they really are. Moreover, this error depends on the tyre

conditions and the weight of the vehicle, making the whole

test unreliable. Second, an employee can only verify one

taximeter at a time, and this task lasts between 15 and 30

minutes. Third, there have been detected problems when

verifying a taximeter in a car with electronic driving aids

(such as ESP, TCS, etc.)

In previous works [21, 22], we have introduced a new

portable system, that uses a GPS sensor to sample the posi-

tion and the speed of the taxi at regular intervals. Unfortu-

nately, there are legal problems that raise difficulties in the

use of GPS measurements, because the error of the mea-

surements is not predictable; it depends on environmental

factors. Unless we are able to bound the tolerance in our

estimation of the length of the trajectory and the speed of

the vehicle, we will not be able to legally reject a taximeter.

In the same papers, we have also proposed to genetically fil-

ter the raw GPS data and remove redundant samples. This

allowed us to obtain a tight upper bound on the tolerance,

that fulfilled most of the legal requirements. However, that

procedure was best suited for high-frequency GPS sensors,

because if the frequency is low, there is a losing informa-

tion risk. In this paper we go one step beyond trying to

obtain bounds of length and speed without removing sam-

ples. The new technique is based on our own fuzzy inter-

pretation of GPS data, and also on the genetic generation

of a set of different trajectories that interpolate the data and

are compatible with the probabilistic information encoded

in the Circular Error Probable (CEP).

The structure of this paper is as follows: in the first sec-

tion, we study the nature of a GPS measurement, and how it

can be represented by a fuzzy set. In the second section we

explain how to compute upper and lower of bounds of the

measurements that are compatible with the aforementioned

representation. Sections 4 and 5 detail the experimental

setup and numerical results of our empirical validation of

the algorithm. Section 6 concludes the paper.

2. Uncertainty in GPS measurements

The term Global Positioning System (GPS) [10] refers

to a set of devices (satellites, ground stations and receiver)

working together to get a fix (the position) of the receiver.

The receiver obtains some signals from the satellites and
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Figure 1. Simulated example where the dif-
ferences between the true trajectory and the
trajectory through the GPS coordinates are
shown.

compute a set of measurements: longitude, latitude, alti-

tude, number of satellites in use, time, etc. Each signal re-

ceived from a satellite contains information about the time

that the signal takes from the satellite to the receiver.

Under certain conditions, GPS measurement errors fol-

low a bidimensional Gaussian distribution. When many

satellites are available, that distribution can be regarded as

circular [20]. Because of this, consumer grade GPS give an

indication of their precision through a magnitude called Cir-

cular Error Probable (CEP). Given a probability threshold,

the CEP indicates the radius of a circle. This circle is ap-

proximately centred on the position where the receiver was

when it registered the measurement.

Consumer grade GPS, that will be used in this paper, do

not send information related to the standard errors, but it

is possible to carry out an empirical estimation of the CEP,

whose details can be found in [4, 8, 13, 17].

3. Multilevel calculation of upper and lower
bounds with fuzzy techniques

In certain contexts, fuzzy sets can be interpreted as a

family of confidence intervals of a random variable [3]. In

particular, we will consider that each measurement obtained

by the GPS sensor is a fuzzy set, whose α-cuts are circles

centered on the GPS coordinates. Each of these circles will

be a confidence interval of the position of the taxi at the time

when the measurement was taken.

In Figure 1, some simulated GPS measurements and tra-

jectories are shown. The position where the measurement

was taken is on the real trajectory -continuous line-, and it

can be inside or outside the respective circle of radius CEP.

The trajectory using the GPS coordinates is drawn using a

dashed line. A trajectory totally compatible with the GPS

measurements is also drawn as a dotted line. Notice that

the lengths of these trajectories are different, but all of them

are compatible with the measurements of the GPS. Thus,

to know the accuracy of the measure, we want to compute

the upper and lower upper bounds of the lengths compatible

with the CEP (for each confidence level).

Observe that, if CEP information is discarded, GPS mea-

surements are crisp, and a spline model can be fitted to the

data [5][6][2]. We will use instead an interval-valued ap-

proach [1]. Apart from this, we can also assume certain

prior knowledge about the path: there are regularity con-

ditions in the trajectory, as a straight line is unrealistic for

most of the vehicles, because of inertia, and also because

cars follow a path over a road, that has a smooth shape.

Finally, we found a way to add heading and speed infor-

mation, that is usually available from consumer grade GPS

receivers. This measurements are more precise than coordi-

nates measurements [19] and thus, improve the overall ac-

curacy. This approach bears some relationship with the so-

called Fuzzy Information Fusion Techniques [7]. In the next

paragraphs we will explain how to interpolate physically re-

alizable trajectories from GPS data, and how to bound their

length.

3.1. Interpolation of a trajectory with fuzzy
data and information fusion

A planar trajectory is represented by the equation

c(t) = x(t)−→i + y(t)−→j (1)

Let us assume that each component of the trajectory is a

polynomial,

antn + an−1t
n−1 + ... + a1t + a0 = x(t) (2)

(equations of the “y” component are similar) and therefore

nantn−1 + (n− 1)an−1t
n−2 + ... + a1 = ẋ(t) (3)

In words, at each GPS sample centered in (x(t), y(t)), the

velocity is (ẋ(t), ẏ(t)) and Equation 3 holds, where t stands

for time and ai, bi are constants to be estimated. This means

that four equations are obtained for each sample. The num-

ber of unknowns is 2(n+1). A solution can be estimated if

the number of measurements m satisfy m ≥ 2(n + 1), thus

a (possibly) over constrained system is obtained.

If that system is strictly constrained, the fitted polyno-

mial

x̂(t) = â1,ntn + â1,n−1t
n−1 + ... + â1,1t + â1,0 (4)
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contains the measured coordinates. If the system is over-

constrained, the obtained model does not pass exactly over

the measured GPS coordinates.

Given this fitted polynomial, the length of the trajectory

can be estimated by integrating a length differential along

the fitted polynomial between any two t values. Observe

that the effect of assuming a straight trajectory between

measurements is mitigated: the length measured over the

polynomial will allways be greater than the distance be-

tween coordinates.

In order to reformulate length estimation as a problem

of optimization constrained to the CEP, we choose adding

to x(t) and y(t) the appropriate increments or decrements

that maximise or minimise the length of the trajectory. The

easiest way to do this is to represent the increments or decre-

ments using polar coordinates. Thus we will use two vari-

ables α ∈ [0, 2π] and ρ ∈ [0, CEP ]. The system is trans-

formed as follows:

a1,ntn + a1,n−1t
n−1 + ... + a1,0 = x1(t) + ρ cos α

na1,ntn−1 + (n− 1)a1,n−1t
n−2 + ... + a1,1 = ẋ1(t)

...

am,ntn + am,n−1t
n−1 + ... + a0 = xm(t) + ρ cos α

nam,ntn−1 + (n− 1)am,n−1t
n−2 + ... + am,1 = ẋm(t)

(5)

With the addition of the deltas to the GPS coordinates, the

length of the trajectory between to instants of time becomes

a function of α and ρ because the constants that represent

the polynomials are, also, a function of α and ρ. The model

of the trajectory is now

x̂(t, α, ρ) = â(α, ρ)1,ntn + â(α, ρ)1,n−1t
n−1 + ...

+â(α, ρ)1,1t + â(α, ρ)1,0 (6)

and the length of the trajectory is, therefore, given by

L(ti, tj , α, ρ) =
∫ tj

ti

√
˙̂x(t, α, ρ)2 + ˙̂y(t, α, ρ)2dt (7)

The proposed schema is illustrated in Figure 2. Note

that in Equation 5 the speed is crisp, in words, we trust
these measurements. If the manufacturer of the GPS re-

ceiver provides some tolerance for speed and heading (sim-

ilar to CEP), they could be used too.

For a trajectory with p points, a polynomial can be used

to model each portion of the trajectory between two instants

of time, and the length of the whole trajectory can be esti-

mated by the addition of the lengths of each polynomial that

fits the last two points. The trajectory then comprises p− 1
fragments, each one modeled by the polynomials of Equa-

tion 4 obtained solving the mentioned system. The total

Figure 2. Polynomial fitted to the GPS mea-
surements with the deltas added, compati-
ble with a given CEP. The square marks are
the original GPS measurements, the dots the
coordinates plus the deltas and the triangles
the estimation of the model.

length is:

L(α1, ρ1, α2, ρ2, ..., αp, ρp) =
i=p∑
i=2

∫ tj

ti

√
˙̂x(t, αi, ρi)2 + ˙̂y(t, αi, ρi)2dt (8)

Using Equation 8, the problem of finding the maximum

and minimum lengths compatible with GPS measurements

is easily formulated. Note that the whole summation has

to be maximised or minimised, not just each portion of the

trajectory. Moreover, this can be done at different levels

of probability, constraining ρ to the corresponding CEP at a

given probability and a set of, nested, length intervals can be

obtained from these estimations, using Equation 9. In this

equation, P1, P2, ..., Pq are CEP probabilities, and CEPPq

is the corresponding CEP at that probability. Lastly,

Lmin P1 = min{L(α1, ρ1, . . . , αp, ρp)}ρi ∈ [0, CEPP1 ]
Lmax P1 = max{L(α1, ρ1, . . . , αp, ρp)}ρi ∈ [0, CEPP1 ]

...

Lmin Pq
= min{L(α1, ρ1, . . . , αp, ρp)}ρi ∈ [0, CEPPq

]
Lmax Pq = max{L(α1, ρ1, . . . , αp, ρp)}ρi ∈ [0, CEPPq ]

P1 < P2 < ... < Pq (9)

and [Lmin Pi
, Lmax Pi

] ⊂ [Lmin Pj
, Lmax Pj

] for Pi > Pj .

4. Experimental Setup

The approaches presented in this paper have been tested

with both realistic (synthetic) and real data. The purpose

of the realistic data is to test the algorithm with a dataset

of a-priori known properties: length of the trajectory, distri-

bution of errors and so on. The purpose of the real data is
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testing the approach in real world situations. In the follow-

ing, both datasets are presented.

All data was translated to Universal Transversal Mer-

cartor (UTM) coordinate system for speeding calculations

[16]. From each dataset we compute the upper and lower

bounds of the trajectory length using: straight lines between

GPS measurements with no speed and heading data, second

degree polynomials with no speed and heading data and sec-

ond degree polynomials with speed and heading data.

The optimization has been carried with Genetic Algo-

rithms. We have chosen the Genoud optimization algorithm

[11]. In particular, we have used the “rgnoud” implementa-

tion, available as a R package. We have chosen this algo-

rithm because it combines evolutionary algorithm methods

with a derivative-based (quasi-Newton) method and it can

solve problems with many local minima and a large number

of variables.

4.1. Synthetic Data

The synthetic dataset is obtained by simulation of 10

laps to a closed loop circuit with turns in all possible ori-

entations, and with a speed that varies from a maximum in

straight portions to a minimum in the hardest turns:

x(t) = r

(
cos

(
t

tf
n2π

)
+ e

)
∗ sin

(
t

tf
2π

)
(10)

y(t) = r

(
cos

(
t

tf
n2π

)
+ e

)
∗ cos

(
t

tf
2π

)

where r stands for radius, t for time, tf stands for the time to

complete one loop (the longer this time, the less medium ve-

locity), n stands for the number of convexities in the trajec-

tory and e for eccentricity (the lesser this value, the rounder

the trajectory is). The speed over the trajectory and the

length between any to instants of time can be computed as

explained in section 3.1. GPS measurements are simulated

sampling that equation at one second intervals.

In order to simulate the behaviour of a typical GPS re-

ceiver, we have added gaussian noise to the original, such

that the real position of the receiver at time t must lie inside

of the CEP with a given probability. The velocity is also

modified with random gaussian noise in order to simulate

the measurement errors that affect this magnitude.

4.2. Real Data

We have tested our approach in a open street surround-

ing our campus in order to verify the quality of the results.

In figure 4.2 an aerial image of the street can be seen, with

the trajectory overimposed. The length of the circuit was

measured using an ISO-9002 certified odometer, and the

measured length was 1093 meters. In order to obtain some

Figure 3. Top: Aerial picture of the real circuit
used to test the approach presented in this
paper. The test vehicle follows clockwise the
circuit marked with a dashed line. Bottom:
Plot of ten laps to the circuit.

statistics of the measured length and also for testing the be-

haviour of the stochastic nature of the approach, the test

vehicle completed ten laps to the circuit. The collected data

is shown in the same figure. Observe that the measured tra-

jectories are not identical, due to GPS errors, mostly in the

left part of the image, where the trees and the building jam

GPS signals.

5. Numerical results

In this section we discuss the results obtained with the

proposed approach on the datasets mentioned in the preced-

ing section.

5.1. Synthetic data

In Table 1 the results (mean and standard deviation) ob-

tained with the synthetic trajectory, using the three tested

approaches, are shown. We have performed two batches of

ten laps to the trajectory with 3 and 5 meters CEP. In Fig.

4 the length sample data is represented as boxplots, along

with the results of the other approaches. From left to right,

each group of four boxplots correspond to one approach. In

each group of four, the first two (from left to right) are ob-

tained with a CEP of 3 meters and the other two with a CEP

of 5 meters. It is remarked that the tightest bounds are ob-

tained adding the speed and heading measurements to the

model.

Note also that with the proposed approach the minima

are comparable but the maxima are much lower. This is be-
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Straight Lines

CEP Min Mean Min SD Max Mean Max SD

3 1041.878 8.754915 1553.377 24.56959

5 991.7894 8.175372 1975.620 28.81959

Second degree polynomials

3 1033.29 6.047035 1427.402 13.70028

5 987.7802 5.593647 1698.075 19.02959

Second degree polynomials plus speed & heading

CEP Min Mean Min SD Max Mean Max SD

3 1035.776 8.99255 1203.178 10.24138

5 990.5467 6.237333 1270.932 8.539436

Table 1. Mean and standard deviation ob-
tained with synthetic data and the three
tested approaches with 3 and 5 meters CEP.

cause the speed and heading measurements are much more

precise and then the accuracy of the overall model is in-

creased.

5.2. Real data

The aim of this section is to validate our approach with

real data obtained with a consumer grade GPS in a open

traffic environment. We choose to use the data obtained af-

ter ten turns of the circuit in Fig. 4.2. We perform the same

experiments that we did with synthetic data: straight lines,

second order polynomial and second order polynomial with

heading and speed information added.

In Table 2, the results (mean and standard deviation) ob-

tained with the trajectory shown in Fig. 4.2 are shown. Ob-

serve that the same situation that we found while dealing

with synthetic data also happens here: the lesser the CEP,

the tighter the obtained bounds are.

In Fig. 4, the dispersion of the lengths of the sample

data is represented by boxplots, along with the results of

the other approaches. From left to right, each group of four

boxplots corresponds to one approach. In each group of

four, the first two (from left to right) are obtained with a

CEP of 3 meters and the other two with a CEP of 5 meters.

The tightest bounds are found, again, when we use the speed

and heading information in order to improve the accuracy of

the results.

From the results above, we encourage to model the tra-

jectory between consecutive points with second order poly-

nomials, because the model is closer to the real behaviour

of vehicle’s trajectory. Moreover, if an overconstrained esti-

mation is done, then a filtering process is implicit in the es-

timation that makes the length computation less susceptible

of perturbation from erroneous GPS measurements. Finally,

the last batch of experiments lead us to recommend the use

Straight Lines

CEP Min Mean Min SD Max Mean Max SD

3 971.4588 18.32016 1391.11 71.80738

5 940.204 19.19713 1785.405 122.5640

Second degree polynomials

CEP Min Mean Min SD Max Mean Max SD

3 965.7175 17.82051 1304.862 55.59313

5 931.8834 19.83234 1578.455 95.01664

Second degree polynomials plus speed & heading

CEP Min Mean Min SD Max Mean Max SD

3 1032.780 6.586798 1206.878 8.433708

5 989.7233 9.371552 1277.49 11.48268

Table 2. Mean and standard deviation ob-
tained with real data and the three tested ap-
proaches with 3 and 5 meters CEP.

of speed and heading information from GPS measurements

too. This information has less errors and thus improves the

precision of the whole process.

6. Conclusions and future work

In this work we have presented a novel approach to the

measurement of lengths with a GPS based system, based on

a fuzzy representation of GPS data. This allows the com-

putation of nested upper and lower bounds of the length at

different levels of confidence. The estimation is done by

a search algorithm that fits those models that, being com-

patible with the GPS measured data, have maximum and

minimum length. Moreover, we have proposed the fusion

of speed and heading measurements with GPS coordinates

measurement, in order to improve the overall precision.

This procedure can be expanded to any kind of device

that provides speed, heading and even acceleration, and thus

devices like IMU’s, digital compasses or combinations of

more than one GPS receivers can be added to the system to

improve the precision of the computed bounds.
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